CS 598: Spectral Graph Theory. Lecture 1
 The Laplacian

Alexandra Kolla

Administrativia

- Email: akolla@illinois.edu
- office: 3222 SC
- office hours: by appointment
- course website: https://courses.engr.illinois.edu/cs598sgt
- scribe notes (?), homeworks (2-3), projects (instead of final exam), prerequisites.
- Course goals.

Course Overview (rough, could be modified)

- Graphs, matrices and their spectra (3-4 Lectures)
- Topics on the second eigenvalue and expanders
(10-12 Lectures)
- Topics on random graphs and their spectrum (3-4 Lectures)
- Topics on all eigenvalues-graph approximations (3-4 Lectures)

Block 1: Graphs, Matrices and their Spectra

- Adjacency matrix, diffusion operator, Laplacian.
- Eigenvalues and eigenvectors of graphs, examples.
- Properties of the Laplacian, properties of adjacency matrix and their relations.
- Courant-Fischer, Perron-Frobenius, nodal domains, interlacing.
- Eigenvalue bounding techniques, examples.

Block 2: Second Eigenvalue, Expanders

- Edge expansion, graph cutting, Cheeger's inequality.
- Semidefinite programming, duality and connections with the second eigenvalue.
- Random Walks and Convergence.
- Expanders: existence, constructions and applications, graph lifts.
- Ramanujan expanders: existence (LPS, MSS)

Block 3: Random Graph Spectra

- Random graphs are expanding.
- Trace Method.
- ε-nets.
- Matrix Bernstein.
- Random regular graphs.
- Random Lifts (maybe).

Block 4: Graph Approximations

- Various graph approximations, sparsification and applications.
- Sparsification via Alshwade-Winter.
- Resistance Distance.
- Spectral sparsifiers with effective resistances.
- Deterministic algorithm for spectral sparsification (BSS)

In the next few minutes:

Why spectral graph theory is both natural and magical

Representing Graphs

$$
\begin{aligned}
& \mathrm{V}: \mathrm{n} \text { nodes } \quad \mathrm{G}=\{\mathrm{V}, \mathrm{E}\} \\
& \mathrm{E}: \mathrm{m} \text { edges }
\end{aligned}
$$

$$
A_{i j}=\left\{\begin{array}{l}
w_{i j} \text { weight of edge }(i, j) \\
0 \quad \text { if noedge between } i, j
\end{array}\right.
$$

Obviously, we can represent a graph with an nxn matrix

Adjacency matrix

Representing Graphs

V : n nodes $\quad G=\{V, E\}$
E: medges

Obviously, we can represent a graph with an nxn matrix

What is not so obvious, is that once we have matrix representation view graph as linear operator

- Can be used to multiply vectors. $\boldsymbol{A}: \mathfrak{R}^{n} \longrightarrow \mathfrak{R}^{n}$
- Vectors that don't rotate but just scale = eigenvectors.
- Scaling factor= eigenvalue

$$
A x=\mu x
$$

Amazing how this point of view gives information about graph

"Listen" to the Graph

List of eigenvalues
$\{\mu 1 \geq \mu 2 \geq \ldots \geq \mu \mathrm{n}\}:$ graph SPECTRUM

Adjacency matrix

Eigenvalues reveal global graph properties not apparent from edge structure

A drum:
Hear shape of the drum

"Listen" to the Graph

List of eigenvalues
$\{\mu 1 \geq \mu 2 \geq \ldots \geq \mathrm{n}\}:$ graph SPECTRUM

Adjacency matrix

Eigenvalues reveal global graph properties not apparent from edge structure

Hear shape of the drum

"Listen" to the Graph

List of eigenvalues
$\{\mu 1 \geq \mu 2 \geq \ldots \geq \mathrm{n}\}:$ graph SPECTRUM

Eigenvalues reveal global graph properties not apparent from edge structure

Hear shape of the drum
Its sound
(eigenfrequenies):

"Listen" to the Graph

List of eigenvalues
$\{\mu 1 \geq \mu 2 \geq \ldots \geq \mathrm{n}\}:$ graph SPECTRUM

