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Today 

 Random walks on graphs review 

 Normalized Laplacian, normalized 

Adjacency Matrix 

 Matrix form of random walks, lazy 

random walk 

 The stable distribution 

 Convergence and the second eigenvalue 

 Examples 

 



Random Walks on Graphs 

 G=(V,E,w) weighted undirected graph. 

 Random walk on G starts on some vertex 

and moves to a neighbor with prob. 

proportional to the weight of the 

corresponding edge. 

 We are interested in the probability 

distribution over vertices after a certain 

number of steps. 



Random Walks on Graphs 

 G=(V,E,w) weighted undirected graph. 

 Let vector  � ∈ �� denote the 
probability distribution at time t. We will 
also write � ∈ ��, and  �  for the 
value at vertex . 

 Since it’s a probability vector, �  
and  � =  for every t. 

 Usually, we start our walk at one vertex, 
so  � =  for some vertex  and 0 for 
the rest. 



Random Walks on Graphs 

 To derive �   from � +  note that the 
probability of being at node u at time t+1 is 
the sum over all neighbors v of u of the 
probability that the walk was on v at time t 
times the probability it moved from v to u in 
one step:  

  � + =  ,� �: , ∈�  

 

Where )= ,  is the weighted 
degree of v. 



Lazy Random Walks 

 We will often consider lazy random walks, 
which are a variant where we stay put with 
probability ½ at each time step, and walk to 
a random neighbor the other half of the 
time.  
 
 
 

 Lazy random walks closely related to 
diffusion processes (at each time step, some 
substances diffuses out of each vertex) 
 
 

� + = � +  , �: , ∈�  



Normalized Adjacency Matrix 

 

 
 Need to define normalized versions of 

Adjacency matrix and Laplacian. 

 Normalized Adjacency matrix is what you 

would expect:  

       � = ��− / ����− /  

With eigenvalues =  ⋯ � 

and first eigenvector √d (see blackboard) 



Normalized Laplacian 

 

 
 Normalized Laplacian is also what you 

would expect: � = ��− / ���− / = � − �= � − ��− / ����− /  

With eigenvalues = ⋯  � 

and first eigenvector √d as well 



Matrix Form of Random Walk 

 

 
 Best way to understand random walks is 

with linear algebra. Equation 

  � + = � +  ,� �: , ∈�  

Is equivalent to (verify on blackboard) 

   � + = � + ��−  �  

The lazy r.w. matrix is: �� = / � + ����−  



Matrix Form of Random Walk 

 

 Is an a-symmetric matrix!! (the only one we will deal with in 
class). But it is closely related to normalized adjacency and 
Laplacian : 

 �� = �� � + � ��− = � − / �� ���−  

 

So W is diagonalizable and for every evector u or N 

 with evalue v,  �� u  is right-evector of W with evalue    

1 – v/2). 

 

 For asymmetric matrices, evectors not necessarily 
orthogonal! 

�� = / � + ����−  



Why Lazy Random Walks? 

  

 All evals of W are between 1 and 0: 

Perron evalue of M is 1, so M has evalues 

between 1 and -1. 

 We let = � �  ⋯ ��  

 

 Where � = − /  



The Stable Distribution 
 

 Regardless of starting distribution, lazy 

r.w. always converges to stable 

distribution. 

 In stable distribution, every vertex is 

visited with probability proportional to its 

(weighted) degree. � i = � �  

 



The Stable Distribution � i = � � = �< �, � > 

 � is right evector of W with evalue 1 (see 
blackboard). 

 Other reason to consider lazy walks, is 

that they always converge. (e.g. consider 

bipartite graphs) 

 See blackboard for proof that lazy walk 

converges to � 

 

 



Rate of Convergeance 
 

 Rate of convergence to the stable 

distribution is dictated by the second 

eigenvalue of W.  

 Assume that r.w. starts at some vertex a. 

Let χ the characteristic vector of a, 

which is our starting distribution. For 

every vertex b, we will bound how far � b  can be from � b . 
 



Rate of Convergeance 
 Assume that r.w. starts at some vertex a. 

Let χ the characteristic vector of a, 

which is our starting distribution. For 

every vertex b, we will bound how far � b  can be from � b : 
 

 Theorem. For all a,b, if � = χ  then |� b − � b | �  

 



How Many Steps to Converge? 
 

 To have |� b − � b | � , we need t 

to be such that 
�� �  � . 

 Where � = − � . 

 Number of steps to convergeance 

depends on 1/  , use − � −�  
(blackboard). 



How Many Steps to Converge? 
 

Path graph, tree graph, dumbbell graph, 

bolas graph… 



Two Useful Lemmata 
 

Lemma 1. 

Let L be the Laplacian of a graph with 

eigenvalues ⋯ � and let N be the 

normalized Laplacian with eigenvalues ⋯ �. Then, for all i: 

                           
��� �� ��� �  



Two Useful Lemmata 
 

Lemma 2. 

Let G be an unweighted graph of diameter 

at most r connecting u to v. Then � � � −  


