CS 598: Spectral Graph Theory. Lecture 3

The Other Eigenvectors and Eigenvalues of the Laplacian

Alexandra Kolla

Today

- Eigenvalue Interlacing
- Fiedler's nodal domain theorem
- Spectra of the Hypercube Graph
- Start on second eigenvalue and importance

Eigenvalue Interlacing

- We will see yet another consequence of Courant-Fischer (proof as exercise in problem set)

Theorem (Eigenvalue Interlacing): Let A be an n -by-n symmetric matrix and let B be a principal submatrix of A of dimension $n-1$ (that is, B is obtained by deleting the same row and column from A). Then

$$
\alpha_{1} \geq \beta_{1}
$$

Eigenvalue Interlacing

- We will see yet another consequence of Courant-Fischer (proof as exercise in problem set)

Theorem (Eigenvalue Interlacing): Let A be an n -by-n symmetric matrix and let B be a principal submatrix of A of dimension $n-1$ (that is, B is obtained by deleting the same row and column from A). Then

$$
\alpha_{1} \geq \beta_{1} \geq \alpha_{2} \geq \beta_{2} \geq \cdots \geq \alpha_{n-1} \geq \beta_{n-1}
$$

Where $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n}$ and $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n-1}$ are the eigenvalues of A and B resp.

Corollary (Eigenvalue Interlacing): Let A be an n-by-n symmetric matrix and let B be a principal submatrix of A of dimension $n-k$ (that is, B is obtained by deleting the same set of k rows and columns from A). Then

$$
\alpha_{i} \geq \beta_{i} \geq \alpha_{i+k}
$$

Where $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n}$ and $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n-k}$ are the eigenvalues of A and B resp.

The Eigenvectors of the Path Graph

$$
\operatorname{Pn}:\{(u, u+1): 0 \leq u<n\}
$$

- In Lecture 1, we saw: the Laplacian of Pn has eigenvectors $z_{k}(u)=\sin \left(\frac{\pi k u}{n}+\frac{\pi}{2 n}\right)$, for $0 \leq k<n$.

- Here are the first three non-constant eigenvectors of the path graph with 13 vertices. We see that the k -th evector crosses the origin at most k-1 times.

Induced Graph

- Given $G=(V, E)$ and a subset of vertices W a subset of V, the graph induced by G on W is the graph with vertex set W and edge set

$$
\{(i, j) \in E, i \in W \text { and } \in j \in W\}
$$

The graph is denoted $\mathrm{G}(\mathrm{W})$.

Fiedler's Nodal Domain Theorem

- Theorem. Let $G=(V, E, w)$ be a weighted connected graph, and let Lg be its Laplacian matrix. Let $0=\lambda_{1} \leq \lambda_{2} \leq$ $\ldots \leq \lambda_{n}$ be the eigenvalues of $L G$ and $v_{1}, v_{2}, \ldots, v_{n}$ the corresponding eigenvectors. For any $\mathrm{k} \geq 2$, let $W_{k}=$ $\left\{i \in V: v_{k}(i) \geq 0\right\}$. Then, the graph induced by G on W_{k} has at most $\mathrm{k}-1$ connected components.

Proof of Nodal Domain Theorem

We use from previous lecture:

Lemma 1: Perron-Frobenius for Laplacians: Let M be a matrix with nonpositive off-diagonal entries s.t. the graph of the non-zero off-diagonal entries is connected. Then the smallest eigenvalue has multiplicity 1 and the corresponding eigenvector is strictly positive

And from this lecture:

Lemma 2: Eigenvalue Interlacing: Let A be an n-by- n symmetric matrix and let B be a principal submatrix of A of dimension $n-k$ (that is, B is obtained by deleting the same set of k rows and columns from A). Then $\alpha_{i} \geq \beta_{i} \geq \alpha_{i+k}$. Where $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n}$ and $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n-k}$ are the eigenvalues of A and B resp.

In fact, we will use eigenvalue interlacing when the order of eigenvalues is increasing

Proof of Nodal Domain Theorem

We use from previous lecture:

Lemma 1. Perron-Frobenius for Laplacians: Let M be a matrix with nonpositive off-diagonal entries s.t. the graph of the non-zero off-diagonal entries is connected. Then the smallest eigenvalue has multiplicity 1 and the corresponding eigenvector is strictly positive

And from this lecture:

Lemma 2. Eigenvalue Interlacing (increasing order version): Let A be an n-by-n symmetric matrix and let B be a principal submatrix of A of dimension $\mathrm{n}-\mathrm{k}$ (that is, B is obtained by deleting the same set of k rows and columns from A). Then $\alpha_{i} \leq \beta_{i} \leq \alpha_{i+k}$. Where $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{n}$ and $\beta_{1} \leq \beta_{2} \leq \cdots \leq \beta_{n-k}$ are the eigenvalues of A and B resp.

