
COMBINATORICA 
Ak~tdt~miai Kiad6 --  Springer-Verlag 

RAMANUJAN 

COMBINATORICA 8 (3) (1988) 2 6 1 - - 2 7 7  

GRAPHS 

A. LUBOTZKY, R. PHILLIPS* and P. SARNAK* 

Received June 25, 1986 
Revised August 6, 1987 

A large family of explicit k-regular Cayley graphs X is presented. These graphs satisfy a 
number of extremal combinatorial properties. 
(i) For eigenvalues 2 of X either 2--- :i:k or I;.1~-2 kl/'k-LT- 1. This property is optimal and leads 

to the best known explicit expander graphs. 
(ii) The girth of X is asymptotically --~4/3 logu-z IX] which gives larger girth than was previously 

known by explicit or non.explicit constructions. 

1. Introduction 

Let X=Xn, k be a k-regular graph on n vertices. I f  A is its adjacency matrix 
and 2o-~;q=~...-~;tn_z its eigenvalues then 12jI ~_k. In fact 2o=k and X is bipartite 
if and only if  2 n _ l = - k .  I f  X is connected, which we assume, then 20=-k and 
2 n _ 1 = - k  (in the bipartite case) are both simple eigenvalues as is easily verified. 
Denote by 2(X) the absolute value of  the largest eigenvalue (in absolute value) 
of A which is distinct from + k ;  in other words 22(X ") is the next to largest eigen- 
value of A ~. 

Definition 1.1. A graph Xn, k will be called a Ramanujan graph if 

2(X) ~_ 2 l/k-'~] -. 

The importance of the number 2 l / k -  I in the above definition lies in the 
following lower bound due to Alon and Boppana; see [3] and Proposition 4.2 below: 

(1.1) lira ~(x.,D -~ 2 I/~:-1. 
n~oo 

Thus if one wants graphs with 2~ as small as possible, 2 l/k-L-] - serves as 
the lower limit of what can be done. Ramanujan graphs are optimal in this sense. 
Graphs with 21 small make good expander graphs and indeed the Ramanujan 
graphs introduced in this paper give the best known explicit expanders. This and 
their importance in many explicit algorithms in computer science are discussed in 
our announcement [17]. 

* The work of the second author was supported in part by the NSF under the Grant No. 
DMS-85-03297 and the third by NSF Grant No. DMS-85-04329. 

AMS subject classification (1980): 05C35 
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Let p and q be unequal primes congruent to 1 mod 4. Our Ramanujan graphs 
X p,~ will be (p+  1)-regular Cayley graphs of the group PSL (2, Z/qZ) if the Legendre 

[ P ] : I  and of PGL(2,  Z / q Z ) i f  ,~ both eases the symbol Cayley 

graph is constructed from p + l  generators which are chosen according to the 
2 2 2 2 p + l  ways of representing p as a sum p--ao+a~+a2+a 8 with ao>0 and odd, 

and a~ even for j =  1, 2, 3. That there are p + 1 such solutions follows from the well 
known theorem of Jacobi which states that the number of representations of a 
positive integer as a sum of 4 squares is 

(1.2) ra(n) = 8 ~ d. 
drn 
4(d 

Jaeobi's theorem and more generally the representation of integers by certain 
quaternary quadratic forms are needed in the construction of our graphs as well 
as in the proofs. Let Q=Q~(xx, Xa, xa, x4) be the quadratic form 

(1.3) Q (xl, Xa, X3, x4) = x 21T • 4"2X z u  aT • 4"2X 2 u  3~" 4"~t X~4 

and let re(n ) be the number of representations of n by Q, i.e. the number of solu- 
tions to 

(1.4) Q(v)=  n with vEZ 4. 

In this generality there is no explicit formula for rQ(n) as in (1.2). However the 
Ramanujan conjecture (see Ramanujan [22]) and its proof in the above cases by 
Eichler [6] and Igusa [12], lead to a good approximation to rQ(n). (Eiehler's results 
are not complete enough for our purposes here as they ignore a finite unspecified 
set of primes. Igusa's work fills in this gap.) Thus for the case n =pk, k=~0 

(1.5) rQ(p k) = C(pk)+O,(p *w2+*)) as k ~ o  Ve > 0 

where 

and k is even 

and k is odd. 

The constants cl and c~ are determined during the course of the discussion in Sec- 
tion 4. That our graphs are Ramanujan graphs will be a consequence of(1.5). 

The explicit Cayley graphs XP'~ also satisfy a number of other extremal 
combinatorial properties. Let g(X) denote the girth of a graph X (i.e. the length 
of the shortest circuit), i(X) the independence number (i.e. the maximal number of 
independent vertices), z(X) the chromatic number and diam (X) the diameter of X. 
See [4] for the definitions. The graph X p'~ is regular of degree k = p + l .  We will 
prove the following inequalities: 
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Case i. [ p J = - l ;  X"~ is bipartite of order n=[X"ql=q(q~-l), 

(a) g(X t'~) ->4log, q - l og ,4 ,  

(b) diam(X p'q) <- 21og, n + 2 1 o g , 2 + l .  

