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Introduction

It remains a fundamental challenge in mathematics to determine as to
what makes a certain (combinatorial) decision question intractable and
what makes it tractable.

Despite all the progress with complexity classes,
we do not understand what exactly determines tractability.

But over the last few years this amazing new pattern has been observed
that almost all tractable questions seem to have what is being called an
efficient certificate in the “Sum-Of-Squares” proof system.
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Introduction

The story goes back to 1900 when Hilbert in his “17th problem” had asked
if every positive semi-definite multivariable polynomial over reals can be
written as a sum of squares of real rational polynomials.

This was proven
in 1927 by Artin. But only in 1967 did Motzkin find a non-negative
polynomial over reals which is not a sum of squares of real polynomials,
namely, x4y2 + x2y4 + z6 − 3x2y2z2.

But how does this help the cause of NP-Hard questions?
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Introduction

It so happens that a large (most?) number of NP-Hard questions can be
formulated as a polynomial optimization questions!

For example, asking if the MaxCut of a graph is upper bounded by a
constant c is equivalent to asking the following question,

For f (x) =
∑

(ij)∈E
(xi−xj )2

4 , is c − f (x) ≥ 0 over x ∈ {1,−1}|V |?

For c = 1
2 (|E | − λmin(AG ) |V |4 ) one can indeed write c − f (x) as a sum of

squares of polynomials, each linear in x . Hence this would be said to give
a degree-2 SOS certficate for the optimization question.
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Introduction

Definitions

If one can write a f ≥ 0 function over reals as f =
∑k

i g
2
i for

polynomials gi over reals such that deg(gi ) ≤ d
2 then one is said to

have found a degree-d sum of squares certificate for the
non-negativity of f .

The “SOS degree” of a positive semidefinite function is the minimum
d for which one can find a degree d SOS certification for it.
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Introduction

Hope and despair

Two famous theorems which justify the search for such certificates are,

What one can find...

If the “SOS degree” of a f ≥ 0 is less than equal to d then f can be
written as a sum of squares of nO(d) polynomials

(Shor-Parillo-Lasserre) If the SOS degree of f is atmost d then one
can find a degree d SOS certificate for f + 2−poly(n) in time nO(d).

Unique Games Conjecture

In light of this, we can go back to the original MaxCut example to say
that, what the “Unique Games Conjecture” implies is that there exists a
graph G such that ∀ε > 0, MaxCut(G )− (0.878 + ε)f (x) is a non-neative
function with a SOS degree ≥ nΩ(1) (and hence can’t be certified in
polynomial time)
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Introduction

SSEH =⇒ UGC

The original formulation of the ”Small Set Expansion Hypothesis” (SSEH)
states that, (analogously to the Unique Games Conjecture),

SSEH

For every ε > 0 there exists δ > 0 so that it is NP-hard to distinguish
between,

“YES” instance : There exists a S ⊆ V s.t µ(S) = |S |/|V | ≤ δ such

that it has “expansion” = φ(S) = E(S,S̄)
d |S| < ε.

“NO” instance : Every such δ measure set has expansion at least 1− ε

Famously in 2010, Raghavendra, Steurer and Tulsiani have shown a
polynomial reduction from SSEH to UGC (proving the converse would be a
breakthrough!) So we now focus on SOS methods to certify small set
expansion properties!
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From hypercontractivity to expansion

Bounded hypercontractivity =⇒ expansion guarantees

We would like to call a d−regular graph G = (V ,E ) a “small-set
expander” if for any subset S ⊆ V such that µ(S) ≤ δ it would imply that
φ(S) ≥ (1− δ)d .