Adjacency matrix

Eigenvalues reveal global graph properties not apparent from edge structure

If graph was a drum, spectrum would be its sound

Eigenvectors are Functions on Graph

V: $2 n$ nodes
$\nu \in \mathfrak{R}^{n}, \quad v: V \rightarrow \mathfrak{\Re}$
$A v=\mu v$
$v(i)=$ value at node i

Eigenvectors are Functjons on Graph "Coloring"

V : 2 n nodes

$$
v \in \mathfrak{R}^{n}, \quad v: V \rightarrow \mathfrak{R} \quad A v=\mu \nu
$$

$v(i)=$ value at node i different shade of grey

So, let's See the Eigenvectors

The second eigenvector

Third Eigenvector

Fourth Eigenvector

Another view: the Laplacian

We can also view graph as Laplacian

$$
L=D-A
$$

where D is diagonal matrix of degrees

$$
L_{i j}=\left\{\begin{array}{c}
d_{i} \quad \text { if } i=j \\
-w_{i j} \quad \text { if }(i, j) e d g e \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Laplacian

The Laplacian: Fast Facts

$$
L \mathbf{1}=\mathbf{0} \quad \begin{gathered}
\text { so, zero is an eigenvalue } \\
\mathbf{1} \text { an eigenvector }
\end{gathered}
$$

$$
0=\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}
$$

SPECTRUM of the Laplacian
$\lambda_{2}>0 \longleftrightarrow$ Graph CONNECTED
λ_{2} also "algebraic connectivity"
The further from 0 , the more connected

Cuts and Algebraic Connectivity

Cuts in a graph:
$\operatorname{cut}(S S)=\frac{E(S S)}{|S|},|S| n / 2$

Graph not well-connected when "easily" cut in two pieces

Cuts and Algebraic Connectivity

Sparsest Cut:

Graph not well-connected when "easily" cut in two pieces
Would like to know Sparsest Cut but NP hard to find
How does algebraic connectivity relate to standard connectivity?
Theorem(Cheeger-Alon-Milman): $\lambda_{2} \leq h(G) \leq \sqrt{2 d_{\max }} \sqrt{\lambda_{2}}$

Cuts and Algebraic Connectivity

Sparsest Cut:
$h(G)=\min _{S:|S| \leq n / 2} \frac{E(S, \bar{S})}{|S|}$

Graph not well-connected when "easily" cut in two pieces
Would like to know Sparsest Cut but NP hard to find
How does algebraic connectivity relate to standard connectivity?

Algebraic connectivity large

Graph
well-connected

Today

- More on evectors and evalues
- The Laplacian, revisited
- Properties of Laplacian spectra, PSD matrices.
- Spectra of common graphs.
- Start bounding Laplacian evalues

Evectors and Evalues

- Vector v is evector of matrix A with evalue μ if $A v=\mu \mathrm{v}$.
- We are interested (almost always) in symmetric matrices, for which the following special properties hold:
- If $\mathrm{v} 1, \mathrm{v} 2$ are evectors of A with evalues $\mu 1, \mu 2$ and $\mu 1 \neq \mu 2$, then v_{1} is orthogonal to v_{2}. (Proof)
- If v1,v2 are evectors of A with the same evalue μ, then $v 1+v 2$ is as well. The multiplicity of evalue μ is the dimension of the space of evectors with evalue μ.

Evectors and Evalues

- Vector v is evector of matrix A with evalue μ if $A v=\mu v$.
- We are interested (almost always) in symmetric matrices, for which the following special properties hold:
- Every n-by-n symmetric matrix has n evalues $\left\{\mu_{1} \leq \cdots \leq \mu_{n}\right\}$ counting multiplicities, and and orthonormal basis of corresponding evectors $\left\{v_{1} \leq \cdots \leq v_{n}\right\}$, so that $A v_{i}=\mu_{i} v_{i}$
- If we let V be the matrix whose i-th column is vi, and M the diagonal matrix whose i -th diagonal is $\mu \mathrm{i}$, we can compactly write $\mathrm{AV}=\mathrm{VM}$. Multiplying by on the right, we obtain the eigendecomposition of A :

$$
A=A V V^{T}=V M V^{T}=\sum_{i} \mu_{i} v_{i} v_{i}^{T}
$$

The Laplacian: Definition Refresher

$G=\{V, E\}$

LG $=$
$\begin{cases}d_{i} \quad \text { if } i=j\end{cases}$
$L_{G}(i, j)=\left\{\begin{array}{c}-1 \quad \text { if }(i, j) \text { edg } \\ 0 \quad \text { otherwise }\end{array}\right.$
Where di is the degree of i-th vertex.
For convenience, we have unweighted graphs