Case ii. ( q ) = l ;  n=[X"ql=q(q~-l)/2 and X "'q is not bipartite, 

(a) g(X "'~) _-> 2 log, q, 

(b) diam (X p'g) ~ 21og, n + 2 1 o g , 2 + l ,  

(c) i(X p'q) -< 21/p -- 
- - ' p + l  n, 

(d) z(xp,9 => .P+ I - -  ~ 

21/p 

Some comments concerning these inequalities are in order. First we note 
that the main results, which we establish for X"~, are the Ramanujan property 
and the bounds for the girth. The bounds on the diameter and independence number 
are consequences of the Ramanujan property, while the bound on the chromatic 
number is a simple consequence of the bound on i(X). Second (i) (a) shows that 
the X p'~ are k-regular bipartite graphs of order n which asymptotically satisfy g(X)~_ 
~_4 lOgk_in/3. The problem of exhibiting regular graphs with large girth is non- 
trivial [4]. Erd6s and Sachs [7] proved, using counting arguments, the existence of 
graphs with g(X)>lOgk-ln (k fixed n~oo). The result of Margulis [19] was fol- 
lowed by an improvement by Imrich [14] which gave explicit examples with 
g~_4 lOgk_ln/9. Thus our explicit graphs give an improvement even over "the 
known random one". This should be compared with the easily derived asymptotic 
upper bound of g(Xn.k)_<-2 logk_xn. In the case k = 3  Weiss [27] gave explicit 
examples which have the same lower bound as ours. 

Equalities (ii) (c) and (d) were pointed out to us by N. Alon [I, 2]. Indeed 
his Proposition 5.2 below shows in general that for a nonbipartite Ramanujan 
graph, i(X) has such a bound. (ii)(a) and (c) show that these X p'q furnish a rich 
explicit family of graphs with arbitrary large girth and i(X)/n arbitrary small. 
It appears that this is the first such explicit family. In particular we have an explicit 
family with arbitrarily large girth and chromatic number; see [4] for a history and 
discussion of this problem. Precisely, given g we have graphs of girth _~g order n 
and independence number ~_n x-~/ag. 

Finally we remark that we may view our graphs in the following 
way: the homogeneous tree of degree p + l  may be realized as the coset space 
PGL (2, Qp)/FGL (2, ~;p) (where Qe is the field of p-adic numbers and Z,  is the 
ring ofp-aaic integers; see Serre [23]). Then by choosing suitable arithmetic discrete 
subgroups F of GL (2, Q,) (see for example Serre 23] or Vign6ras [24]) one may 
form the double coset space F"xPGL (2, Qp)/PGL (2, Z,) which is a finite graph 
if F is torsion free. By using the theory of automorphic forms one can prove (see 
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Ihara [13] and [181I, Theorem 4.1]) that these are Ramanujan graphs. In fact the 
graphs of this paper are explicit versions of these, where F is taken to be an 
appropriate congruence subgroup of H(Z[I/p])*, H being the Hamiltonian quater- 
nions. In general these graphs are not Cayley graphs but if the class number of 
the quaternion algebra is one they may be presented as such. 

The paper is organized as follows: In Section 2 we give the construction of 
XV'q; in Section 3 we realize the graphs as quotients of a "quaternion group" and 
estimate the girth. In Section 4 we prove the graphs are Ramanujan graphs and in 
fact determine their spectral densities. The diameter and related quantities are esti- 
mated in Section 5. 

2. Construction o f  X r'q 

In this short section we describe the graphs XP'L Let p, q be unequal primes 
congruent to 1 mod4.  Let i be an integer satisfying i 2 - - 1  (rood q). By (1.2) 

o 2 2 o there are 8 ( p + l )  solutions e=(a0, al, a2, an) to a~+a~+a2+a~=p. Among them 
(see the next section) there are p + l  with no>0 and odd and aj even for j = l ,  2, 3. 
To each such solution e associate the matrix ~ in PGL (2, Z/qZ) 

ao+ia~ a~.+iaz) 
(2.1) ~ =  --a~+ia3 ao-ial " 

Form the Cayley graph of PGL (2, Z/qZ) relative to the above p + 1 ele- 
ments (the Cayley graph of a group G relative to a symmetric set or elements S is 
the graph whose vertices are the elements of G and whose edges are (x, y) if x =sy 

for some sCS). This is a (p + l)-regular graph with n=q(q2-1) vertices. I f ( q ) = l  

then this graph is not connected since the generators all lie in the index two subgroup 
PSL (2, Z/qZ) (their determinant is a square). We therefore define the Cayley graph 

J ~ 

X p'' to be the above Cayley graph if and to be the Cayley graph of 

PSL (2, Z/qZ) relative to these generators if {P} = 1. We will see that X v'q is 
�9 v A - -  

connected. These are the graphs referred to in Section 1. If I 1= x, . ,s  
bipartite, the bipartition corresponding to the subsets PSL (2, Z/qZ) and its corn- 

