CS 598: Spectral Graph Theory. Lecture 7

Random Walks and

 EigenvaluesAlexandra Kolla

Today

- Random walks on graphs review
- Normalized Laplacian, normalized Adjacency Matrix
- Matrix form of random walks, lazy random walk
- The stable distribution
- Convergence and the second eigenvalue
- Examples

Random Walks on Graphs

- $G=(V, E, w)$ weighted undirected graph.
- Random walk on G starts on some vertex and moves to a neighbor with prob. proportional to the weight of the corresponding edge.
- We are interested in the probability distribution over vertices after a certain number of steps.

Random Walks on Graphs

- $\mathrm{G}=(\mathrm{V}, \mathrm{E}, \mathrm{w})$ weighted undirected graph.
- Let vector $p_{t} \in R^{n}$ denote the probability distribution at time t. We will also write $p_{t} \in R^{V}$, and $p_{t}(u)$ for the value at vertex u.
- Since it's a probability vector, $p_{t}(u) \geq 0$ and $\sum_{u} p_{t}(u)=1$ for every t .
- Usually, we start our walk at one vertex, so $p_{0}(u)=1$ for some vertex u and o for the rest.

Random Walks on Graphs

- To derive p_{t} from p_{t+1} note that the probability of being at node u at time $t+1$ is the sum over all neighbors v of u of the probability that the walk was on v at time t times the probability it moved from v to u in one step:

$$
p_{t+1}(u)=\sum_{v:(u, v) \in E} \frac{w(u, v)}{d(v)} p_{t}(v)
$$

Where $d(v)=\sum_{u} w(u, v)$ is the weighted degree of v.

Lazy Random Walks

- We will often consider lazy random walks, which are a variant where we stay put with probability $1 / 2$ at each time step, and walk to a random neighbor the other half of the time.

$$
p_{t+1}(u)=\frac{1}{2} p_{t}(u)+\frac{1}{2} \sum_{v:(u, v) \in E} \frac{w(u, v)}{d(v)} p_{t}(v)
$$

- Lazy random walks closely related to diffusion processes (at each time step, some substances diffuses out of each vertex)

Normalized Adjacency Matrix

- Need to define normalized versions of Adjacency matrix and Laplacian.
- Normalized Adjacency matrix is what you would expect:

$$
M_{G}=D_{G}^{-1 / 2} A_{G} D_{G}^{-1 / 2}
$$

With eigenvalues $1=\mu_{1} \geq \mu_{2} \geq \cdots \geq \mu_{n}$
and first eigenvector $\sqrt{ } \mathbf{d}$ (see blackboard)

Normalized Laplacian

- Normalized Laplacian is also what you would expect:

$$
\begin{aligned}
N_{G}= & D_{G}^{-1 / 2} L_{G} D_{G}^{-1 / 2}=I-M_{G} \\
& =I-D_{G}^{-1 / 2} A_{G} D_{G}^{-1 / 2}
\end{aligned}
$$

With eigenvalues $0=v_{1} \leq v_{2} \leq \cdots \leq v_{n}$ and first eigenvector $\sqrt{ } \mathbf{d}$ as well

Matrix Form of Random Walk

- Best way to understand random walks is with linear algebra. Equation

$$
p_{t+1}(u)=\frac{1}{2} p_{t}(u)+\frac{1}{2} \sum_{v:(u, v) \in E} \frac{w(u, v)}{d(v)} p_{t}(v)
$$

Is equivalent to (verify on blackboard)

$$
p_{t+1}=\frac{1}{2}\left(I+A D^{-1}\right) p_{t}
$$

The lazy r.w. matrix is:

$$
W_{G}=1 / 2\left(I+A_{G} D_{G}^{-1}\right)
$$

Matrix Form of Random Walk

$$
W_{G}=1 / 2\left(I+A_{G} D_{G}{ }^{-1}\right)
$$

- Is an a-symmetric matrix!! (the only one we will deal with in class). But it is closely related to normalized adjacency and Laplacian :

$$
W_{G}=\frac{1}{2} D_{G}^{\frac{1}{2}}\left(I+M_{G}\right) D_{G}^{-\frac{1}{2}}=I-1 / 2 D_{G}^{\frac{1}{2}} N_{G} D_{G}^{-\frac{1}{2}}
$$

So W is diagonalizable and for every evector u or N with evalue $\mathrm{v}, D_{G}{ }^{\frac{1}{2}} \mathrm{U}$ is right-evector of W with evalue $1-\mathrm{v} / 2$).

