CS 598: Spectral Graph Theory. Lecture 4

Graphic Inequalities and Lower bounds on λ_{2}

Alexandra Kolla

- First Homework set is up (due February 12).
- You can work in groups of 2-3 but each one has to submit an individual write-up.
- Please give credit where credit is due.

Today

- Technique for proving inequalities on graphs, useful for graph approximations (future lectures)
- Use technique to lower-bound λ_{2}

Courant-Fischer for λ_{2}

- Applying Courant-Fischer:

$$
\lambda_{k}=\min _{\text {Sof dim } k} \max _{x \in S} \frac{x^{T} L x}{x^{T} x}
$$

$$
\lambda_{2}=\min _{x \perp 1, x \neq 0} \frac{x^{T} L x}{x^{T} x}=\min _{x \Perp 1, x \neq 0} \frac{\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}}{\sum_{i \in V} x_{i}^{2}}
$$

- Useful for getting upper bounds
- To get upper bound on λ_{2}, just need to produce vector v with small Rayleigh Quotient.
- Every vector v provides an upper bound (test vector):

$$
\lambda_{2} \leq \frac{v^{T} L v}{v^{T} v}
$$

Courant-Fischer for λ_{2}

- Applying Courant-Fischer:

$$
\lambda_{k}=\max _{S o f \operatorname{dim} n-k-1} \min _{x \in S} \frac{x^{T} L x}{x^{T} x}
$$

$$
\lambda_{2}=\max _{S o f \operatorname{dim} n-1} \min _{v \in S} \frac{v^{T} L v}{v^{T} v}
$$

- Not so useful as it is difficult to prove lower bounds on

$$
\min \frac{v^{T} L v}{v^{T} v}
$$

over a space of large dimension.

- Need new technique.

Graphic Inequalities

- When the symmetric matrix A is P.S.D we write $A \succcurlyeq 0$. Remember that A P.S.D means $v^{T} A v \geq 0$, for all v.
- Similarly, we write $A \succcurlyeq B$, or $A-B \succcurlyeq 0$, when $v^{T} A v \geq v^{T} B v$, for all v.
- \leqslant is partial order. It applies to some pairs of symmetric matrices and others are incomparable.

For the ones it does apply, we have:
$A \succcurlyeq B$ and $\mathrm{B} \succcurlyeq C$ implies $A \succcurlyeq C$
$A \succcurlyeq B$ implies $A+C \succcurlyeq B+\mathrm{C}$ for symmetric A, B, C.

Graphic Inequalities

- Use same notation for graphs. I.e.

$$
\mathrm{G} \succcurlyeq H \quad \text { if } \quad L_{G} \succcurlyeq L_{H}
$$

- Example: If $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and $\mathrm{H}=(\mathrm{V}, \mathrm{F})$ subgraph of G, then $L_{G} \succcurlyeq L_{H}$ (see blackboard)

Graphic Inequalities

- Use same notation for graphs. I.e.

$$
\mathrm{G} \succcurlyeq H \quad \text { if } L_{G} \succcurlyeq L_{H}
$$

- Example: If $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ and $\mathrm{H}=(\mathrm{V}, \mathrm{F})$ subgraph of G, then $L_{G} \succcurlyeq L_{H}$ (see blackboard)
- Most useful when we consider some multiple of a graph: $\mathrm{G} \geqslant c \cdot H, \mathrm{c}>0$
- $c \cdot H$ is the same as H with the weight of each edge multiplied by c.