W h e n  w e  wi l l  see  that  it is definitely not bipartite. Thus X v'q plement. 

is a k = p + l  regular graph of order n=q(q"-1) or q(q2-1)/2 depending on the 

s ignor  ( P ) .  
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3.  Q u a t e r n i o n s  

Let H(Z) denote the integral quaternions 

H ( Z )  = {c~ = ao+ali+a2j + a 3 k l a ~ C Z } ,  i ~ = j~ = k 2 = -  1 

i j = - j i = k  etc. Set ~ = a o - a l i - a 2 j - a 3 k  and let N(ct) be the integer ct~. The units 
of the ring H(Z) are + 1, _ i ,  +j ,  =t=k. As before take p--  1 (4) to be a prime and 
consider the set of  ~6H(Z) with N(~)=p. Since p- - l (4 )  only one of  the a{s 
of ~ will be odd. As in the introduction the number of such ~'s is 8(p + 1). The 
units act on this set and it is clear that each solution has exactly one associate e~, 
e a unit, with ~ = 1 ( 2 )  and a0>0. Let S be the set of these p + l  elements with 
N(~)=p, ~--1(2) and ao>0. This set splits into distinct conjugate pairs 
{r ~t, ~2, ~2, ..., ~ ,  ~} where s=(p+l)/2.  By a reduced word of  length m in 
the elements s6S we mean a word of length m in the ~tl, ~j's in which no expression 
of the form %~j or ~ j ~  appears. 

Lemma3.1. ([8].)Every o~C H(Z) with N(ct)=p k can be expressed uniquely in 
the form 

Ct = epr.Rm(~ 1 . . . .  , t~s) 

where e is a unit, 2r +m=k ,  and Rm is a reduced word in the az's of  length m. 

Proof. To obtain the existence of  such an expression we use the results of  Dickson 
[5] which show that for odd quaternions (i.e. those of  odd norm) one has a theory 
of g.c.d's and the usual factorization (on the left and right). Since ~ is odd and a 
quaternion is prime if  and only if its norm is prime we may write ~=),fl with 
N(~) =pk-1, N(fl)=p.  

NOW by the choice of S we can find a unit e such that ~=)'esl with s ~ S .  
Now repeat this for rE, etc. We eventually get ~=esls2...sk with sjES. After 
performing cancellations we arrive at ~=ep'Rm for some r and m. This  proves the 
existence of  such a decomposition. 

We show the uniqueness by a counting argument. First, the number of  reduced 
words Rm(aj . . . . .  ~,) is ( p + l ) p  m-1 for m ~ l  and is 1 if m = 0 .  Hence the num- 
ber of  expressions ep'Rm(O:x, ..., ~,) with 2 r + m = k  is 

where 

8( Z 
O~r<k/2 

10 i f  k is e v e n  
/~(k) = if k is odd. 

H e n c e  the number of such expressions is 

pk-Z_ 1 ) 
8 p----i = 8 Z d. 

alp ~ 

This is the number of  ~EH(Z) with N(c~)=p k. I t  follows that each such expression 
represents a distinct element. I 
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Corollary 3.2. I f  ~-1 (2 )  and N(~)=p k then 

= • . . . . .  ~,) with 2r+m = k, 

and this representation is unique. 

Consider the set A ' (2 )o f  all ~EH(Z), c~---1(2) and N(~)=p v for some 
vEZ. A'(2) is closed under multiplication and if we identify ~ and fl in A'(2) when- 
ever q-pv, oc=pV, fl, vl, v2EZ then the classes so obtained form a group with 

[a][fl] = [aft] and [~][~] = [1]. 

Corollary3.2 implies that this group which we denote by A(2) is free on 
[al], [a2] . . . .  , [as]. The Cayley graph of A (2) with respect to the set S is therefore 
a tree of degree p +  1. This tree will be denoted by A(2) as well. We have thus 
realized this free group or tree in a suitable number theoretic way. In order to form 
finite graphs we choose a normal subgroup F of A(2) of finite index. Then/"  acts 
on A(2) by multiplication on the right and the quotient graph (or group) A(2)/F 
is finite. This is of course a Cayley graph of A (2)//" with respect to the generators 

In order to have any number theoretic significance we must choose r in 
an appropriate way. Let (m,p )= l  and consider all [a]EA(2) such that 2mlaj, 
j = l ,  2, 3, where ~=ao+al i+aj+a3k.  This defines a subgroup A(2m) of A(2). 
It is in fact a normal subgroup of finite index in A(2) since it may be viewed 
as follows: 

Let H(Z/2mZ) be the quatemions with entries in Z/2mZ and let H(Z/2mZ)* 
be the invertible elements of this ring. Let Z<=H(Z/2mZ) * be the central sub- 
group: Z={a01a0•0}. The homomorphism ~r: A(2)-,-H(Z/2mZ)*/Z defined by 
[0t]~(~ rood 2m)Z is well defined. Its kernel is A(2m). 