- $D G=$ Diagonal matrix of degrees
- Ag = Adjacency matrix of the graph
- $L_{G}=D_{G}-A_{G}$

Redefining the Laplacian

- Let Le be the Laplacian of the graph on n vertices consisting of just one edge $\mathrm{e}=(\mathrm{u}, \mathrm{v})$.

$$
L_{e}(i, j)=\left\{\begin{array}{c}
1 \quad \text { if } i=j, i \in u, v \\
-1 \quad \text { if } i=u, j=v, \text { or vice versa } \\
0 \text { otherwise }
\end{array}\right.
$$

- For a graph G with edge set E we now define

$$
L_{G}=\sum_{e \in E} L_{e}
$$

- Many elementary properties of the Laplacian now follow from this definition as we will see next (prove facts for one edge and then add).

Laplacian of an edge, contd.

- Since evalues are zero and 2 , we see that Le is P.S.D. Moreover,

$$
x^{T} L_{e} x=\left(x_{1} x_{2}\right)\binom{1}{-1}\left(\begin{array}{ll}
1 & -1
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(x_{1}-x_{2}\right)^{2}
$$

Review of Positive Semidefiniteness

- Definition: A symmetric matrix M is positive semidefinite (PSD) if:

$$
x^{T} M x \geq 0 \forall x \in R^{n}
$$

Positive definite (PD) if inequality is strict for all $\mathrm{x} \neq \mathrm{0}$.

- PSD iff all evalues are non-negative (exercise.)
- PSD iff M can be written as $M=A^{T} A$, where A can be n-by-k (not necessarily symmetric) and is not unique.

Proof: see blackboard

More Properties of Laplacian

From the definition using edge sums, we get:

- (PSD-ness)The Laplacian of any graph is PSD.

$$
\begin{aligned}
x^{T} L_{G} x & =x^{T}\left(\sum_{\{e \in E\}} L_{e}\right) x=\sum_{e \in \mathrm{E}} x^{T} L_{e} x \\
& =\sum_{i, j \in E}\left(x_{i}-x_{j}\right)^{2}
\end{aligned}
$$

- (Connectivity) G is connected iff λ_{2} positive or alternatively, the null space of the Laplacian of G is 1dimensional and spanned by the vector 1. (Proof on blackboard)
- Corollary: The multiplicity of zero as an eigenvalue equals the number of connected components of the graph.

More Properties of Laplacian

- (Edge union) If G and H are two graphs on the same vertex set, with disjoint edge set then

$$
L_{G \cup H}=L_{G}+L_{H} \text { (additivity) }
$$

- If a vertex is isolated, the corresponding row and column of Laplacian are zero
- (Disjoint union) Together these imply that for the disjoint union of graphs G and H

$$
L_{G} \amalg H=L_{G} \oplus L_{H}=\left(\begin{array}{cc}
L_{G} & 0 \\
0 & L_{H}
\end{array}\right)
$$

More Properties of Laplacian

- (Edge union)lf G and H are two graphs on the same vertex set, with disjoint edge set then

$$
L_{G \cup H}=L_{G}+L_{H} \text { (additivity) }
$$

- If a vertex is isolated, the corresponding row and column of Laplacian are zero
- (Disjoint union) Together these imply that for the disjoint union of graphs G and H

$$
L_{G \amalg H}=L_{G} \oplus L_{H}=\left(\begin{array}{cc}
L_{G} & 0 \\
0 & L_{H}
\end{array}\right)
$$

- (Disjoint union spectrum)If LG has evectors $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}$ with evalues $\lambda_{1}, \ldots, \lambda_{n}$ and LH has evectors $\mathrm{w}_{1}, \ldots, \mathrm{w}_{\mathrm{n}}$ with evalues μ_{1}, \ldots, μ_{n} then LG ULL has evectors
$v_{1} \oplus 0, \ldots, v_{n} \oplus 0,0 \oplus w_{1}, \ldots, 0 \oplus w_{n}$ with evalues $\lambda_{1}, \ldots, \lambda_{n}, \mu_{1}, \ldots, \mu_{n}$.

