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Today 

 Eigenvalue Interlacing 

 Fiedler’s nodal domain theorem 

 Spectra of the Hypercube Graph 

 Start on second eigenvalue and 

importance 

 

 

 

 



Eigenvalue Interlacing  

 We will see yet another consequence of Courant-Fischer (proof as 
exercise in problem set) 

 

Theorem (Eigenvalue Interlacing): Let A be an n-by-n symmetric matrix 
and let B be a principal submatrix of A of dimension n-1 (that is, B is 
obtained by deleting the same row and column from A). Then 

                    ⋯ �− �− � 
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Eigenvalue Interlacing  

 We will see yet another consequence of Courant-Fischer (proof as 
exercise in problem set) 

 

Theorem (Eigenvalue Interlacing): Let A be an n-by-n symmetric matrix 
and let B be a principal submatrix of A of dimension n-1 (that is, B is 
obtained by deleting the same row and column from A). Then 

                    ⋯ �− �− � 

Where ⋯ � and  ⋯ �−  are the 
eigenvalues of A and B resp. 

 

Corollary (Eigenvalue Interlacing):Let A be an n-by-n symmetric matrix 
and let B be a principal submatrix of A of dimension n-k (that is, B is 
obtained by deleting the same set of k rows and columns from A). Then 

                    � � �+�  

Where ⋯ � and  ⋯ �−�  are the 
eigenvalues of A and B resp. 

 

 

 



The Eigenvectors of the Path Graph 

Pn: , + : < �  

 

 In Lecture 1, we saw: the Laplacian of Pn has 
eigenvectors  �� = sin ���� + �� , for 0  k<n. 

 

 

 

 

 Here are the first three non-constant eigenvectors 
of the path graph with 13 vertices. We see that the 
k-th evector crosses the origin at most k-1 times. 

       

 



Induced Graph 

 

 Given G=(V,E) and a subset of vertices W 

a subset of V, the graph induced by G on 

W is the graph with vertex set W and 

edge set  

   , ,  ��  

 

                        The graph is denoted G(W). 

 



Fiedler’s Nodal Domain Theorem 

 

 Theorem. Let G=(V,E,w) be a weighted 
connected graph, and let LG be its 
Laplacian matrix. Let =  λ λ … λ � be the eigenvalues of LG and 

 ,  , … ,  � the corresponding 
eigenvectors. For any k 2, let � =: � . Then, the graph 
induced by G on Wk has at most k-1 
connected components. 

 
 



Lemma 1:  Perron-Frobenius for Laplacians: Let M be a matrix  with non-

positive off-diagonal entries s.t. the graph of the non-zero off-diagonal 

entries is connected. Then the smallest eigenvalue has multiplicity 1 and the 

corresponding eigenvector is strictly positive 

We use from previous lecture: 

 

 

 

And from this lecture: 

 

 

 

 
In fact, we will use eigenvalue interlacing when the order of 

eigenvalues is increasing 

 

 

Proof of Nodal Domain Theorem 

Lemma 2: Eigenvalue Interlacing: Let A be an n-by-n symmetric matrix and 

let B be a principal submatrix of A of dimension n-k (that is, B is obtained by 

deleting the same set of k rows and columns from A). Then � � �+� . 
Where ⋯ � and  ⋯ �−� are the eigenvalues of 
A and B resp. 



Lemma 1.  Perron-Frobenius for Laplacians: Let M be a matrix  with non-

positive off-diagonal entries s.t. the graph of the non-zero off-diagonal 

entries is connected. Then the smallest eigenvalue has multiplicity 1 and the 

corresponding eigenvector is strictly positive 

We use from previous lecture: 

 

 

 

And from this lecture: 

 

 

 

 

 

 

 

Proof of Nodal Domain Theorem 

Lemma 2. Eigenvalue Interlacing (increasing order version): Let A be an n-

by-n symmetric matrix and let B be a principal submatrix of A of dimension 

n-k (that is, B is obtained by deleting the same set of k rows and columns 

from A). Then � � �+� . 
Where ⋯ � and  ⋯ �−� are the eigenvalues of 
A and B resp. 