We next show that the graphs presented in Section 2 can be identified with 
the Cayley graphs of the group A(2)/A(2q) with respect to the generators ~x, ..., ~,. 
From now on m=q. 

Define the homomorphism cp: A (2) ~ PGL (2, Z/qZ) by 

[a] ~,- a m~ q ~-~--~ [ ao + ial a~ + ias l 
--a~+ia3 ao--ia~j 

rp 

where i is a fixed integer satisfying i 2---- - 1  (rnod q). It is easily verified that q~ is 
well defined and is a homomorphism. 

Proposition 3.3. 

' PGL(2, Z/qZ) 

Image cp = 
PSL(2, Z/qZ) 

(p)--, 

Proof. If  a, EH(Z) is o fnormp then ~P(ai)is in PSL (2, Z/qZ) if and only if I ~---I = 1. ~qJ 
Since [PGL (2, Z/qZ): PSL (2, Z/qZ)] =2, it suffices to show that ~p(A(2)) 2 
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PSL (2, Z/qZ). Now ~p factors as 

A(2) ~ H(Z/2qZ)*]Z '~', H(Z/qZ,)*/Z n.Lt*~- PGL (2, Z/qZ). 

rca is clearly an isomorphism so that the point to check is: What is the image of 
zc2orcl? To prove the Proposition it suffices to show that if f l=bo+bl i+b~j+bak  
is in H(Z /qZ)  and is of norm 1 (rood q) then there is aEH(Z) satisfying N(a)=pk 
for some k, a =  1 (2) and a=fl(q).  So let such a fl be given; set 7 =)'0+~li+v2j +Tak 
where 7o=b0 (rood q), 27j=bj  (rood q) for j = l ,  2, 3. Then 

2• '~• '2"4 '~ 0T r lT  r2T r 3 - l ( q ) .  

We will use some results from the theory of quadratic diophantine equations 
and in particular the theory of singular series of Hardy and Littlewood. Maligev [20] 
obtained the following from this theory: Let f ( x l  . . . .  , x,)  be a quadratic form in 
n~4  variables with integral coefficients and discriminant d. Let g be an integer 
prime to 2d then if m is sufficiently large (depending on f and g) with (g, 2rod)= 1, 
m generic for f ,  and if (bl . . . .  , b,, g ) = l ,  f ( b  I . . . .  , bn)=-rn (mod g) then there are 
integers (al . . . .  , a , ) - (ba ,  ..., b,) (mod g) with f(a~ . . . .  , a ,)=m. Indeed he obtains 
an asymptotic formula for the number of such (al . . . . .  a,) as m--*o (the sin- 
gular series). 

We apply this to 

f ( x l ,  x2, x3, x 3  = x~ + 4x~ + 4x~ + 4x~, 

m = p  I', g = q  and (bo, ha, b2, ha) =(70, Tx, 72, 7a). If  k is large enough and pk_= 1 (q) 
then we have f(70, 7~, T~, 7a)--pk(q) and pk is generic so there is (a0, al, a2, a3)---- 
(~'0, ~1, ~'2, 7a)(q) satisfying a]+4a~+4a~+4a]=p k. Hence if 

= a o + 2 a i + 2 a j + 2 a 3 k  

then N ( a ) = p  k, a-- l (2)  and a - f l  (mod q) as needed. 

Remark 1. Proposition 3.3 may also be deduced from the strong approximation 
theorem for arithmetic groups see ([16]). 

From Proposition 3.3 it follows that A(2)/A(2q)~ PGL (2, Z]qZ) or 

PSL (2, Z/qZ) depending on ~ . Fur therl"nore the homomorphism takes the 

generators a~, ..., ~ to the matrices in (2.1) hence the graphs X p'q may be identified 
with A(2)]A(2q). For theoretical purposes this latter realization is more useful. 
For example it is now clear that the graphs X p'~ are connected. We now examine 
the girth, 

Theorem 3.4. I f  ( q )  = -  1 

g (X  ~'q) _~ 4 log~q-logp4,  Ix,.al = q(q2-1)  

g(X"q) -~21Ogpq and IxP, ql = q(q~-l) /2.  
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Proof. X = X  p'~ is a Cayley graph and hence is homogeneous. The shortest circuit 
may therefore be assumed to run from the identity to itself. On the tree A (2) this 
corresponds to the length of the smallest nontrivial member of A(2q). If 
~EA(2q), ~ e  is of length t then we can find an integral quaternion ~TEA'(2) 
such that 

= fllfl2...fit with fljE{a~ . . . .  , ~}  

and ~EA'(2q). Thus N(y )= f f  and ~=ao+2qa~i+2qa2j+2qa3k, ao, a~, he, aaEZ. 
Since y # e  at least one of al,  ha, aa is non-zero. Thus we have 

(3.1) pt a~+4q~ 2 ~ ~ ~ 2 = a1+4 q az+4q ha. 