The Incidence Matrix: Factoring the Laplacian

- We can factor L as $L=V^{T} \Lambda V$ using evectors but also exists nicer factorization
- Define the incidence matrix B to be the m-by-n matrix

$$
B(e, v)=\left\{\begin{array}{c}
1, \text { if } e=(v, w) \text { and } v<w \\
-1, \text { if } e=(v, w) \text { and } v>w \\
0 o . w .
\end{array}\right.
$$

- Example of incidence matrix

$$
\mathrm{B}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right) \text { and } \mathrm{L}=\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right)
$$

- Claim: $L=B^{T} B$ (exercise)
- Gives another proof that L is PSD.

Spectra of Some Common Graphs

The complete graph Kn on n vertices with edge set $\{(u, v): u \neq v\}$
The path graph Pn on n vertices with edge set $\{(u, u+1): 0 \leq u<n\}$
The ring graph Rn on n vertices with edge set

$$
\{(u, u+1): 0 \leq u<n\} \cup(0, n-1)
$$

The grid graph Gnxm on nxm vertices with edges from each node (x, y) to nodes that differ by one in just one coordinate Product graphs in general

The Complete Graph

$$
K_{n}:\{(u, v): u \neq v\}
$$

- The Laplacian of K_{n} has eigenvalue zero with multiplicity 1 (since it is connected) and n with multiplicity $\mathrm{n}-1$.
- Proof: see blackboard

The Ring Graph

Rn: $\{(u, u+1): 0 \leq u<n\} \cup(0, n-1)$

- The Laplacian of Rn has eigenvectors

$$
x_{k}(u)=\sin \left(\frac{2 \pi k u}{n}\right) \text { and } y_{k}(u)=\cos \left(\frac{2 \pi k u}{n}\right)
$$

for $k \leq n / 2$. Both have eigenvalue $2-2 \cos \left(\frac{2 \pi k}{n}\right)$. Note xo should be ignored and yo is the all ones vector. If n is even, then $\mathrm{x}_{\mathrm{n} / 2}$ should be ignored.

Proof: By plotting the graph on the circle using these vectors as coordinates.

The Ring Graph

Spectral embedding for $\mathrm{k}=3$

Let $z(u)$ be the point ($\left.x _k(u), y _k(u)\right)$ on the plane.

Consider the vector $\mathrm{z}(\mathrm{U}-1)-2 \mathrm{z}(\mathrm{U})+\mathrm{z}(\mathrm{U}+1)$. By the reflection symmetry of the picture, it is parallel to $\mathrm{z}(\mathrm{U})$

Let $z(u-1)-2 z(u)+z(u+1)=\lambda z(u)$. By rotational symmetry, the constant λ is independent of u.

To compute λ consider the vertex $u=1$.

The Path Graph

$$
\text { Pn: }\{(u, u+1): 0 \leq u<n\}
$$

- The Laplacian of P_{n} has the same eigenvalues as R2n and eigenvectors $z_{k}(u)=\cos \left(\frac{\pi k u}{n}-\frac{\pi k}{2 n}\right)$, for $\mathrm{k}<\mathrm{n}$.
Proof: Treat P_{n} as a quotient of $\mathrm{R}_{2 n}$. Use projection

$$
\begin{gathered}
f: R_{2 n} \rightarrow P_{n} \\
f(u)=\left\{\begin{array}{c}
u, \text { if } u<n \\
2 n+1-u, \text { if } u \geq n
\end{array}\right.
\end{gathered}
$$

The Path Graph

Proof: Treat Pn as a quotient of R2n.

