CS 598. Spectral Graph Theory Problem Set 1

Alexandra Kolla

due February 12, 2015

Problem 1 Courant-Fischer

(5 pts.)

1. Prove the Eigenvalue Interlacing Theorem for decreasing order of eigenvalues (Lecture 3). Namely, show that if A is an n-by-n symmetric matrix and B a principal submatrix of A of dimension $\mathrm{n}-1$ (that is, B is obtained by deleting the same row and column from A). Then $\alpha_{1} \geq \beta_{1} \geq \cdots \geq \alpha_{n-1} \geq \beta_{n-1}$ Where $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n}$ and $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n-1}$ are the eigenvalues of A and B respectively.
2. Show that if A is an n-by-n symmetric matrix and B be a principal submatrix of A of dimension $\mathrm{n}-\mathrm{k}$ (that is, B is obtained by deleting the same set of k rows and columns from A). Then $\alpha_{i} \geq \beta_{i} \geq \alpha_{i+k}$, where $\alpha_{1} \geq \alpha_{2} \geq \cdots \geq \alpha_{n}$ and $\beta_{1} \geq \beta_{2} \geq \cdots \geq \beta_{n-k}$ are the eigenvalues of A and B respectively.
3. With the same assumptions as in item (2), show that if instead, we order the eigenvalues of A and B in increasing order, that is $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{n}$ and $\beta_{1} \leq \beta_{2} \leq \cdots \leq \beta_{n-k}$ then $\alpha_{i} \leq \beta_{i} \leq \alpha_{i+k}$.

Problem 2 Independent Sets and Chromatic Number

(5pts.)

Let G be a connected graph with average degree $d_{a v}$ and with Laplacian eigenvalues $0=\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$.

1. Let S be an independent set in G and Let $d_{a v}(S)$ be the average degree of a vertex in S. Show that

$$
|S| \leq n\left(1-\frac{d_{a v}(S)}{\lambda_{n}}\right)
$$

2. Let χ_{G} be the chromatic number of G. Show that

$$
\chi_{G} \geq \frac{\lambda_{n}}{\lambda_{n}-d_{a v}}
$$

Problem 3 Find the Spectrum

(10pts.)
Let G be the following graph on $n=2 k+s$ vertices. Assume the vertices are numbered $\{1, \cdots, 2 k, \cdots, 2 k+s=n\}$. G has edges between all vertices $\{1, \cdots, k\}$ (a.k.a. there is a clique between the first k vertices), edges between all vertices $\{k+1, \cdots, 2 k\}$ (a.k.a. there is a clique between the second set of k vertices) and edges between every vertex in $\{2 k+1, \cdots, n=2 k+s\}$ and every other vertex. Moreover, assume there is a self-loop on every vertex. Let A be the adjacency matrix of G. Answer (with proof) the following questions:

1. What is the rank of matrix A ?
2. Is A positive semidefinite?
3. Express A in the form $A=U^{T} \Sigma V$, where U and V are $n \times n$ orthonormal matrices and Σ is an $n \times n$ diagonal matrix with non-negative entries in the diagonal. The diagonal entries σ_{i} of Σ are also called singular values of A and this decomposition is called singular-value decomposition (SVD).
4. Find the eigenvalues and eigenvectors of A as a function of k, s. (If you can't find the eigenvalues exactly, then give upper-bounds and lowerbounds for each one of them).

Problem 4 Upper bounds on Eigenvalues and Graphic Inequalitites

(5 pts.)

1. For d a positive integer and $n=2^{d}$, let G_{n} be the graph with vertex set $\{0,1\}^{d}$ in which every pair of vertices that differ in at most two coordinates are joined by an edge. Prove upper and lower bounds on $\lambda_{2}\left(G_{n}\right)$. Make them as close to each other as possible.
2. For the complete binary tree T_{n}, prove that $\lambda_{2}\left(T_{n}\right) \geq 1 / c n$ for some absolute constant c.
3. Let $w_{1}, \cdots, w_{n-1}>0$ and let P be a weighted path with Laplacian $L_{P}=$ $\sum_{i=1}^{n-1} w_{i} L_{(i, i+1)}$. Let v be any vector such that

$$
v(1)<v(2)<\cdots<v(n)
$$

Prove that

$$
\lambda_{2}(P) \geq \min _{i: v_{i} \neq 0} \frac{\left(L_{P} v\right)_{i}}{v_{i}}
$$

This shows that a test vector can actually be used to prove a lower bound on λ_{2} !!

