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Today 

 

 Why do we cut graphs? 

 Cut ratio, and integer programming 

formulation 

 Integer programming relaxation, easy 

direction of Cheeger 

 Difficult direction of Cheeger 

 



Why Cut? 

 

 One of the inspirations of spectral graph 

theory is graph partitioning 

 Want to cut a graph in two approximately 

equally sized pieces while minimizing the 

number of edges cut. 

 Applications like divide-and conquer 

algorithms, clustering etc 

 Concentrate on two-piece partitions 



Some Notation 

 Graph G=(V,E) 

 � ⊆ � a set of vertices of G 

 |S| = the number of vertices in S 

 � = �\S the complement of S 

 � � = � �  = the number f edges 

between �, �  



First Instinct: Min Cut 

 

 Min Cut: divide G into 

 two parts as to minimize e(S) 

 

 Would cut the one edge on the left and 

not in the middle 



Second Instinct: Approximate 

Bisection K2n/3 Kn/3 

 

 Cut in equal size 

 pieces while minimizing e(S) 

 

 Would cut the clique on the left to 

achieve balance but would cut too many 

edges 



A Good Tradeoff: Cut Ratio 
 

 Cut ratio : 

 

 Sparsest Cut is the one that minimizes 

cut ratio. Also called isoperimetric 

number of G: 

 

 Nice property that if S1,S2 disjoint and 

|� ∪ � | /  then 
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An Integer Program for Cut Ratio 
 How to find the optimal cut fast? Integer 

program for cut ratio. 
 Associate every cut � − �  with a vector � ∈ {− , }�, where 

  � =  − , ∈ �& , ∈ �  
◦ We can now write  

  � � = 4 � −�, ∈�  

 

    � ⋅ � =  [ ∈ �]  ∈ � ∈� =  ∈ �, ∈ � , ∈� =  � ≠ �, ∈�∈� = 4 � −�<  

 
[A] is the characteristic function of boolean event A.  

It is 1 if A true, zero otherwise. 



Solving the Integer Program 

◦  �∈{− , }�  � −� 2, ∈� � −� 2< = ⊆� �| |⋅|  | 
 

◦  n/ min&{�, �} & � ⋅ � n&min&{�, �}  

  

◦ Solving the integer program approximates 
sparsest cut within 2.  

 �� � ⊆� �| |⋅|  | �� �  

 

◦ NP-hard to solve 

◦ Remove integrality constraint, get relaxation 



A Note on Relaxations  
 

 Often in approximation 
    algorithms: 
 
◦ Want to solve NP-hard problem: minimize f x  

subject to      constraint x∈C  
 
◦ Instead, we relax constraint and solve the 

problem: minimize f(x) subject to constraint 
x∈C’  for weaker C’. 
 
◦ Gives a lower minimum  
◦ Then need to round solution q to a feasible one, 

that is close to the optimal one p. 



A Note on Relaxations 
 

 

 

◦ )mmediately, f q ≤ f p  

 

◦ To get a c-approximation (c>1) we need to 

round q to a point q’ and show  
        f q’  ≤ cf(q) ≤ c f(p) 

 



Solving the Relaxation 
 

�∈  � −�, ∈� � −�<  

 

◦ We use   ⊆� �| |⋅|  | �� �  

 

◦ Details on blackboard, and we obtain  � � �
 

 

 Next Lecture, we will see more on relaxations and 
connections with �  

 



The Other Direction 
◦ We just showed that  � � �2 
◦ What about other direction? Need rounding method 

which will be a way to get a cut from � and �  
together with upper bound on how much the 
rounding increases the cut ratio.  

◦ Cheeger’s Inequality: 

 
◦ Both upper and lower bounds are tight (up to 

constant), as seen by path graph and complete 
binary tree. Both have sparsest cut O(1/n), but Pn has  
λ2 = Θ(1/ ) and Tn has λ2 = Θ(1/n), see lecture 4. 

 

◦ We show the difficult direction next: 
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The Proof of Cheeger’s  

Inequality 



How to Get a Cut from � and �   
• Algorithmic proof 

• Let x∈Rn be any vector such that x⊥  

• Order vertices of x such that x1  x2 … &xn 

• Let S={1,…,k} for some value of k. This 
will be our cut. Algorithm tries all values 

of k to find the best one, k depends on 

graph. 

•We will next show something stronger 

 
 



How to Get a Cut from � and �   
                    Theorem 
For any x⊥1, such that x1  x2 … &xn, there is 
some i for which  

 

 

 

This not only implies Cheeger by taking x=v2 

but also gives an actual cut. Also works if we only 
have good approximations of � and �  

 

 

Proof: see blackboard 
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