Fiedler’s Stronger Nodal Domain 
Theorem 

 Theorem. Let G=(V,E,w) be a weighted connected 
graph, and let LG be its Laplacian matrix. Let =  λ λ … λ � be the eigenvalues of LG 
and  ,  , … ,  � the corresponding eigenvectors. 
For any k 2, let � = : � ,. Then, the graph induced by G on Wk has at most k-
1 connected components. (ex) 

 

 

 The theorem breaks  

down if we consider  � = : � > ,  
see star graph: 

 

 



The Hypercube Graph 

 

 Hypercube Hd is the graph with vertex set , �  and edges between vertices that differ 
in exactly one bit.  

 

 Alternatively, it is the graph product of the 

single-edge graph G= ({0,1},{(0,1)})with itself d-

1 times, namely:  

                                       Hd=Hd-1xG 

 

 



Graph Products Refresher 
 

 

 

 

 (Definition): Let G(V,E) and H(W,F). The graph 

product GxH is a graph with vertex set VxW and 

edge set ((v1,w),(v2,w)) for (v1,v2)  

                       ((v,w1),(v,w2)) for (w1,w2)  

 If G has evals λ1,…, λn, evecs x1,…, xn 

     H has evals µ1,…, µm, evecs y1,…, ym 

Then GxH has for all i,j in range, an evector 

                  zij(v,w)=xi(v)yj(w) of evalue λi + µj 

 

 We saw the proof on lecture 1. 

 

 



The Hypercube Graph 

Hd=Hd-1xG 

 

 Non-zero eigenvector of the Laplacian of G has 

eigenvalue 2 (lecture 2) 
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The Hypercube Graph 

Hd=Hd-1xG 

 

 Non-zero eigenvector of the Laplacian of G has 
eigenvalue 2 (lecture 2), we see that Hd has 

eigenvalue 2k with multiplicity 
�

 for 0 k d. 

 The eigenvectors of Hd are given by the functions 

  = − �
 

Where , �  and we view vertices b as length-d 
vectors of zeros and ones. The corresponding 
eigenvalue is for k= number of ones in a. (see 
blackboard) 

 

G 
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The Second Laplacian Eigenvalue 

and Isoperimerty 
 

 We will now show a basic isoperimetric inequality for 
the Hypercube graph, using the second eigenvalue. 

 

 Define the boundary of a set of vertices � � = , : �, �  

 

 Theorem: Let G=(V,E) be a graph and let LG its 
Laplacian. Let S ⊂  and set σ = |S|/| |. Then |� � | � |�| − �  

 
 Proof: see blackboard 

 



The Second Laplacian Eigenvalue 

and Isoperimerty 
 

 We will now show a basic isoperimetric inequality for the 
Hypercube graph, using the second eigenvalue. 

 

 Define the boundary of a set of vertices � � = , : �, �  

 

 Theorem: Let G=(V,E) be a graph and let LG its Laplacian. 
Let S ⊂  and set σ = |S|/| |. Then |� � | � |�| − �  

 
 If second eigenvalue big, then graph well connected.  

 Also provides techniques for proving upper bounds on second 
eigenvalue 

 

 



Isoperimetry for Hypercube Graph 

Hd=Hd-1xG 
 

 Non-zero eigenvector of the Laplacian of G has 
eigenvalue 2 (lecture 2), we see that Hd has 

eigenvalue 2k with multiplicity 
�

 for 0 k d. 

 
 So λ2 is 2, which gives from the previous theorem 

(simple proof of isoperimetic theorem) 

             |� � | � , for S of size at most �− . 
Equality is achieved in dimension cuts 

 
 More on λ2 next lecture (and in fact, the next many lectures!)  
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