In the case [ a J  =1 we simply observe that since one of  al, a2, a3 is # 0  

f f  _~ 4q 2 

fn~  
or t-->_21ogpq as claimed. In the case l a J = - i  we first note that t must be even, 

for if  not  we would have on reducing rood q 

If/1 
3hus t is even and we may write t=2r. In this case (3.1) has the trivial solutions 
a0 = +F' .  The congruence 

(3.2) X~ -- p '  (mod q~) 

has only solutions 

(3.2)' Xo = +p" (mod q~) 

since (Z/q2Z) * is cyclic. I f  we assume that (3.1) has a non-trivial solution with 

(3.3) i f<q4~4  

then p'<q*]2 and so any solution Xo of  the congruence (3.2) which is not +pr 
will by (3.2)" satisfy 

IXol =~ q2/2 

a n d  h e n c e  2:=. 4 X~ = q / 4 .  But then from (3.1) pt>q4/4 
that pt>=qa/4 or 

4 log q--log 4 
t~- 

logp 

contradicting (3.3). It follows 

We end this section by showing that when 1~1 = 1, X p'~ is not bipartite. 
~ , . / J  

I f  this were so we would have X =  PSL (2, Z/qZ) partitioned into two sets A and 
B such that a~A=B and a j B = A  for each of  the generators al ,  ..., ~s. I f  the 
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identity is in A then it is clear that A is a subgroup of G=PSL (2, Z/qZ);  in fact, 
it is the subgroup of all those elements of G which are expressible as a product of 
an even number of the generators. However for q>3, PSL (2, Z/qZ)  is a simple 
group and since A would be an index two subgroup this is a contradiction. 

4.  S p e c t r u m  o f  X v'q 

We investigate the spectrum of the X v' q and in particular prove the main result 

Theorem 4.1. X p, ~ is a Ramanujan graph. 

Before proving this theorem we study the general behavior of the spectrum 
of an X,,k as n~oo. In particular we begin by proving (1.1). 

Proposition 4.2. lira 2(X,.k)~2 1/k - 1 .  

Proof. Let A be the adjacency matrix of X.,k. Then Al=(f/J )) where 6[J ) is the num- 
ber of paths of length I joining i to j in Xn, k. Let 2o = k ~_ ~1 . . . .  _~2._x be the eigen- 
vaIues of A. Since trace is independent of basis we have 

n - 1  

(4.1) z~ 2} = 2 .sf,) "M �9 
j=o j 

Now it is clear that since T k, the k-regular tree, is the universal cover of X,,~ we have 
~sJ~)indeO(~eh~roe((~! ~tnheeenumber of paths of l eng th / in  T k joining x to x (which 

n--1  
(4.2) z~ ,t~ ~_ nQ(1). 

j = 0  

It follows after removing the eigenvalues + k  that 

(4.3) 2k *~ 
k(X)  2z >-_ Q(2/)- n--2  " 

Now q(21)~_q'(21) where 0'(21) is the number paths of length 21 beginning at x 
and ending at x for the first time (in Tk). One checks that 

Thus 

1 ( 2 l - - 2 )  
0'(20 = "7" ~, I -  1 J k ( k -  1)z-L 

1 ( 2 / -  2 ) (1/k---ST)2,) 2k ~' 
2(X)~t=~-T l - 1  ) n - 2 "  

The Proposition follows from this since 

( 2/ -2) lm_~ 
I - 1  2 as - l ~ .  
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We can be more precise if girth (X.,k)~ oo as n ~  ~o. Associate to the graph 

Xn, k a measure/t  x supported on 

values of  A. 

Propos i t ion  4 .3 .  

1 
[ - k ,  k] which puts point masses - -  at the eigen- 

n 

lim /tx.,~ = Pk 
? l ~ c o  

O(Xn,k)~ o o  

for all continuous f .  

Proof. It suffices to show that 

(4.4/ f t' d/t.,k (t) -,- f e 
for each I_->0. Now for l fixed and n large enough g(X.,R)>2L Hence locally up 
to distances of length l, At., k looks like T k. In particular 6~[)=Q(/) for each vertex i 
of  X. Thus as in the previous proof 

~" j=~o 2~ = f fl d/tn.k(t)= Q(1). 

Hence the left hand side of (4.4) converges to 0(l) as n-~ ~. It remains to chack 
that ~(I) is the sequence of  moments of  the measure/~k in Proposition 4.3. This is 
a simple calculation and is carried out in Kesten [15] for example. 

As was proved in Section 3 the girth g(X p'q) of our graphs ~ ~ as q (and 
hence n )~  ~.  Thus the spectrum of the graphs X v'a lies in [ - 2  ]~ ,  2 l/p] (besides 
+ (p + 1)) and it is distributed in this interval according to the density dttp+x as q ~  ~,. 