- For asymmetric matrices, evectors not necessarily orthogonal!

Why Lazy Random Walks?

- All evals of W are between 1 and o:

Perron evalue of M is 1 , so M has evalues between 1 and -1.

- We let $1=\omega_{1} \geq \omega_{2} \geq \cdots \geq \omega_{n} \geq 0$
- Where $\omega_{i}=1-v_{i} / 2$

The Stable Distribution

- Regardless of starting distribution, lazy r.w. always converges to stable distribution.
- In stable distribution, every vertex is visited with probability proportional to its (weighted) degree.

$$
\boldsymbol{\pi}(\mathrm{i})=\frac{\boldsymbol{d}(i)}{\sum_{j} \boldsymbol{d}(j)}
$$

The Stable Distribution

$$
\boldsymbol{\pi}(\mathrm{i})=\frac{\boldsymbol{d}(i)}{\sum_{j} \boldsymbol{d}(j)}=\frac{\boldsymbol{d}}{\langle\mathbf{1}, \boldsymbol{d}\rangle}
$$

- $\boldsymbol{\pi}$ is right evector of W with evalue 1 (see blackboard).
- Other reason to consider lazy walks, is that they always converge. (e.g. consider bipartite graphs)
- See blackboard for proof that lazy walk converges to π

Rate of Convergeance

- Rate of convergence to the stable distribution is dictated by the second eigenvalue of W.
- Assume that r.w. starts at some vertex a. Let χ_{a} the characteristic vector of a, which is our starting distribution. For every vertex b, we will bound how far $p_{t}(\mathrm{~b})$ can be from $\boldsymbol{\pi}(\mathrm{b})$.

Rate of Convergeance

- Assume that r.w. starts at some vertex a. Let χ_{a} the characteristic vector of a, which is our starting distribution. For every vertex b, we will bound how far $p_{t}(\mathrm{~b})$ can be from $\pi(\mathrm{b}):$
- Theorem. For all a, b, if $p_{0}=\chi_{a}$ then

$$
\left|p_{t}(\mathrm{~b})-\pi(\mathrm{b})\right| \leq \sqrt{\frac{d(b)}{d(a)}} \omega_{2}^{t}
$$

How Many Steps to Converge?

- To have $\left|p_{t}(\mathrm{~b})-\boldsymbol{\pi}(\mathrm{b})\right| \leq \varepsilon$, we need t to be such that $\sqrt{\frac{d(b)}{d(a)}} \omega_{2}{ }^{t} \leq \varepsilon$.
- Where $\omega_{2}=1-\frac{v_{2}}{2}$.
- Number of steps to convergeance depends on $1 / \nu_{2}$, use $1-\gamma \leq e^{-\gamma}$ (blackboard).

How Many Steps to Converge?

Path graph, tree graph, dumbbell graph, bolas graph...

Two Useful Lemmata

Lemma 1.

Let L be the Laplacian of a graph with eigenvalues $\lambda_{1} \leq \cdots \leq \lambda_{n}$ and let N be the normalized Laplacian with eigenvalues
$v_{1} \leq \cdots \leq v_{n}$. Then, for all i:

$$
\frac{\lambda_{i}}{d_{\max }} \leq v_{i} \leq \frac{\lambda_{i}}{d_{\min }}
$$

Two Useful Lemmata

Lemma 2.
Let G be an unweighted graph of diameter at most r connecting u to v. Then

$$
\lambda_{2}(G) \geq \frac{2}{r(n-1)}
$$

