CS 598: Spectral Graph
Theory. Lecture 5

Graph Cutting and
Cheeger’s Inequality

Alexandra Kolla



Today

* Why do we cut graphs?

 Cut ratio, and integer programming
formulation

* Integer programming relaxation, easy
direction of Cheeger

o Difficult direction of Cheeger



Why Cut?

» One of the inspirations of spectral graph
theory is graph partitioning

» Want to cut a graph in two approximately
equally sized pieces while minimizing the

number of ec
» Applications

algorithms, ¢

ges cut.

ike divide-and conquer
ustering etc

» Concentrate on two-piece partitions



Some Notation

e Graph G=(V,E)

» § C V asetof vertices of G

* |S| =the number of verticesin S

» S = V\S the complement of S

* e(S) = e(S) =the number f edges
between S, S



First Instinct: Min Cut

e Min Cut: divide G into
two parts as to minimize e(S)

» Would cut the one edge on the left and
not in the middle



Second Instinct: Approximate
Bisection o

Kns3

» Cutin equal size
pieces while minimizing e(S)

» Would cut the clique on the left to
achieve balance but would cut too many
edges



A Good Tradeoff: Cut Ratio

e(S,S)

e Cutratio: P(S) = min(I S 11 S )

» Sparsest Cut is the one that minimizes
cut ratio. Also called isoperimetric

numberofG:  4G) = min,_, ¢(S)

» Nice property that if 51,52 disjoint and
|Sl U Szl < n/Z then

o(S, U S,) <max{a(S,),o(S,)}



An Integer Program for Cut Ratio
* How to find the optimal cut fast? Integer
program for cut ratio.

o Associate every cut S — S with a vector
x € {—1,1}"*, where
B {—1,1‘ €S
171 1,i€8
> We can now write

1
e(S) =7 X jer(xi—x)*

NENE

(zlES)(Z[]ES)—Z[lES]ES Z[xlix]]— Z(x X
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[A] is the characteristic function of boolean event A.
It is 1if A true, zero otherwise.



Solving the Integer Program

X (i, ee(Xi—%)* e(s)
' =min
SicjOti=x)? <V s)18]

o MUNyxeg{—1,1)"

> n/2min{S, S} < |S|-|S| < n min{S, S}

o Solving the integer program approximates
sparsest cut within 2.

1 : e(S) 2
n¢(6) < MiNgcy S 1S] = n¢(G)

> NP-hard to solve
- Remove integrality constraint, get relaxation



A Note on Relaxations

smaller

o Oftenin approximation s
algorithms: |

> Want to solve NP-hard problem: "minimize f(x)
subjectto  constraint xeC”

° Instead, we relax constraint and solve the

problem:"minimize f(x) subject to constraint
xeC" " for weaker C'.

o Gives a lower minimum

> Then need to round solution g to a feasible one,
that is close to the optimal one p.



A Note on Relaxations

smaller
flr)

v

> Immediately, f(q)< f(p)

> To get a c-approximation (c>1) we need to
round g to a point g’ and show

f(q") = cf(q) < c f(p)



Solving the Relaxation

Y i yer(Xi—x;)?
Zi<j(xi_xj)2

MmiN,cp

. S) _ 2
> We use mingcy IEI(-I;_I < gqﬁ(G)

> Details on blackboard, and we obtain

A,
$(G) = >

Next Lecture, we will see more on relaxations and
connections with A,



The Other Direction

> We just showed that ¢(G) = %

o What about other direction? Need rounding method
which will be a way to get a cut from A,and v,
together with upper bound on how much the
rounding increases the cut ratio.

> Cheeger’s Inequality:
2, 12<¢(G)<\2d . A4,

> Both upper and lower bounds are tight (up to
constant), as seen by path graph and complete
binary tree. Both have sparsest cut O(1/n), but Pn has
A2 = O(2/n?) and Tn has A2 = ©(a/n), see lecture 4.

2
$O)
2d

> We show the difficult direction next:



The Proof of Cheeger’s
Inequality



How to Get a Cut from A,and v,

» Algorithmic proof

* Let x€ER™ be any vector such that x11

* Order vertices of x such that x, < x,<...
< X,

* Let S={1,...,k} for some value of k. This
will be our cut. Algorithm tries all values
of k to find the best one, k depends on
graph.

* We will next show something stronger



How to Get a Cut from A,and v,

Theorem

Forany xL11, such that x,< x,<... < x, thereis
some i for which

d({1,....i})" - x" Lx
2d - x'x

max

This not only implies Cheeger by taking x=v,
but also gives an actual cut. Also works if we only
have good approximations of A,and v,

Proof: see blackboard