We turn to the proof  of Theorem 4.1. We begin with some remarks concerning 
harmonic analysis on the tree T k. Let F be a discrete group of isometrics acting 
freely on T=T k and such that n=IT[F[<,,~. Consider the space of F periodic 
(or automorphic) complex valued functions on T such that 

f(yx)=f(x) for x6T, y6F. 

This space is finite dimensional and is denoted by L2(T/F). The Laplacian on the 
tree leaves L~(T/F) invariant and so may be spectrally decomposed. This gives an 
orthonormal basis uj(x) of L2(T/F) satisfying 

Auj = 2ju~___ff 

(4.5)  uo (x)  = , 20 = p + 1 = k. 

f I ( 0  = fy(t) di,(0 

where 

{I/k-lo-t~/4~rk(i - - - .  (t/k)2 ~ dt if It[ -~ 2 l / k -  1 d ltk ( t) 
otherwise. 

The limit in Proposition 4.3 is the weak* limit i.e. 
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For t_~0, an integer, define the point pair function kt: T•  T~C by (see Remark 2 
at the end of this proof for a different approach) 

(4.6) 

Set 

(4.7) 

I if d ( x , y ) = l  
kt(x, y) = 0 otherwise. 

Kl(x, y) = z~ k,(?x, y) 
~EF 

K,(x, y) counts the number of elements in the orbit Fx which are at distance I from 
y in T. It is clearly symmetric in x and y and as a function of each is in L2(T/F). 
We may therefore expand it 

n--1 
(4.8) K~(x, y) ---- 2 hj(l)uj(x)ufly). 

j=o 

The reason we obtain only diagonal terms in this expansion is that d commutes 
with the 'integral' operator kt and hence 

Z Kt(x, y)uj(y) = Z kt(x, y)uj(y) = hj(Ouj(x ) 
ys y~.T 

for a suitable h#(1). If t->O is an integer we form 

(4.9) Lt(x, y) = Z Kt-s,(x, Y) 

which counts the number of elements in the orbit Fx in alternate shells about y at 
distances <-t. It is not difficult to compute the dependence of hr(l ) on 2 r and /, 
see [18] and in fact 

,-x sin (t + 1)01 
(4.10) L,(x, y) = p,/2 z~ ur(x)ur(Y) 

r=0 sin 0j 

where 0 r is complex valued and defined by 

(4.11) 21 = 2 ~'p" cos 0 I. 

Here 0 r is real if 12jl~-21/p otherwise it is purely imaginary with Im(0r)>0 if 
2i>2 1/p or it is of the form n +i/*, pER if 2 j<  --21/p ". For example Oo=i log 
and 0n_ l=n+i log  ~ if 2 n - l = - ( p + l ) .  We apply the above considerations to 
the case where T=A(2) and F=A(2q) as in Section 3. For xEA(2) 

K,(x, x)- - ]{r~a(2q) :  d(rx, x) = t} ! = i{rEA(2q): d(x-lyx,  e)=/}t" 

Since A(2x/) is normal in A(2), this can be rewritten as 

(4.12) r,(x,  x) = I{~EA(2q): dC~e, e) = 1}l. 

Hence K~(x,x)=Kt(e,e) for all xEA(2), l>_-0 and also 

(4.13) Lt(x, x) = Lt(e, e), for all xEA(2), t ~_ O. 



272 A. LUBOTZKY, R. PHILLIPS, P. SARNAK 

We now relate this count to the problem of representing a number by a 
quadratic form. Let Q be the quadratic form 

a (xl, x2, xs, x4) = x~ + (2q)2x~ + (2q)~x~ + (2q)2 ~ .  

Then re(p k) is the number of ~ H ( Z )  such that 2ql~-a0 and N(~)=p k. Now 
by Corollary 3.2 every such ~ is of the form -t-p'Rt(cr . . . .  , ~s) where 2r+t=k  
and where [~]E A(2q). It follows from this and the uniqueness (Corollary 3.2) that 

re(p ~) = 2 Z [{eEA(2q)ld(e, e) = k-2r}[.  

In other words 

(4.14)  Q(f) = 2L (e, e) = 2Lk(x, x). 

Inserting (4.I0) into the right hand side of this last equation and summing 
over x~ T/A(2q) gives 

2p k/~ ~,~ sin (k+ 1)0~ 
(4.15) l'Q ( p  k) 

n j=o"~ sin Oj 

This is the key relation relating (1.5) and the spectrum of A (2)/A (2q)=X p' q (notice 
the autemorphic spectrum of A is the same as the spectrum of A on the quotient 
graph!). Combining (1.5) with (4.15) gives 

(4.16) C(pk)+O~(p k(xlz+s)) = 2pk/2 ~ sin(k+ 1)Oj Ve > O. 
n y=o sin 0y 

C(p k) is the "singular series" and it comes from the contribution of the Eisenstein 
series when expressing the "0-function" 

O(z) ~ e 2~teC~ 
v ~ Z  ~ 

as a combination of Eisenstein series and a cusp form - -  see Hecke [10]. That is, 
C(p k) is the pk-th Fourier coefficient of a combination of the Einsenstein series of 
weight two for F(16q2). From the known Fourier expansions of  Eisenstein series 
[I0, 21] one easily shows that C is of the form 

C(n) = Z dF(d) 
din 

where F: N ~ C  is periodic of period 4q 2. 

