CS 598: Spectral Graph
Theory. Lecture 8

PRGs and Random Walks
on Expanders

Alexandra Kolla



Today

» Why PRGs?

e The use of PRGs in randomized
algorithms

* Introduce expander graphs

e Random walks on expanders and
mpagliazzo-Zuckerman PRG




Expander Graphs

» We will study expanders a lot the next
few weeks.

» Constant degree (regular typically),
constant conductance.

e By Cheeger we saw that we can
characterize expanders through
eigenvalues.

» A family of graphs is expanding if for i>1:
|IA; —d| < edor|y;| < ed



Why Study PRGs?

e Pseudo-random number generators take a seed
which is presumably random and generate a long
string of random bits that are supposed to act
random.

 Why would we want a PRG?

> Random bits are scarce (eg low-order bits of temperature
of the processor in computer is random, but not too many
such random bits). Randomized algorithms often need
many random bits.

> Re-run an algorithm for debugging, convenient to use
same set of random bits. Can only do that by re-running
the PRG with the same seed, but not with truly random

bits.



Why Study PRGs?

» Standard PRGs are terrible (e.g. rand in
C). Often produce bits that behave much
differently than truly random bits.

» One can use cryptography to produce
such bits, but much slower



Repeating an Experiment

» Consider wanting to run the same
randomized algorithm many times.

* Let A be the algorithm, which returns
“ves”["no"” and is correct 99% of the time
(correctness function of the random bits)

» Boost accuracy by running A t times and
taking majority vote
» Use truly random bits the first time we run A

and then with the PRG we will see that
every new time we only need g random bits.

e If we run t times, probability that majority
answer is wrong is exponential in t.



The Random Walk Generator

* Let r be the number of bits out algorithm
needs for each run: space of random bits
is {0,1}"

» Let X< {0,1}" be the settings of random
bits on which algorithm gives wrong
answer for specific input.

o LetY ={0,1}"\X be the settings on which
algorithm gives the correct answer



The Random Walk Generator:
Expander Graphs

e OQur PRG will use arandom walk on a d-
regular G with vertex set {0,1}", and degree
d = constant.

 We want G to be an expanderin the
following sense: If A; is G's adjacency
matrixandd = a; > a, = - = a,, its
eigenvalues then we require that

lail _ 1
d 10

Such graphs exist with d=400 (next weeks)



The Random Walk Generator

 For the first run of algorithm, we require r truly
random bits. Treat those bits as vertex of
expander G.

* For each successive run, we choose a random
neighbor of the present vertex and feed the
corresponding bits to our algorithm.

* |.e, choose random i between 1 and 400 and
move to the i-th neighbor of present vertex.
Need log(400) ~ 9 random bits.

» Need concise description, don’t want to store the
whole graph (e.g. see hypercube)



~ G vo€{01}

The Random Walk Generator

oK




The Random Walk Generator

oK




The Random Walk Generator




- G

The Random Walk Generator

t=3

oK




The Random Walk Generator

S




Formalizing the Problem

e Assume we will run the algorithm t+1 times.
Start with truly random vertex u and take t
random walk steps.

* Recall that X is the set of vertices on which
the algorithm is not correct, we assume that

|1X| < 1200 (algorithm correct 99% of time)

e If at the end, we report the majority of the
t+1 runs of algorithm, then we will return
the correct answer as along as the random
walk is inside X less than half the time.




The Random Walk Generator

T={o,...,t} time steps
S={i: V; € X}

We will show that
Pr{lS| > ¢/2] < ()"



Formalizing the Problem

e Initial distribution is uniform (start with truly
random string): po = 1/n

* Let yx and yy the characteristic vectors of X

andY.

e Let Dy = diag(X) and Dy = diag(Y)

o LetlWW = %A (not

lazy) random walk matrix,

with eigenvalues wy,..., w, such that

|
W; = by the ex

e Want to show Pr

Dansion requirement.

IS > t/2] < (F)**



The Probability to be in X

» FixasetR C {0, ..., t} of time steps.

» The probability that the walk is n X exacty
during the stepsinR s
Pr[Walk in X exactly fori € R| =

(LD W ...WDgz po)
e WhereZ; = Xif i € R and Y otherwise

. 1 (1\IR
» Show that this probability is (E) .
e Pr[|S] > t/2] < (%)"”r1 follows.



The Proof

e Claim.
Pr[Walk in X exactly fori € R] =

L
<1; DZtW WDZ()pO>= (E)

e Lemma.
[|DxW|| < 1/5.



