
CS 598: Spectral Graph
Theory. Lecture 5

Graph Cutting and
Cheeger’s Inequality

Alexandra Kolla

Today

 Why do we cut graphs?

 Cut ratio, and integer programming

formulation

 Integer programming relaxation, easy

direction of Cheeger

 Difficult direction of Cheeger

Why Cut?

 One of the inspirations of spectral graph

theory is graph partitioning

 Want to cut a graph in two approximately

equally sized pieces while minimizing the

number of edges cut.

 Applications like divide-and conquer

algorithms, clustering etc

 Concentrate on two-piece partitions

Some Notation

 Graph G=(V,E)

 � ⊆ � a set of vertices of G

 |S| = the number of vertices in S

 � = �\S the complement of S

 � � = � � = the number f edges

between �, �

First Instinct: Min Cut

 Min Cut: divide G into

 two parts as to minimize e(S)

 Would cut the one edge on the left and

not in the middle

Second Instinct: Approximate

Bisection K2n/3 Kn/3

 Cut in equal size

 pieces while minimizing e(S)

 Would cut the clique on the left to

achieve balance but would cut too many

edges

A Good Tradeoff: Cut Ratio

 Cut ratio :

 Sparsest Cut is the one that minimizes

cut ratio. Also called isoperimetric

number of G:

 Nice property that if S1,S2 disjoint and

|� ∪ � | / then

|)||min(|

),(
)(

SS

SSe
S

)(min)(SG
VS

)}(),(max{)(2121 SSSS

An Integer Program for Cut Ratio
 How to find the optimal cut fast? Integer

program for cut ratio.
 Associate every cut � − � with a vector � ∈ {− , }�, where

 � = − , ∈ �& , ∈ �
◦ We can now write

 � � = 4 � −�, ∈�

 � ⋅ � = [∈ �] ∈ � ∈� = ∈ �, ∈ � , ∈� = � ≠ �, ∈�∈� = 4 � −�<

[A] is the characteristic function of boolean event A.

It is 1 if A true, zero otherwise.

Solving the Integer Program

◦ �∈{− , }� � −� 2, ∈� � −� 2< = ⊆� �| |⋅| |

◦ n/ min&{�, �} & � ⋅ � n&min&{�, �}

◦ Solving the integer program approximates
sparsest cut within 2.

 �� � ⊆� �| |⋅| | �� �

◦ NP-hard to solve

◦ Remove integrality constraint, get relaxation

A Note on Relaxations

 Often in approximation
 algorithms:

◦ Want to solve NP-hard problem: minimize f x

subject to constraint x∈C

◦ Instead, we relax constraint and solve the

problem: minimize f(x) subject to constraint
x∈C’ for weaker C’.

◦ Gives a lower minimum
◦ Then need to round solution q to a feasible one,

that is close to the optimal one p.

A Note on Relaxations

◦)mmediately, f q ≤ f p

◦ To get a c-approximation (c>1) we need to

round q to a point q’ and show
 f q’ ≤ cf(q) ≤ c f(p)

Solving the Relaxation

�∈ � −�, ∈� � −�<

◦ We use ⊆� �| |⋅| | �� �

◦ Details on blackboard, and we obtain � � �

 Next Lecture, we will see more on relaxations and
connections with �

The Other Direction
◦ We just showed that � � �2
◦ What about other direction? Need rounding method

which will be a way to get a cut from � and �
together with upper bound on how much the
rounding increases the cut ratio.

◦ Cheeger’s Inequality:

◦ Both upper and lower bounds are tight (up to

constant), as seen by path graph and complete
binary tree. Both have sparsest cut O(1/n), but Pn has
λ2 = Θ(1/) and Tn has λ2 = Θ(1/n), see lecture 4.

◦ We show the difficult direction next:

22 max
2)(2/ dG

2

2

max
2

)(

d

G

The Proof of Cheeger’s

Inequality

How to Get a Cut from � and �
• Algorithmic proof

• Let x∈Rn be any vector such that x⊥

• Order vertices of x such that x1 x2 … &xn

• Let S={1,…,k} for some value of k. This
will be our cut. Algorithm tries all values

of k to find the best one, k depends on

graph.

•We will next show something stronger

How to Get a Cut from � and �
 Theorem
For any x⊥1, such that x1 x2 … &xn, there is
some i for which

This not only implies Cheeger by taking x=v2

but also gives an actual cut. Also works if we only
have good approximations of � and �

Proof: see blackboard

xx

Lxx

d

i

T

T

max

2

2

}),...,1({