Lemma 4.4. Let G: N--*C be periodic and satisfy 

d~  dG(d) = o(p k) as k ~ 

then 
Z dG(d) = O for all k. 

dip ~ 

Proof. Let ~k= ~ '  dG(d) then 
dlp ~ 

O~k ~Zk - 1 (4.17) pk pk-~p = G(Pk) �9 
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The left hand side of(4.17) + 0  as k--- o~. Since G is periodic it follows that G(p k) = 0  
for all k proving the lemma. 

Returning to (4.16) we may write 

(4.18) z~,dF(d)+Oa(p k(1/z+~) " 2pk12 ~1 s in (k+ l )0 j  Vs > 0 .  
~tp~ n j=o sin 0j 

We must now distinguish two cases: 

Case i. ( P ) = - 1 .  In this case X"q  is bipartite as we saw in Section 3. The eigen- 

values 2j appear in pairs : t : (p+l) ,  ---21 . . . .  etc. Furthermore as was observed at 
the beginning of  this paper in this case : t : (p+ l )  are simple eigenvalues hence 
[2 j l<p+ l  for j~O, j=n--1 .  Therefore the right hand side of  (4.18) is clearly 0 if 
k is odd, while for k even it is of the form 

d(p k s 1 -  1) +o(p~) = 4 
~,(p- a) n Z d + o ( f )  

dip* 

as k +  ~o. We apply Lemma 4.4 and conclude that 

0 if k is odd 

(4.19) C(p k) = 4(V ~+x-1)  
n (p- -  1) if k is even. 

We may now eliminate the leading terms on both sides of  (4.18) since they are iden- 
tical and conclude that 

2pklZ ~2 sin(k + l)Oj 
n ' j=l sin 01 = O~(p k(ll~+O) V~ > 0 

Hence as k +  ~,  k even 

n-z sin (k+ l )0 ]  
Z - o + ( f b  w > 0. 

j=~ sin 01 

This clearly implies that all the 0j, 2~_j<~n-2 are real, that is that I)q[~ 
,r % 

___2 lf~" =_+j_+,,-2. Th,+,swehaveshownthat+'."when IVl=-1 i s ab ipa r -  for 

tite Ramanujan graph. 

Case i i .  [ P ] = I .  In this case as we showed at the end of  Section 3, X ~'~ is not 

bipartite. Hence [ 2 j l < p + l  for j r  This time (4.16)reads 

2(p k ~ l -  1) 
C(Pk)+O~CpkCIP+~) -- n(p-- 1) ko(P*)" 

Hence by the Lemma 

(4:20) c@b = 2(P~+~- 1) 
n ( p -  1)' 



274 A. LUBOTZKY, R. PHILLIPS, P, SARNAK 

and this time 
~x  sin (k+ 1)0j 

j = l  sin 0j - O,(p k') V~ > O. 

Hence 0j is real for j = l  . . . . .  n - 1  and X p'e is Ramanujan. This completes the 
proof of Theorem 4.1. II 

Remark 2. As pointed out to us by a referee the initial part of the proof of Theo- 
rem 4.1 (as well as the proof of Theorem 5.1) can be made a little more direct and 
self-contained by avoiding the use of the harmonic analysis of point pair functions 
as follows. Let H0(x), Hi(x) . . . .  be the (~ebygev polynomials defined by 

Ho(x) = 1 Itx(x) = x 

tt ,(x) = x l t~_l (x) -p t t ,_dx)  for t -> 2. 

Define the operator L, by 

L, =//Xa). 

Computing the trace of  L, o n  L2(T/F) as in the argument reading to (4.14) one 
finds that TR (L~)=nrQ(pg/2. On the other hand on computing this trace spectrally 

TR(Lt) = Z /-/, (2j). 
O~-j~--n--1 

This, when expressed in terms of the 0fs defined in (4.11), yields 

TR(L,) = z~ pq* sin ( t+ 1)0j 
0~_j~_n-x sin 0j 

(4.15) follows on equating these expressions for TR (Lt). 
The graphs X p'~ may be used to construct a somewhat richer family of Rama- 

nujan bipartite graphs as follows: 
PGL (2, Z/qZ) acts on PI(Fq) = {0, 1 . . . .  , q -  1, oo} in the usual linear frac- 

tional way. We turn Pa(F~) into a p + l  regular graph by joining ~ p 1  to y~ for 
each generator y~{cq, ..., ~s}. Call this graph YP,~. it has order q + l .  It is clear 
that any eigenfuncfion f of d for Y~" ~ gives rise to one F on X p' ~ with the same 
eigenvalue. In fact 

