CS 598: Spectral Graph Theory. Lecture 5

Graph Cutting and
Cheeger's Inequality

Alexandra Kolla

Today

-Why do we cut graphs?

- Cut ratio, and integer programming formulation
- Integer programming relaxation, easy direction of Cheeger
- Difficult direction of Cheeger

Why Cut?

- One of the inspirations of spectral graph theory is graph partitioning
- Want to cut a graph in two approximately equally sized pieces while minimizing the number of edges cut.
- Applications like divide-and conquer algorithms, clustering etc
- Concentrate on two-piece partitions

Some Notation

- Graph G=(V,E)
- $S \subseteq V$ a set of vertices of G
- $|S|=$ the number of vertices in S
- $\bar{S}=V \backslash$ S the complement of S
- $e(S)=e(\bar{S})=$ the number f edges between S, \bar{S}

First Instinct: Min Cut

- Min Cut: divide G into two parts as to minimize e(S)
- Would cut the one edge on the left and not in the middle

Second Instinct: Approximate Bisection

- Cut in equal size pieces while minimizing e(S)
- Would cut the clique on the left to achieve balance but would cut too many edges

A Good Tradeoff: Cut Ratio

- Cut ratio : $\quad \phi(S)=\frac{e(S, \bar{S})}{\min (|S \| \bar{S}|)}$
- Sparsest Cut is the one that minimizes cut ratio. Also called isoperimetric number of G: $\quad \phi(G)=\min _{S \subseteq V} \phi(S)$
- Nice property that if $\mathrm{S}_{1}, \mathrm{~S}_{2}$ disjoint and $\left|S_{1} \cup S_{2}\right| \leq n / 2$ then

$$
\phi\left(S_{1} \cup S_{2}\right) \leq \max \left\{\phi\left(S_{1}\right), \phi\left(S_{2}\right)\right\}
$$

An Integer Program for Cut Ratio

- How to find the optimal cut fast? Integer program for cut ratio.
- Associate every cut $S-\bar{S}$ with a vector $x \in\{-1,1\}^{n}$, where

$$
x_{i}=\left\{\begin{array}{c}
-1, i \in S \\
1, i \in \bar{S}
\end{array}\right.
$$

- We can now write

$$
\begin{gathered}
e(S)=\frac{1}{4} \sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2} \\
|S| \cdot|\bar{S}|= \\
\left(\sum _ { i \in V } [i \in S |) \left(\sum_{\overline{j \in V}}[j \in \bar{S} \bar{j})=\sum_{i, j \in V}[i \in S, j \in \bar{S}]=\frac{1}{2} \sum_{i, j \in V}\left[x_{i} \neq x_{j}\right]=\frac{1}{4} \sum_{i<j}\left(x_{i}-x_{j}\right)^{2}\right.\right.
\end{gathered}
$$

[A] is the characteristic function of boolean event A. It is 1 if A true, zero otherwise.

Solving the Integer Program

- $\min _{x \in\{-1,1\}^{n}} \frac{\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i<j}\left(x_{i}-x_{j}\right)^{2}}=\min _{S \subseteq V} \frac{e(S)}{|S| \cdot|\bar{S}|}$
- $\mathrm{n} / 2 \min \{S, \bar{S}\} \leq|S| \cdot|\bar{S}| \leq \mathrm{n} \min \{S, \bar{S}\}$
- Solving the integer program approximates sparsest cut within 2.

$$
\frac{1}{n} \phi(G) \leq \min _{S \subseteq V} \frac{e(S)}{|S| \cdot|\bar{S}|} \leq \frac{2}{n} \phi(G)
$$

- NP-hard to solve
- Remove integrality constraint, get relaxation

A Note on Relaxations

- Often in approximation algorithms:

- Want to solve NP-hard problem: "minimize $f(x)$ subject to constraint $x \in C^{\prime \prime}$
- Instead, we relax constraint and solve the problem:"minimize $f(x)$ subject to constraint $x \in C^{\prime \prime}$ for weaker C^{\prime}.
- Gives a lower minimum
- Then need to round solution q to a feasible one, that is close to the optimal one p.

A Note on Relaxations

- Immediately, $\mathrm{f}(\mathrm{q}) \leq \mathrm{f}(\mathrm{p})$

- To get a c-approximation (c>1) we need to round q to a point q^{\prime} and show

$$
f\left(q^{\prime}\right) \leq c f(q) \leq c f(p)
$$

Solving the Relaxation

$$
\min _{x \in R} \frac{\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i<j}\left(x_{i}-x_{j}\right)^{2}}
$$

- We use $\min _{S \subseteq V} \frac{e(S)}{|S| \cdot|\bar{S}|} \leq \frac{2}{n} \phi(G)$
- Details on blackboard, and we obtain

$$
\phi(G) \geq \frac{\dot{\lambda}_{2}}{2}
$$

- Next Lecture, we will see more on relaxations and connections with λ_{2}

The Other Direction

- We just showed that $\phi(G) \geq \frac{\lambda_{2}}{2}$
- What about other direction? Need rounding method which will be a way to get a cut from λ_{2} and v_{2} together with upper bound on how much the rounding increases the cut ratio.
- Cheeger's Inequality:

$$
\lambda_{2} / 2 \leq \phi(G) \leq \sqrt{2 d_{\max }} \sqrt{\lambda_{2}}
$$

- Both upper and lower bounds are tight (up to constant), as seen by path graph and complete binary tree. Both have sparsest cut $\mathrm{O}(1 / \mathrm{n})$, but Pn_{n} has $\lambda_{2}=\Theta\left(1 / n^{2}\right)$ and T_{n} has $\lambda_{2}=\Theta(1 / n)$, see lecture 4.
- We show the difficult direction next: $\frac{\phi(G)^{2}}{2 d_{\max }} \leq \lambda_{2}$

The Proof of Cheeger's Inequality

How to Get a Cut from λ_{2} and v_{2}

- Algorithmic proof
- Let $x \in \mathrm{R}^{\mathrm{n}}$ be any vector such that $\mathrm{x} \perp 1$
- Order vertices of x such that $x_{1} \leq x_{2} \leq \ldots$ $\leq x_{n}$
- Let $S=\{1, \ldots, k\}$ for some value of k. This will be our cut. Algorithm tries all values of k to find the best one, k depends on graph.
- We will next show something stronger

How to Get a Cut from λ_{2} and v_{2} Theorem

For any $x \perp 1$, such that $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$, there is some i for which

$$
\frac{\phi(\{1, \ldots, i\})^{2}}{2 d_{\max }} \leq \frac{x^{T} L x}{x^{T} x}
$$

This not only implies Cheeger by taking $x=v_{2}$ but also gives an actual cut. Also works if we only have good approximations of λ_{2} and v_{2}

Proof: see blackboard

