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Course Overview (rough, could be 

modified) 

 Graphs, matrices and their spectra (3-4 Lectures) 
 Topics on the second eigenvalue and expanders  
(10-12 Lectures) 
 Topics on random graphs and their spectrum (3-4 

Lectures) 
 Topics on all eigenvalues-graph approximations (3-4 

Lectures) 



Block 1: Graphs, Matrices and their 

Spectra 
 

 Adjacency matrix, diffusion operator, Laplacian. 

 Eigenvalues and eigenvectors of graphs, 
examples. 

 Properties of the Laplacian, properties of 
adjacency matrix and their relations. 

 Courant-Fischer, Perron-Frobenius, nodal 
domains, interlacing. 

 Eigenvalue bounding techniques, examples. 



Block 2: Second Eigenvalue, 

Expanders 
 

 Edge expansion, graph cutting, Cheeger’s 
inequality. 

 Semidefinite programming, duality and 
connections with the second eigenvalue. 

 Random Walks and Convergence. 
 Expanders: existence, constructions and 

applications, graph lifts. 
 Ramanujan expanders: existence (LPS, 

MSS) 



Block 3: Random Graph Spectra 

 

 Random graphs are expanding. 

 Trace Method.   

 ε-nets. 

 Matrix Bernstein. 

 Random regular graphs. 

 Random Lifts (maybe). 

 

 

 



Block 4: Graph Approximations 

 

 Various graph approximations, 
sparsification and applications. 

 Sparsification via Alshwade-Winter. 

 Resistance Distance. 

 Spectral sparsifiers with effective 
resistances. 

 Deterministic algorithm for spectral 
sparsification (BSS) 



 

In the next few minutes: 

 

Why spectral graph theory is both natural 

and magical  



Representing Graphs  

V: n nodes 

E: m edges 

G = {V,E} 

Obviously, we can represent a graph 

with an nxn  matrix 
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Representing Graphs  

V: n nodes 

E: m edges 

G = {V,E} 

wij 

i j 

What is not so obvious, is that  

once we have matrix representation 

view graph as linear operator 

xAx 

nn
A :• Can be used to multiply vectors.  

• Vectors that don’t rotate but just  
scale = eigenvectors. 

• Scaling factor= eigenvalue 

Amazing how this point of view 

 gives information about graph 

Obviously, we can represent a graph 

with an nxn  matrix 



Listen  to the Graph 

List of eigenvalues 

{1  2  …  n }:graph SPECTRUM 
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Eigenvalues reveal global graph properties 

 not apparent from edge structure 

Adjacency matrix 
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A drum: 

Hear shape of the drum 
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Listen  to the Graph 

List of eigenvalues 

{1  2  …  n }:graph SPECTRUM 

wij 

i j 

Eigenvalues reveal global graph properties 

 not apparent from edge structure 

Hear shape of the drum 

Adjacency matrix 
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Its sound 

(eigenfrequenies): 



Listen  to the Graph 

List of eigenvalues 

{1  2  …  n }:graph SPECTRUM 

wij 

i j 

Eigenvalues reveal global graph properties 

 not apparent from edge structure 

Adjacency matrix 

wij 

j 

i 

A = 

If graph was a drum,  

spectrum would be its sound 



Eigenvectors are Functions on Graph 
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Eigenvectors are Functions on Graph 

V: 2n nodes 

Kn Kn 

Coloring   

vAv  Vvv
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)(iv value at node i different shade of grey 



So, let’s See the Eigenvectors 

200 400 600 800 1000 1200

100

200

300

400

500

600

700

800

900

* Slides from Dan Spielman 



The second eigenvector 
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Third Eigenvector 
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Fourth Eigenvector 
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Another view: the Laplacian 

 

where D is diagonal matrix of degrees 

We can also view graph 

 as Laplacian 

G = {V,E} 
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The Laplacian: Fast Facts 

 

SPECTRUM of the Laplacian 

so, zero is an eigenvalue  

1 an eigenvector 

> 0 Graph CONNECTED 

                                    also  algebraic connectivity  

The further from 0, the more connected 



Cuts and Algebraic Connectivity 

cut(S,S') =

E(S,S')

| S|
, | S|£ n / 2

Cuts in a graph: 

Graph not well-connected when easily  cut in two pieces 

S 
“’ 



Graph not well-connected when easily  cut in two pieces 
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Sparsest Cut: 

Would like to know Sparsest Cut but NP 
hard to find 

How does algebraic connectivity relate to standard connectivity? 

Theorem(Cheeger-Alon-Milman): 
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Cuts and Algebraic Connectivity 



Graph not well-connected when easily  cut in two pieces 
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Sparsest Cut: 

Algebraic connectivity 

large  

Graph  

well-connected 

How does algebraic connectivity relate to standard connectivity? 

