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Today

* Random walks on graphs review

» Normalized Laplacian, normalized
Adjacency Matrix

» Matrix form of random walks, lazy
random walk

e The stable distribution
» Convergence and the second eigenvalue
* Examples



Random Walks on Graphs

* G=(V,E,w) weighted undirected graph.

* Random walk on G starts on some vertex
and moves to a neighbor with prob.
proportional to the weight of the
corresponding edge.

» We are interested in the probability
distribution over vertices after a certain
number of steps.



Random Walks on Graphs

* G=(V,E,w) weighted undirected graph.
 Let vector p; € R™ denote the
probability distribution at time t. We will

also write p, € RV, and p,(u) for the
value at vertex u.

» Since it's a probability vector, p;(u) = 0
and )., ps(u) = 1 foreveryt.
» Usually, we start our walk at one vertex,

so po(u) = 1 for some vertex u and o for
the rest.



Random Walks on Graphs

» To derive p; from p;,, note that the
probability of being at node u at time t+1 is
the sum over all neighbors v of u of the
probability that the walk wasonvattime t
times the probability it moved fromvtouin
one step:

(u,v)
Pr+1(u) = Zv:(u,v)EE%pt(v)

Where d(v)=),, w(u, v) is the weighted
degree of v.



Lazy Random Walks

» We will often consider lazy random walks,
which are a variant where we stay put with
probability V2 at each time step, and walk to
a random neighbor the other half of the
time.

1 1 :
D1 (U) = Ept (u) + 5 chl(tv;) )

v:(u,v)EE

pe(V)

» Lazy random walks closely related to
diffusion processes (at each time step, some
substances diffuses out of each vertex)



Normalized Adjacency Matrix

e Need to define normalized versions of
Adjacency matrix and Laplacian.

* Normalized Adjacency matrix is what you
would expect:

MG — DG_l/ZAGDG_l/Z
With eigenvalues 1 =y =y, = - = u,
and first eigenvector Vd (see blackboard)



Normalized Laplacian

* Normalized Laplacian is also what you

would expect:
N, =D;"Y?L.D,~Y? =1 - M,
— | —D,"Y24,.D, 12
With eigenvalues0 = v; < v, < --- < v,

and first eigenvector Vd as well



Matrix Form of Random Walk

* Best way to understand random walks is
with linear algebra. Equation

1 1 (u,v)
pt+1(u) — Ept(u) + EZv;(u,v)eE%pt(v)

Is equivalent to (verify on blackboard)
1 _
Pt+1 = 5(1 +AD™Y) pq

The lazy r.w. matrix is:
W, =1/2(I+ A;D;™ 1)



Matrix Form of Random Walk
W, =1/2(1 + AcDs;~ 1)

* Isan a-symmetric matrix!! (the only one we will deal with in
class). But it is closely related to normalized adjacency and
Laplacian :

1 1 _1 1 _1
WG —_ EDGZ(I +MG)DG 2 =] — 1/2DG2NGDG 2

So W is diagonalizable and for every evector u or N
1

with evalue v, Ds2u is right-evector of W with evalue
1—-Vv/2).

* For asymmetric matrices, evectors not necessarily
orthogonal!



Why Lazy Random Walks?

o All evals of W are between 1 and o:
Perron evalue of Mis 1, so M has evalues
between 1 and -1.

'We|6t1=(1)12(1)22"'>(1)n20

e Wherew; =1 —v;/2



The Stable Distribution

» Regardless of starting distribution, lazy
r.w. always converges to stable
distribution.

* In stable distribution, every vertex is
visited with probability proportional to its
(weighted) degree.




The Stable Distribution

d(i) d

(i) “Ydj) <1d>

* Ttis right evector of W with evalue 1 (see
blackboard).

» Other reason to consider lazy walks, is
that they always converge. (e.qg. consider
bipartite graphs)

» See blackboard for proof that lazy walk
convergesto T



Rate of Convergeance

 Rate of convergence to the stable
distribution is dictated by the second
eigenvalue of W.

» Assume that r.w. starts at some vertex a.
Let x,the characteristic vector of 3,
which is our starting distribution. For
every vertex b, we will bound how far

p:(b) can be from m(b).



Rate of Convergeance
* Assume that r.w. starts at some vertex a.
Let x,the characteristic vector of 3,
which is our starting distribution. For
every vertex b, we will bound how far

p:(b) can be from m(b):

e Theorem. Forall a,b, if py = x, then
d(b)
d(a)

(l)zt

lp:(b) —m(b)| <

\



How Many Steps to Converge?

» To have |p;(b) — m(b)| < €, we need t
d(b)
d(a)

* Where w, —1—1/2—2

» Number of steps to convergeance
dependsoni/v,,usel —y <e™’
(blackboard).

to be such that wot < ¢,



How Many Steps to Converge?

Path graph, tree graph, dumbbell graph,
bolas graph...



Two Useful Lemmata

Lemma 1.
Let L be the Laplacian of a graph with
eigenvalues 4, < - < 1,, and let N be the

normalized Laplacian with eigenvalues
vy < - <v,.Then, foralli:




Two Useful Lemmata

Lemma 2.

Let G be an unweighted graph of diameter
at most r connecting u to v. Then

1,(G) =

r(n—1)



