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Today 

 Random walks on graphs review 

 Normalized Laplacian, normalized 

Adjacency Matrix 

 Matrix form of random walks, lazy 

random walk 

 The stable distribution 

 Convergence and the second eigenvalue 

 Examples 

 



Random Walks on Graphs 

 G=(V,E,w) weighted undirected graph. 

 Random walk on G starts on some vertex 

and moves to a neighbor with prob. 

proportional to the weight of the 

corresponding edge. 

 We are interested in the probability 

distribution over vertices after a certain 

number of steps. 



Random Walks on Graphs 

 G=(V,E,w) weighted undirected graph. 

 Let vector  �௧ ∈ �� denote the 
probability distribution at time t. We will 
also write �௧ ∈ ��, and  �௧ ݑ  for the 
value at vertex ݑ. 

 Since it’s a probability vector, �௧ ݑ ൒ Ͳ 
and  �௧ ௨ݑ = ͳ for every t. 

 Usually, we start our walk at one vertex, 
so  �଴ ݑ = ͳ for some vertex ݑ and 0 for 
the rest. 



Random Walks on Graphs 

 To derive �௧   from �௧+ଵ note that the 
probability of being at node u at time t+1 is 
the sum over all neighbors v of u of the 
probability that the walk was on v at time t 
times the probability it moved from v to u in 
one step:  

  �௧+ଵ ݑ =  ௪ሺ௨,௩ሻ�ሺ௩ሻ �௧ �∋௩:ሺ௨,௩ሻݒ  

 

Where ݀ሺݓ =(ݒሺݑ, ሻ௨ݒ  is the weighted 
degree of v. 



Lazy Random Walks 

 We will often consider lazy random walks, 
which are a variant where we stay put with 
probability ½ at each time step, and walk to 
a random neighbor the other half of the 
time.  
 
 
 

 Lazy random walks closely related to 
diffusion processes (at each time step, some 
substances diffuses out of each vertex) 
 
 

�௧+ଵ ݑ = ͳʹ �௧ ݑ + ͳʹ ,ݑሺݓ  ሻݒሻ݀ሺݒ �௧ �∋௩:ሺ௨,௩ሻݒ  



Normalized Adjacency Matrix 

 

 
 Need to define normalized versions of 

Adjacency matrix and Laplacian. 

 Normalized Adjacency matrix is what you 

would expect:  

�ܯ        = ��−ଵ/ଶ����−ଵ/ଶ 
With eigenvalues ͳ = ଵߤ ൒ ଶ ൒ߤ ⋯ ൒  �ߤ

and first eigenvector √d (see blackboard) 



Normalized Laplacian 

 

 
 Normalized Laplacian is also what you 

would expect: �ܰ = ��−ଵ/ଶܮ���−ଵ/ଶ = � =�ܯ− � − ��−ଵ/ଶ����−ଵ/ଶ 
With eigenvalues Ͳ = ଵߥ ൑ ଶߥ ൑ ⋯ ൑ ݒ� 

and first eigenvector √d as well 



Matrix Form of Random Walk 

 

 
 Best way to understand random walks is 

with linear algebra. Equation 

  �௧+ଵ ݑ = ଵଶ �௧ ݑ + ଵଶ ௪ሺ௨,௩ሻ�ሺ௩ሻ �௧ �∋௩:ሺ௨,௩ሻݒ  

Is equivalent to (verify on blackboard) 

   �௧+ଵ = ଵଶ ሺ� + ��−ଵሻ �௧ 
The lazy r.w. matrix is: �� = ͳ/ʹሺ� + ����−ଵሻ 



Matrix Form of Random Walk 

 

 Is an a-symmetric matrix!! (the only one we will deal with in 
class). But it is closely related to normalized adjacency and 
Laplacian : 

 �� = ͳʹ��ଵଶሺ� + ሻ��−ଵଶ�ܯ = � − ͳ/ʹ��ଵଶ �ܰ��−ଵଶ 
 

So W is diagonalizable and for every evector u or N 

 with evalue v,  ��భమu  is right-evector of W with evalue    

1 – v/2). 

 

 For asymmetric matrices, evectors not necessarily 
orthogonal! 

�� = ͳ/ʹሺ� + ����−ଵሻ 



Why Lazy Random Walks? 

  

 All evals of W are between 1 and 0: 

Perron evalue of M is 1, so M has evalues 

between 1 and -1. 

 We let ͳ = �ଵ ൒ �ଶ ൒ ⋯ ൒ �� ൒ Ͳ 
 

 Where �௜ = ͳ −  ʹ/௜ݒ



The Stable Distribution 
 

 Regardless of starting distribution, lazy 

r.w. always converges to stable 

distribution. 

 In stable distribution, every vertex is 

visited with probability proportional to its 

(weighted) degree. � i = �ሺ݅ሻ �ሺ݆ሻ௝  

 



The Stable Distribution � i = �ሺ݅ሻ �ሺ݆ሻ௝ = �< �, � > 

 � is right evector of W with evalue 1 (see 
blackboard). 

 Other reason to consider lazy walks, is 

that they always converge. (e.g. consider 

bipartite graphs) 

 See blackboard for proof that lazy walk 

converges to � 

 

 



Rate of Convergeance 
 

 Rate of convergence to the stable 

distribution is dictated by the second 

eigenvalue of W.  

 Assume that r.w. starts at some vertex a. 

Let χ௔the characteristic vector of a, 

which is our starting distribution. For 

every vertex b, we will bound how far �௧ b  can be from � b . 
 



Rate of Convergeance 
 Assume that r.w. starts at some vertex a. 

Let χ௔the characteristic vector of a, 

which is our starting distribution. For 

every vertex b, we will bound how far �௧ b  can be from � b : 
 

 Theorem. For all a,b, if �଴ = χ௔ then |�௧ b − � b | ൑ ݀ሺܾሻ݀ሺܽሻ�ଶ௧  
 



How Many Steps to Converge? 
 

 To have |�௧ b − � b | ൑ � , we need t 

to be such that 
�ሺ௕ሻ�ሺ௔ሻ�ଶ௧ ൑ � . 

 Where �ଶ = ͳ − �మଶ . 

 Number of steps to convergeance 

depends on 1/ ߥଶ , use ͳ − � ൑ ݁−�  
(blackboard). 



How Many Steps to Converge? 
 

Path graph, tree graph, dumbbell graph, 

bolas graph… 



Two Useful Lemmata 
 

Lemma 1. 

Let L be the Laplacian of a graph with 

eigenvalues ߣଵ ൑ ⋯ ൑  and let N be the �ߣ

normalized Laplacian with eigenvalues ߥଵ ൑ ⋯ ൑  :Then, for all i .�ߥ

                           
���೘�� ൑ ௜ߥ ൑ ���೘�೙ 



Two Useful Lemmata 
 

Lemma 2. 

Let G be an unweighted graph of diameter 

at most r connecting u to v. Then ߣଶ � ൒ ʹ�ሺ� − ͳሻ 