Informally the big idea we want to prove is,

Barak-Brandao-Harrow-Kelner-Steurer-Zhou (2012)

For every even q > 2 a graph G is a small-set expander if and only if for
every vector w in the large adjacency eigenvalue spaces of G it holds that
Eiw

q
i ≤ O((Eiw

2
i )

q
2 )

The idea being that over x ∈ {0, 1}|V |,
φ(S) = nE(S ,S̄)

dmin{|S |,|S̄|} =
〈x ,(L=I−A

d
)x〉l2

‖x‖2
l2

for |S | ≤ n
2 .Which basically means

that if one wants a expanding sets i.e large φ(S) then their characteristic
vectors shouldn’t be close to low eigenspaces of the Laplacian.
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From hypercontractivity to expansion

Bounded hypercontractivity =⇒ expansion guarantees

Towards the big goal we prove the following first step,

2-4 bounded hypercontractivity =⇒ expansion guarantee

For any eigenvalue λ ∈ (0, 1) of L = I − A
d , let W be the

span{vi |Lvi = (≤ λ)vi}. If every w ∈W satisfies Eiw
4
i ≤ C (Eiw

2
i )2) then

for all S ⊆ V s.t µ(S) ≤ δ we have φ(S) ≥ λ(1−
√
Cδ)

The above implies that if w is the characteristic vector of the set S then
µ ≥ 1

C . So for a “small set” is one with δ < 1
C and hence it has expansion

at least λ− o(1)
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From hypercontractivity to expansion

Introduction to expectation norms

We shall often be using the “expectation norm” or the “Lp − norm of a
random variable” X which is to be defined as, ‖X‖p = (E[|X |p])1/p for
p ≥ 1. This comes with its associated “expectation inner-product” defined
as | < f , g > | = E[fg ].

This satisfies three famous inequalities given as,

1 For 1 < p, q <∞ satisfying the constraint 1/p + 1/q = 1 and for
X ,Y random variables such that E[|X |p],E[|X |q] <∞ we have,

|E[XY ]| ≤ E[|XY |] ≤ ‖X‖p‖Y ‖q

2 ‖X‖q = max‖Y ‖q/(q−1)≤1|〈X ,Y 〉|
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From hypercontractivity to expansion

Bounded hypercontractivity =⇒ expansion guarantee

So for µ(S) = δ ≤ 1
2 , over x ∈ {0, 1}|V | we have,

φ(S) =
nE (S , S̄)

dmin{|S |, |S̄ |}
=
〈x , (L = I − A

d )x〉l2
‖x‖2

l2

=⇒ φ(S) =
〈x , Lx〉
‖x‖2

2 = δ

We decompose x = x ′ + x ′′ where x ′ ∈W and x ′′ ∈W⊥ and then we
have the following inequality by using orthogonality and Holder’s inequality
(with p = 4 as defined in the previous slide),

‖x ′‖2
2 = 〈x ′, x ′〉 = 〈x ′, x〉 ≤ ‖x ′‖4‖x‖ 4

3

But we know by our hypercontractivity hypothesis about W that,

‖x ′‖4 ≤ C
1
4 ‖x ′‖ 4

3
. Hence we have,

‖x ′‖2 ≤ C
1
4 ‖x‖ 4

3
= C

1
4 δ

3
4
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From hypercontractivity to expansion

Bounded hypercontractivity =⇒ expansion guarantee

Further,

〈x , Lx〉 =
∑
i

λi 〈x , vi 〉2 ≥ λ‖x ′′‖2
2 = λ(‖x‖2

2 − ‖x ′‖2
2) ≥ λ(δ − C

1
2 δ

3
2 )

So substituting in the definition of φ we have,

φ(S) ≥ λ(1−
√
Cδ)

But why is this expansion guarantee from the hypercontractivity
assumption helpful? That is because in the important case of the Boolean
hypercube this condition is easy to check!
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Boolean hypercube

For the Boolean hypercube {±}n one can write the eigenvectors as the
functions, {χS}S⊆[n]. And these functions χS are defined on the vertices
x ∈ {±1}n as χS(x) =

∏
i∈S xi . And the eigenvalue of χS is |S |/n.

Hence for any λ the subspace spanned by the eigenvectors of eigenvalue at
most λ are is the subspace of {f : {±1}n → R} which are spanned by
χS(x) =

∏
i∈S xi such that deg(χS) = |S | ≤ λn.

This motivates the definition of the “k-junta” polynomials.
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Hypercontractive norm bounds

With a view towards later use we define the projector to low-degree
polynomials. We will efectively showing that this projector has a bounded
hypercontractive norm.