Use projection

- Let z be an eigenvector of the ring, with $z(u)=z(2 n+1-u)$ for all u.
- Take the first n components of z and call this vector v.
- To see that v is an eigenvector of $P n$, verify that it satisfies for some λ :

$$
\begin{aligned}
& 2 v(u)-v(u-1)-v(u+1)=\lambda v(u), \text { for } 0<u<n-1 \\
& v(0)-v(1)=\lambda v(1) \\
& v(n-1)-v(n-2)=\lambda v(n-1)
\end{aligned}
$$

- Take z as claimed, i.e. which is in the span of $x k$ and $y k$.
- (verify details as exercise)

Graph Products

- (Definition): Let $G(V, E)$ and $H(W, F)$. The graph product $G x H$ is a graph with vertex set $V \times W$ and edge set $\left(\left(v_{1}, w\right),\left(v_{2}, w\right)\right)$ for $\left(v_{1}, v_{2}\right)$

$$
\left(\left(v, w_{1}\right),\left(v, w_{2}\right)\right) \text { for }\left(w_{1}, w_{2}\right)
$$

- If G has evals $\lambda_{1}, \ldots, \lambda_{n}$, evecs x_{1}, \ldots, x_{n} H has evals μ_{1}, \ldots, μ_{m}, evecs $y_{1}, \ldots, y m$
Then $G x H$ has for all i, j in range, an evector

$$
z_{i j}(v, w)=x_{i}(v) y_{j}(w) \text { of evalue } \lambda_{i}+\mu_{j}
$$

- Proof: see blackboard

Graph Products: Grid Graph
 $$
G_{n \times m}=P_{n} \times P_{m}
$$

- Immediately get spectra from path.

Start Bounding Laplacian Eigenvalues

Sum of Eigenvalues, Extremal Eigenvalues

- $\sum_{i} \lambda_{i}=\sum_{i} d_{i} \leq d_{\text {max }} n$ where di is the degree of vertex i.

Proof: take the trace of L

- $\lambda_{2} \leq \frac{\sum_{i} d_{i}}{n-1}$ and $\lambda_{n} \geq \frac{\sum_{i} d_{i}}{n-1}$

Proof: previous inequality $+\lambda_{1}=0$.

Courant-Fischer

- For any nxn symmetric matrix A with eigenvalues $\alpha_{1} \geq$ $\alpha_{2} \geq \cdots \geq \alpha_{n}$ (decreasing order) and corresponding eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$, denote S_{k} the span of $v_{1}, v_{2}, \ldots, v_{k}$ and S_{k}^{\perp} the orthogonal complement, then

$$
\alpha_{k}=\max _{x \in S_{k-1}^{\perp}, x \neq 0} \frac{x^{T} A x}{x^{T} x}
$$

$$
\alpha_{1}=\max _{x \neq 0} \frac{x^{T} A x}{x^{T} x}
$$

Proof: see blackboard

Courant-Fischer

- Courant-Fischer Min Max Formula: For any $n \times n$ symmetric matrix A with eigenvalues $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq$ α_{n} (decreasing order) and corresponding eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$, denote S_{k} the span of $v_{1}, v_{2}, \ldots, v_{k}$ and $S_{k}{ }^{\perp}$ the orthogonal complement, then

$$
\begin{aligned}
\alpha_{k} & =\max _{S \subseteq R^{n}, \operatorname{dim}(S)=k} \min _{x \in S} \frac{x^{T} A x}{x^{T} x} \\
\alpha_{k} & =\min _{S \subseteq R^{n}, \operatorname{dim}(S)=n-k+1} \max _{x \in S} \frac{x^{T} A x}{x^{T} x}
\end{aligned}
$$

Proof: see blackboard

Courant-Fischer for Laplacian

- Courant-Fischer Min Max Formula for increasing evalue order (e.g. Laplacians): For any nxn symmetric matrix L, with eigenvalues in increasing order

$$
\begin{aligned}
& \lambda_{k}=\min _{S o f \operatorname{dim} k} \max _{x \in S} \frac{x^{T} L x}{x^{T} x} \\
& \lambda_{k}=\max _{S o f \operatorname{dim} n-k-1} \min _{x \in S} \frac{x^{T} L x}{x^{T} x}
\end{aligned}
$$

Definition (Rayleigh Quotient): The ratio $\frac{x^{T} L x}{x^{T} x}$ is called the
Rayleigh Quotient of x with respect to L.

- Next lecture we will use it to bound evalues of Laplacians of certain graphs.