Would like to know Sparsest Cut but NP 
hard to find 

Cuts and Algebraic Connectivity 



Today 

 More on evectors and evalues 

 The Laplacian, revisited 

 Properties of Laplacian spectra, PSD 

matrices. 

 Spectra of common graphs. 

 Start bounding Laplacian evalues 

 

 

 



Evectors and Evalues 
 Vector v is evector of matrix A with evalue µ if  

Av=µv.                                 

 We are interested (almost always) in symmetric 
matrices, for which the following special 
properties hold: 

◦ If v1,v2 are evectors of A with evalues µ1, µ2 
and µ ≠ µ , then v  is orthogonal to v .  
(Proof) 

 

◦ If v1,v2 are evectors of A with the same 
evalue µ, then v1+v2 is as well. The 
multiplicity of evalue µ is the dimension of 
the space of evectors with evalue µ. 



Evectors and Evalues 
 Vector v is evector of matrix A with evalue µ if  Av=µv.                                 

 We are interested (almost always) in symmetric matrices, for 
which the following special properties hold: 

 

◦ Every n-by-n symmetric matrix has n evalues {� ⋯ � }  
counting multiplicities, and and orthonormal basis of 
corresponding evectors { ⋯ } , so that  

     � = �� �   
 

◦ If we let V be the matrix whose i-th column is vi , and M the 
diagonal matrix whose i-th diagonal is µi, we can compactly 
write AV=VM. Multiplying by on the right, we obtain the 
eigendecomposition of A: 

                  = ��� = � �� =  �� � ���  



The Laplacian: Definition Refresher 

G = {V,E} 
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Where di is the degree of i-th vertex. 

For convenience, we have unweighted graphs 

GGG ADL 

• DG = Diagonal matrix of degrees 

• AG = Adjacency matrix of the graph 

•   
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Redefining the Laplacian  

 Let Le be the Laplacian of the graph on n vertices consisting 
of just one edge e=(u,v). 

 

 

 

 

 

 For a graph G with edge set E we now define 

 

 

 

 Many elementary properties of the Laplacian now follow 
from this definition  as we will see next (prove facts for one 
edge and then add ). 
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Laplacian of an edge, contd. 

1 
 

-1 
 

-1 1 

u 
Le = 

v 

u v 

][zeros

−− = − − = /− / / − /  

eigenvalue 

eigenvector 

 

 

 

 

 

 Since evalues are zero and 2, we see that Le is 

P.S.D. Moreover, 

 

 
� = − − = −  



Review of Positive Semidefiniteness 

• Definition: A symmetric matrix M is positive semidefinite 

      (PSD) if: 

  

 

 Positive definite PD  if inequality is strict for all x≠ . 
 

• PSD iff all evalues are non-negative (exercise.) 

 

• PSD iff M can be written as = � , where A can  
      be n-by-k (not necessarily symmetric) and is not unique.  

           Proof: see blackboard 
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More Properties of Laplacian 
From the definition using edge sums, we get: 

 (PSD-ness)The Laplacian of any graph is PSD. 

 ����� = ��  �� �∈� � = ������∈E=  � − � �, ∈�   
 (Connectivity) G is connected iff  λ2 positive or 

alternatively, the null space of the Laplacian of G is 1-
dimensional and spanned by the vector 1. (Proof on 
blackboard) 

 

 Corollary: The multiplicity of zero as an eigenvalue equals 

the number of connected components of the graph. 

 



More Properties of Laplacian 
 (Edge union) If G and H are two graphs on the same 

vertex set, with disjoint edge set then 

 

 

 If a vertex is isolated, the corresponding row and 

column of Laplacian are zero 

 

 (Disjoint union) Together these imply that for the 

disjoint union of graphs G and H 

 

 

 

 

 



More Properties of Laplacian 
 (Edge union)If G and H are two graphs on the same 

vertex set, with disjoint edge set then 

 

 

 If a vertex is isolated, the corresponding row and 
column of Laplacian are zero 

 (Disjoint union) Together these imply that for the 
disjoint union of graphs G and H 

 

 

 (Disjoint union spectrum)If LG has evectors v1,…, vn 
with evalues λ1,…, λn  and LH has evectors w1,…, wn  
with evalues µ1,…, µn then LG ⨆LH  has evectors        

                                                          with evalues                                             

 

 



The Incidence Matrix: Factoring the 

Laplacian 
 We can factor L as = ��Λ� using evectors but also exists 

nicer factorization 

 Define the incidence matrix B to be the m-by-n matrix , =  , �  = ,  �  <− , �  = ,  �  > . .  

 

 Example of incidence matrix  

 B = − −   and   L = −− −−  

 

 Claim: = � (exercise) 

 Gives another proof that L is PSD. 