F(g) ---- f(g(0)) 

supplies this correspondence. Thus to show YP' q is Ramanujan non-bipartite all we 
need show is that - (p + 1) is not an eigenvalue of YP'*. If it were we clearly must be 

in the case [ P ] = -  1 and we can assume that F(g)=f(g(O)) is 1 on PSL (2, Z/qZ) 

on  on t n, {(: 
This subgroup clearly contains members of PSL (2, Z]qZ) as well as its comple- 
ment which is a contradiction. We have shown 

Theor e m 4.4. The graphs YP'q are non-bipartite Rarnanujan graphs of order q + l  
and degree p + 1. 
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5. Diameter and other quantities 

We conclude by estimating some other graph theoretic quantities for the graphs 
X~,~. Since XP'q~A(2)/A(2q)=T/A(2q), the diameter may be realized as 

(5.1) diam (X ~'~) = sup inf d(x, yy). 
x, y s T 7 E A(2q) 

Let k~(x, y) be the function on T defined in (4.4) along with K=(x, y) defined in 
(4.5). If  d(x ,y )>t  then Km(x,y)=O for all m<=l. Hence 

(5.2) z~ a,  K~(x, y) = 0 
m'.r 

for any choice of  coefficients am. We choose these to be the coefficients of  the l m 
~eby~ev polynomial H~(x); 

I 

(5.3) /-/,(x) = cos (l arccos(x)) = • amX =. 
m = 0  

By the analysis similar to that carried out  in Section 4 we find 
n - - I  

(5.4) ~ ar~K,(x, y) = p~/2 X cos (101)uj(x)uj(y), 
m<l j = O  

where as before 2j = 2  ~ cos 0j. Thus if dx(x, y )>l  
n--1 

0 = pl[2 Z COS (lOj)ll j(X)Uj(y).  
j = 0  

If 1 is even this gives 

n--2 
P t+l  pZ/2 Z lu./(x)uj(y)l fl/~ " - ~  <- <- Z (lu./(x)l~+lu./(y)l~)/2 ~ - f ~  2n j=~ j=~ 

n--1 
since ~ ,  luj(x)12=l for any x. Hence ptl2<=2n or l~_21ogp(2n). We conclude 

. i=1 

Theorem 5.1. I f  n=lXp, fl then 

diam (X p'~) ~ 2 log v n + 2  log v 2 +  1. 

It is easy to see on the other hand, that diam (X p' 4) _~logp n. 

For the rest of this section we assume / p )  = 1. In this case w e  can give an 

upper bound to the independence number of  X p'q and hence a lower bound to the 
chromatic number. That this is so, follows from the following proposition due to 
Alon [1]; see also [2]. 

Proposition 5.2. (Alon) Let X,, k be a non-bipartite Rarnanujan graph; then 

2r 
i(x) <- ~ n. 

Proof. Suppose that A is an independent set of vertices with IAI =r. Define a func- 
tion f(x) on X by 

(5 .5)  f ( x ) - -  _ o n  a ~ 
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where r--(n-r)c=O. Then f_L1 and hence by the Ramanujan (non-bipartite) 
condition 

(5.6) llAfll~ <- 4 ( k -  1)[lfllL 

On the other hand clearly by the independence property of A, A f ( x ) = -  ck for 
xE A. Thus 

(5.7) IIAflI  c ker. 

Now c=r/ (n-r)=v/ (1-v)  where v=r/n. (5.6) and (5.7) yield. 

(5.8) cZk~r ~_ 4 ( k -  1)llf]l~ = 4(k-1)(r+c2(n-r))  

o r  

Hence 

o r  

k, < 4 ( k - 1 )  
(1 -v )  ~ = 

v2k 2 <= 4 ( k - 1 ) ( 1 - v )  ~ v~k 2 -< 4 ( k - l )  

2 y/k-  1 
k 

proving the proposition. 
An upper bound on i(X) clearly implies a lower bound on z(X). We have 

shown: X~,k non-bipartite Ramanujan implies 

k 
(5.9) zCa'.,D 

2 1/~-~-_ 1 �9 

Remark 3. The bound (5.9) may also be obtained directly from Hofmann [11] using 
the Ramanujan property. 

In conclusion we remark that the results of this paper show that the explicit 
graphs X p' ~ share many of the extremal properties of random graphs. 

Remark 4. We recently learned from Professor Margulis that he has obtained results 
similar to those in this paper, see: 
G. A. Margnlis, Arithmetic groups and graphs without short cycles, 6th Internat. 
Symp. on Information Theory, Tashkent 1984, Abstracts, Vol. 1, pp. 123--125 (in 
Russian). 
G. A. Margulis, Some new constructions of low-density paritycheck codes. 3rd 
Internat. Seminar on Information Theory, convolution codes and multi-user commu- 
nication, Sochi 1987, pp. 275--279 (in Russian). 
G. A. Margulis, Explicit group theoretic constructions of combinatorial schemes 
and their applications for the construction of expanders and concentrators, Journal 
of  Problems of  Information Transmission, 1988 (to appear in Russian). 
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