Fiedler's Stronger Nodal Domain Theorem

- Theorem. Let $\mathrm{G}=(\mathrm{V}, \mathrm{E}, \mathrm{w})$ be a weighted connected graph, and let Lg be its Laplacian matrix. Let $0=\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$ be the eigenvalues of LG and $v_{1}, v_{2}, \ldots, v_{n}$ the corresponding eigenvectors. For any $\mathrm{k} \geq 2$, let $W_{k}=\left\{i \in V: v_{k}(i) \geq t\right\}, t \leq$ 0 . Then, the graph induced by G on W_{k} has at most k 1 connected components. (ex)
- The theorem breaks down if we consider $W_{k}=\left\{i \in V: v_{k}(i)>0\right\}$, see star graph:

The Hypercube Graph

- Hypercube Hd_{d} is the graph with vertex set $\{0,1\}^{d}$ and edges between vertices that differ in exactly one bit.
- Alternatively, it is the graph product of the single-edge graph $G=(\{0,1\},\{(0,1)\})$ with itself d 1 times, namely:

$$
H_{d}=H_{d-1} x G
$$

Graph Products Refresher

- (Definition): Let $G(V, E)$ and $H(W, F)$. The graph product $G \times H$ is a graph with vertex set $V \times W$ and edge set $\left(\left(\mathrm{v}_{1}, \mathrm{w}\right),\left(\mathrm{v}_{2}, \mathrm{w}\right)\right)$ for $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \in E$

$$
\left(\left(v, w_{1}\right),\left(v, w_{2}\right)\right) \text { for }\left(w_{1}, w_{2}\right) \in F
$$

- If G has evals $\lambda_{1}, \ldots, \lambda_{n}$, evecs x_{1}, \ldots, x_{n} H has evals $\mu_{1}, \ldots, \mu \mathrm{~m}$, evecs y_{1}, \ldots, y_{m}
Then $G x H$ has for all i, j in range, an evector

$$
z_{i j}(v, w)=x_{i}(v) y_{j}(w) \text { of evalue } \lambda_{i}+\mu_{j}
$$

- We saw the proof on lecture 1.

The Hypercube Graph

$H_{d}=\mathrm{H}_{\mathrm{d}-1} \mathrm{xG}$

- Non-zero eigenvector of the Laplacian of G has eigenvalue 2 (lecture 2)

$$
\left.\begin{array}{l}
\mathrm{Le}=\mathbf{u} \begin{array}{l|l|}
\hline 1 & -1 \\
\mathbf{v} & -1
\end{array} \\
\hline
\end{array} \quad \begin{array}{l}
\text { 1 } 1 \\
\left(\begin{array}{c}
1 \\
-1
\end{array}\right. \\
-1
\end{array}\right)=\binom{1}{-1}\left(\begin{array}{ll}
1 & -1
\end{array}\right)=2\binom{1 / \sqrt{2}}{-1 / \sqrt{2}}\left(\begin{array}{ll}
1 / \sqrt{2} & -1 / \sqrt{2})
\end{array}\right.
$$

The Hypercube Graph

$\mathrm{H}_{\mathrm{d}}=\mathrm{H}_{\mathrm{d}-1} \mathrm{x} \mathrm{G}$

- Non-zero eigenvector of the Laplacian of G has eigenvalue 2 (lecture 2), we see that Hd has eigenvalue 2 k with multiplicity $\binom{d}{k}$ for $\mathrm{o} \leq \mathrm{k} \leq \mathrm{d}$.
- The eigenvectors of Hd are given by the functions

$$
v_{a}(b)=(-1)^{a^{T} b}
$$

Where $a \in\{0,1\}^{d}$ and we view vertices b as length-d vectors of zeros and ones. The corresponding eigenvalue is for $\mathrm{k}=$ number of ones in a. (see blackboard)

The Second Laplacian Eigenvalue and Isoperimerty

- We will now show a basic isoperimetric inequality for the Hypercube graph, using the second eigenvalue.
- Define the boundary of a set of vertices

$$
\delta(S)=\{(i, j) \in E: i \in S, j \notin S\}
$$

- Theorem: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph and let Lg its Laplacian. Let $\mathrm{S} \subset V$ and set $\sigma=|\mathrm{S}| /|V|$. Then

$$
|\delta(S)| \geq \lambda_{2}|S|(1-\sigma)
$$

- Proof: see blackboard

The Second Laplacian Eigenvalue and Isoperimerty

- We will now show a basic isoperimetric inequality for the Hypercube graph, using the second eigenvalue.
- Define the boundary of a set of vertices

$$
\delta(S)=\{(i, j) \in E: i \in S, j \notin S\}
$$

- Theorem: Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph and let LG its Laplacian. Let $S \subset V$ and set $\sigma=|S| /|V|$.Then

$$
|\delta(S)| \geq \lambda_{2}|S|(1-\sigma)
$$

- If second eigenvalue big, then graph well connected.
- Also provides techniques for proving upper bounds on second eigenvalue

Isoperimetry for Hypercube Graph $H_{d}=H_{d-1} x G$

- Non-zero eigenvector of the Laplacian of G has eigenvalue 2 (lecture 2), we see that Hd has eigenvalue $2 k$ with multiplicity $\binom{d}{k}$ for $0 \leq k \leq d$.
- So λ_{2} is 2, which gives from the previous theorem (simple proof of isoperimetic theorem)

$$
|\delta(S)| \geq|S|, \text { for } S \text { of size at most } 2^{d-1}
$$

Equality is achieved in dimension cuts

More on λ_{2} next lecture (and in fact, the next many lectures!)