We start off defining the projector Pd as the map,

Pd : ({±}n → R)→ ({±}n → R)

f =
∑
α⊆[n]

f̂αχα → f ′ =
∑
|α|≤d

f̂αχα

Where χα =
∏

i∈α xi

A “n−variate Fourier polynomial” with degree at most d is a function
f : {±}n → R of the form, f =

∑
α⊆[n],|α|≤d f̂αχα
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Hypercontractive norm bounds 2→ 4 hypercontractive norm of n−variate Fourier polynomials

Theorem

Over the space of n−variate Fourier polynomials f with degree at most d ,
E[f 4] ≤ 9d(E[f 2])2

The modern SOS version of this proof is inspired by a proof by Ryan
O’Donnel in 2007. This proof is kind of the simplest example of how to lift
proofs about functions over reals into proofs about the “fictitios random
variables”. We will actually prove a stronger theorem as in,

Theorem

If f and g are n−variate Fourier polynomials with degrees atmost d and e

then it holds that, E[f 2g2] ≤ 9
d+e

2 (E[f 2])(E[g2])
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Hypercontractive norm bounds 2→ 4 hypercontractive norm of n−variate Fourier polynomials

Proof

Case 1

If one of the polynomials is a constant i.e d or e = 0 then it trivially
follows from the implied independence that E[f 2g2] = E(f 2)E(g2)

Case 2

Let f0, f1, g0, g1 be Fourier polynomials depending on x1, x2, .., xn−1 s.t
f = f0 + xnf1 and g = g0 + xng1. Now we prove by induction by assuming
that the inequality is true for all polynomials over {x0, x1, .., xn−1}

So rearranging the RHS (using E[xoddn ] = 0) we have,

E[f 2g2] = E[(f0 + xnf1)(g0 + xng1)] =

E[(f 2
0 g

2
0 + f 2

1 g
2
1 + f 2

0 g
2
1 + f 2

1 g
2
0 + 4f0f1g0g1)]
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Hypercontractive norm bounds 2→ 4 hypercontractive norm of n−variate Fourier polynomials

Proof

We have the positivity identity that,

2E[(f0f1 − g0g1)2] ≥ 0 =⇒ 2E[f 2
0 g

2
1 + f 2

1 g
2
0 ] ≥ 4E[f0f1g0g1]

Substituting this in the last equation and invoking the inductive hypothesis
for the f0, g0, f1, g1 we have,

E[f 2g2] ≤ 9
d+e

2 (E[f 2
0 ] + E[f 2

1 ])(E[g2
0 ] + E[g2

1 ])

=⇒ E[f 2g2] ≤ 9d+e2E[f 2]E[g2]
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Hypercontractive norm bounds 2→ 4 hypercontractive norm of n−variate Fourier polynomials

The moral of the story is..

Hence we have shown that,

The Boolean hypercube is a small-set expander.

1 Colloquially one would say that this is a degree-4 SOS proof since we
needed to assume the positivity of expectation of a degree 4
polynomial i.e (f0f1 − g0g1)2 as a polynomial over the “Fourier
coefficients” f̂α.

2 This is a degree-2 SOS certificate since the positive quantity

E[f 2g2]− 9
d+e

2 E[f 2]E[g2] is shown to be a sum over squares of a
quadratic polynomial over the Fourier coefficients.

3 For an automorphism A of a vector space V we define its p → q,

“hypercontractive norm” as ‖A‖p→q = maxv∈V
‖Av‖q
‖v‖p . Hence we have

effectively shown that there is an efficient SOS certificate for the
hypercontractive norm bound, ‖P‖p→q ≤ 9d
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Hypercontractive norm bounds 2→ 4 hypercontractive norm of n−variate Fourier polynomials

Be wise. Generalize!

We can similarly define the projector P≥λ(G ) into the subspace of a
d−regular graph where adjacency eigenvectors are all atleast λ. Then
using very similar techniques as above we can show that,

Norm bound implies expansion!

For all ε, δ 0, ‖P≥λ(G )‖2→q ≤ ε

δ
(q−2)

2q

implies φ(|S | ≤ δ) ≥ 1− λ− ε2

But amazingly enough even the converse is true!

Expansion implies norm bound!

There are constants c1, c2 > 0 such that for all δ > 0,
Φ(|S | ≤ δ) > 1− c1( λ

2

2c2 )q implies ‖P‖2→q ≤ 2√
δ

But this is a much longer proof to present right now..
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