Graphic Inequalities

- Lemma1: Using Courant-Fischer we can show: If $\mathrm{G} \geqslant c \cdot H$, then $\lambda_{k}(G) \succcurlyeq$ $c \lambda_{k}(H)$

Proof: see blackboard

Graphic Inequalities

- Lemma1: Using Courant-Fischer we can show: If $\mathrm{G} \succcurlyeq c \cdot H$, then $\lambda_{k}(G) \succcurlyeq$ $c \lambda_{k}(H)$
- Lemma2: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E}, \mathrm{w})$ and $\mathrm{H}=(\mathrm{V}, \mathrm{E}, \mathrm{z})$ two graphs that differ only in their edge weights. Then

$$
\mathrm{G} \succcurlyeq \min _{e \in E} \frac{w(e)}{z(e)} \cdot H
$$

Graph Approximations

- In the third part of this course, we will use the notion of one graph approximating another. This will mean that their Laplacian quadratic forms are similar. For example, H is a capproximation of G if

$$
c H \succcurlyeq \mathrm{G} \succcurlyeq H
$$

- In general, we don't care that much about constants so we will say that a graph H is a c-approximation of G if there is a positive t for which

$$
c H \succcurlyeq t \mathrm{G} \succcurlyeq H
$$

- Later on, we will see that surprising approximations exist. For example, expanders are very sparse approximations of complete graph.

Graph Approximations: Examples

- How do we prove that $\mathrm{G} \succcurlyeq c \cdot H$ for some c and H ?
- We first prove such inequalities for the simplest graphs, then extend to more general.
- Lemma 1: Let P_{n} be the path of length $n-1$ from vertex 1 to vertex n and $G_{1, n}$ the edge from 1 to n. Then:

$$
(\mathrm{n}-1) P_{n} \succcurlyeq G_{1, n}
$$

Graph Approximations: Examples

- We will show a more general lemma, for weighted paths
- Lemma 2: $G_{1, n} \preccurlyeq\left(\sum_{i=1}^{n-1} \frac{1}{w_{i}}\right) \sum_{i=1}^{n-1} w_{i} G_{i, i+1}$

Or, equivalently, $L_{(1, n)} \preccurlyeq\left(\sum_{i=1}^{n-1} \frac{1}{w_{i}}\right) \sum_{i=1}^{n-1} w_{i} L_{(i, i+1)}$

Proof: see blackboard

Bounding λ_{2} of a Path Graph

- We obtain an upper bound and lower bound:
- Upper Bound from Lecture 2: $\lambda_{2}\left(P_{n}\right) \leq \frac{12}{n^{2}}$
proof by exhibiting test vectorv, such that v(i)=(n+1)-2i
- For lower bound, we use the "graph inequalities technique": prove that some multiple of the path is at least the complete graph (see blackboard):

$$
\lambda_{2}\left(P_{n}\right) \geq \frac{4}{n^{2}}
$$

$$
\text { We will use: }(\mathrm{n}-1) P_{n} \succcurlyeq G_{1, n}
$$

Bounding λ_{2} of a Complete Binary Tree

- We obtain an upper bound and lower bound
- Upper bound from Lecture 2: $\lambda_{2}\left(T_{n}\right) \leq \frac{2}{n-1}$ we used the test vector:

Bounding λ_{2} of a Complete Binary Tree

- We obtain an upper bound and lower bound
- Upper bound from Lecture 2: $\lambda_{2}\left(T_{n}\right) \leq \frac{2}{n-1}$
- For lower bound, we use our technique, comparing the tree to the complete graph. (see blackboard)

$$
\lambda_{2}\left(T_{n}\right) \geq \frac{1}{(n-1) \log _{2} n}
$$

Bounding λ_{2} of a Complete Binary Tree

- We obtained an upper bound and lower bound:

$$
\frac{1}{(n-1) \log _{2} n} \leq \lambda_{2}\left(T_{n}\right) \leq \frac{2}{n-1}
$$

- In Homework set you will show for some constant c:

$$
\lambda_{2}\left(T_{n}\right) \geq \frac{1}{c n}
$$

Bounding λ_{2} of a Complete Binary Tree

- We obtained an upper bound and lower bound:

$$
\frac{1}{(n-1) \log _{2} n} \leq \lambda_{2}\left(T_{n}\right) \leq \frac{2}{n-1}
$$

- Truth is $\frac{1}{n}<\lambda_{2}\left(T_{n}\right)<\frac{2}{n}$

See: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.I.I.45.5680

