CS 598. Spectral Graph Theory
 Problem Set 2

Alexandra Kolla

due March 16, 2015

Problem 1 Alon Boppana

(5 pts.) Show that there exists a constant c, such that for every finite connected d-regular graph G with diameter D, the second eigenvalue of the adjacency matrix of G satisfies the following bound:

$$
\lambda_{2}(G) \geq 2 \sqrt{d-1}\left(1-\frac{c}{D^{2}}\right)
$$

Please try to do this without looking at the Alon Boppana proof, following the style of proof that we talked about in Lecture 10.

Problem 2 Abelian Cayley Graphs

(5 pts.)
Let G be an Abelian group on n elements, and H a Cayley graph of G of degree d with second adjacency matrix eigenvalue less than $(1-\epsilon) d$ for some constant ϵ. Show that $d \geq \Omega_{\epsilon}(\log n)$. Namely, in order to construct expanders from abelian Cayley graphs, the degree needs to be logarithmic.

Problem 3 Diameter and Multiplicity

(7 pts.) Let G be any graph, and let $L=D-A$ be the Laplacian, where D is the diagonal degree matrix and A is the adjacency matrix. You will prove that, for any $r \geq 1$, if L has at most $r+1$ distinct eigenvalues, then the diameter of G is at most r. In particular, this implies that the only graph with exactly two distinct eigenvalues is the complete graph. Let D be the diameter of G.

1. Prove that if p is a polynomial of degree m such that $p(A)$ has all non-zero entries, then $D \leq m$.
2. Prove the same thing for L instead of A.
3. Now, let $0=\lambda_{1} \leq \lambda_{2}, \cdots, \leq \lambda_{n}$ be the eigenvalues of L with corresponding orthogonal eigenvectors $u_{1}, u_{2}, \cdots, u_{n}$. Prove that for any polynomial p such that $p(0)=1$, we have

$$
p(L)=\frac{J}{n}+\sum_{i=1}^{n} p\left(\lambda_{i}\right) u_{i} u_{i}^{T}
$$

where J is the all one's matrix.
4. Using the fact that L has only $r+1$ distinct eigenvalues, use the preceding two parts to show that $D \leq r$.

Problem 4 Generalized Cheeger Rounding

(8 pts.)
Let G be an n-node, undirected, connected graph (you can also assume it is unweighted if you want) with adjacency matrix A. Define the normalized K-cut of a graph, into $K \geq 2$ disjoint sets of vertices $S_{1}, S_{2}, \cdots, S_{K}$, to be

$$
\operatorname{NCUT}\left(S_{1}, S_{2}, \cdots, S_{K}\right)=\sum_{i=1}^{K} \frac{\operatorname{Cut}\left(S_{i}\right)}{\operatorname{Vol}\left(S_{i}\right)}
$$

where $\operatorname{Cut}(S)=\sum_{i \in S, j \in V \backslash S} A(i, j)$ and $\operatorname{Vol}(S)=\sum_{i \in S} d_{i}$. Here d_{i} is the degree of vertex i. Let h_{i} be an "indicator vector" for set S_{i} as follows:

$$
h_{i}(v)= \begin{cases}\frac{1}{\sqrt{\operatorname{Vol}\left(S_{i}\right)}} & \text { if } v \in S_{i} \\ 0 & \text { o.w. }\end{cases}
$$

Let H be an n by K matrix whose columns are the h_{i}, i.e. $H=\left[h_{1}, \cdots, h_{K}\right]$.

1. Show that $\operatorname{Ncut}\left(S_{1}, \cdots, S_{K}\right)=\operatorname{Tr}\left(H^{T} L H\right)$, where L is the Laplacian of G.
2. Show that $H^{T} D H=I_{K \times K}$
3. Show a spectral relaxation of minimum K-cut, generalizing Cheeger's rounding.