1 2 3 



Spectra of Some 

Common Graphs 
- The complete graph Kn on n vertices with edge set  

        { , : ≠ }  
- The path graph Pn on n vertices with edge set  

        { , + : < }  
-  The ring graph Rn on n vertices with edge set  

         { , + : < } ∪ , −  

- The grid graph Gnxm on nxm vertices with edges from each  
node (x,y) to nodes that differ by one in just one coordinate 

- Product graphs in general 

 

 

 



           

         Kn: , : ≠  

 

 The Laplacian of Kn has eigenvalue zero with 

multiplicity 1 (since it is connected) and n with 

multiplicity n-1. 
 

 

 Proof: see blackboard 

 

The Complete Graph 

K5 



Rn: { , + : < } ∪ , −  

 

 The Laplacian of Rn has eigenvectors  

 � = si� ���  �   � = cos ���  

        

for k≤n/2. Both have eigenvalue − cos ��  . 

Note x0 should be ignored and y0 is the all ones 

vector. If n is even, then xn/2 should be ignored. 

 

Proof: By plotting the graph on the circle using these 

vectors as coordinates. 

The Ring Graph R10 



The Ring Graph 
 

 

Let z(u) be the point (x_k(u), y_k(u)) on 

the plane.  

 

Consider the vector z(u-1) - 2 z(u) + z(u+1). 

By the reflection symmetry of the picture, 

it is parallel to z(u) 

 

Let z(u-1) - 2 z(u) + z(u+1) = λz(u). By 

rotational symmetry, the constant λ is 

independent of u.  

 

To compute λ consider the vertex u=1. 

Spectral embedding for k=3 

R10 

z(3) 

z(2)+z(4) 



The Path Graph 
Pn: , + : <  

 

 The Laplacian of Pn has the same eigenvalues 
as R2n and eigenvectors  � = cos ��� − �� , for 

k<n. 

      Proof:  Treat Pn  as a quotient of R2n. Use projection 

                                                                      : → �  

                                                                =  , �  <+ − , �   

 

R10 

P5 

P5 



The Path Graph 
Proof:  Treat Pn  as a quotient of R2n.  

Use projection   

 

  

 

 Let z be an eigenvector of the ring, with z(u)=z(2n+1-u) for all u. 

 Take the first n components of z and call this vector v.  

 To see that v is an eigenvector of Pn, verify that it satisfies for some λ: 

                                      2v(u)-v(u-1)-v(u+1)= λv(u), for 0<u<n-1 

                                      v(0)-v(1)= λv(1) 

                                       v(n-1)-v(n-2)= λv(n-1) 

 

 Take z as claimed, i.e.  which is in the span of xk and yk.  

 

 (verify details as exercise) 
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Graph Products 
 

 

 

 

 (Definition): Let G(V,E) and H(W,F). The graph 

product GxH is a graph with vertex set VxW and 

edge set ((v1,w),(v2,w)) for (v1,v2) 

                       ((v,w1),(v,w2)) for (w1,w2) 

 If G has evals λ1,…, λn, evecs x1,…, xn 

     H has evals µ1,…, µm, evecs y1,…, ym 

Then GxH has for all i,j in range, an evector 

                  zij(v,w)=xi(v)yj(w) of evalue λi + µj 

 

 Proof: see blackboard 

 

 



Graph Products: Grid Graph 
 

 

 

 

 

 

 

 

 

 

 Immediately get spectra from path. 

 

 

 

 

� × = � × �  



Start Bounding 

Laplacian Eigenvalues  

 

 



Sum of Eigenvalues, Extremal 

Eigenvalues  

 

  λ� =�   ��  ��  where di is the degree 

of vertex i. 

 Proof: take the trace of L 

 

 

 λ  ��−   and   λ  ��−   
 Proof: previous inequality + λ = . 
 

 

 

 



Courant-Fischer 
 

 For any nxn symmetric matrix A with eigenvalues �  � ⋯ �  (decreasing order) and corresponding 

eigenvectors , , … , , denote �  the span of , , … , � and �⊥  the orthogonal complement , 
then  

 

 

 

Proof: see blackboard 
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Courant-Fischer 
 

 Courant-Fischer Min Max Formula: For any nxn 

symmetric matrix A with eigenvalues �  � ⋯�  (decreasing order) and corresponding eigenvectors , , … , , denote �  the span of , , … , �  and �⊥  the orthogonal complement , then  

 

 

 

 

 

 

Proof: see blackboard 
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Courant-Fischer for Laplacian 
 

 Courant-Fischer  Min Max Formula for increasing evalue order 
(e.g. Laplacians): For any nxn symmetric matrix L, with 

eigenvalues   in increasing order 

 

 

 

 

 

 

 

 Definition (Rayleigh Quotient): The ratio                     is called the 

Rayleigh Quotient of x with respect to L. 

 Next lecture we will use it to bound evalues of Laplacians of 

certain graphs. 
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