$x \in \mathbb{R} \Longrightarrow x^{2} \geq 0$

Anirbit

UIUC

$2^{\text {nd }}$ April 2014

It remains a fundamental challenge in mathematics to determine as to what makes a certain (combinatorial) decision question intractable and what makes it tractable.

It remains a fundamental challenge in mathematics to determine as to what makes a certain (combinatorial) decision question intractable and what makes it tractable. Despite all the progress with complexity classes, we do not understand what exactly determines tractability.

It remains a fundamental challenge in mathematics to determine as to what makes a certain (combinatorial) decision question intractable and what makes it tractable. Despite all the progress with complexity classes, we do not understand what exactly determines tractability.

But over the last few years this amazing new pattern has been observed that almost all tractable questions seem to have what is being called an efficient certificate in the "Sum-Of-Squares" proof system.

It remains a fundamental challenge in mathematics to determine as to what makes a certain (combinatorial) decision question intractable and what makes it tractable. Despite all the progress with complexity classes, we do not understand what exactly determines tractability.

But over the last few years this amazing new pattern has been observed that almost all tractable questions seem to have what is being called an efficient certificate in the "Sum-Of-Squares" proof system.

The story goes back to 1900 when Hilbert in his " $17^{\text {th }}$ problem" had asked if every positive semi-definite multivariable polynomial over reals can be written as a sum of squares of real rational polynomials.

The story goes back to 1900 when Hilbert in his " $17^{\text {th }}$ problem" had asked if every positive semi-definite multivariable polynomial over reals can be written as a sum of squares of real rational polynomials. This was proven in 1927 by Artin.

The story goes back to 1900 when Hilbert in his " $17^{\text {th }}$ problem" had asked if every positive semi-definite multivariable polynomial over reals can be written as a sum of squares of real rational polynomials. This was proven in 1927 by Artin. But only in 1967 did Motzkin find a non-negative polynomial over reals which is not a sum of squares of real polynomials, namely, $x^{4} y^{2}+x^{2} y^{4}+z^{6}-3 x^{2} y^{2} z^{2}$.

But how does this help the cause of NP-Hard questions?

It so happens that a large (most?) number of NP-Hard questions can be formulated as a polynomial optimization questions!

For example, asking if the MaxCut of a graph is upper bounded by a constant c is equivalent to asking the following question,

For $f(x)=\sum_{(i j) \in E} \frac{\left(x_{i}-x_{j}\right)^{2}}{4}$, is $c-f(x) \geq 0$ over $x \in\{1,-1\}^{|V|}$?

It so happens that a large (most?) number of NP-Hard questions can be formulated as a polynomial optimization questions!

For example, asking if the MaxCut of a graph is upper bounded by a constant c is equivalent to asking the following question,

For $f(x)=\sum_{(i j) \in E} \frac{\left(x_{i}-x_{j}\right)^{2}}{4}$, is $c-f(x) \geq 0$ over $x \in\{1,-1\}^{|V|}$?

For $c=\frac{1}{2}\left(|E|-\lambda_{\min }\left(A_{G}\right) \frac{|V|}{4}\right)$ one can indeed write $c-f(x)$ as a sum of squares of polynomials, each linear in x.

It so happens that a large (most?) number of NP-Hard questions can be formulated as a polynomial optimization questions!

For example, asking if the MaxCut of a graph is upper bounded by a constant c is equivalent to asking the following question,

For $f(x)=\sum_{(i j) \in E} \frac{\left(x_{i}-x_{j}\right)^{2}}{4}$, is $c-f(x) \geq 0$ over $x \in\{1,-1\}^{|V|}$?

For $c=\frac{1}{2}\left(|E|-\lambda_{\min }\left(A_{G}\right) \frac{|V|}{4}\right)$ one can indeed write $c-f(x)$ as a sum of squares of polynomials, each linear in x. Hence this would be said to give a degree-2 SOS certficate for the optimization question.

Definitions

- If one can write a $f \geq 0$ function over reals as $f=\sum_{i}^{k} g_{i}^{2}$ for polynomials g_{i} over reals such that $\operatorname{deg}\left(g_{i}\right) \leq \frac{d}{2}$ then one is said to have found a degree-d sum of squares certificate for the non-negativity of f.

Definitions

- If one can write a $f \geq 0$ function over reals as $f=\sum_{i}^{k} g_{i}^{2}$ for polynomials g_{i} over reals such that $\operatorname{deg}\left(g_{i}\right) \leq \frac{d}{2}$ then one is said to have found a degree-d sum of squares certificate for the non-negativity of f.
- The "SOS degree" of a positive semidefinite function is the minimum d for which one can find a degree d SOS certification for it.

Hope and despair

Two famous theorems which justify the search for such certificates are, What one can find...

- If the "SOS degree" of a $f \geq 0$ is less than equal to d then f can be written as a sum of squares of $n^{O(d)}$ polynomials

Hope and despair

Two famous theorems which justify the search for such certificates are, What one can find...

- If the "SOS degree" of a $f \geq 0$ is less than equal to d then f can be written as a sum of squares of $n^{O(d)}$ polynomials
- (Shor-Parillo-Lasserre) If the SOS degree of f is atmost d then one can find a degree d SOS certificate for $f+2^{-\operatorname{poly}(n)}$ in time $n^{O(d)}$.

Hope and despair

Two famous theorems which justify the search for such certificates are, What one can find...

- If the "SOS degree" of a $f \geq 0$ is less than equal to d then f can be written as a sum of squares of $n^{O(d)}$ polynomials
- (Shor-Parillo-Lasserre) If the SOS degree of f is atmost d then one can find a degree d SOS certificate for $f+2^{-p o l y(n)}$ in time $n^{O(d)}$.

Unique Games Conjecture

In light of this, we can go back to the original MaxCut example to say that, what the "Unique Games Conjecture" implies is that there exists a graph G such that $\forall \epsilon>0, \operatorname{Max} \operatorname{Cut}(G)-(0.878+\epsilon) f(x)$ is a non-neative function with a SOS degree $\geq n^{\Omega(1)}$ (and hence can't be certified in polynomial time)

Hope and despair

Two famous theorems which justify the search for such certificates are, What one can find...

- If the "SOS degree" of a $f \geq 0$ is less than equal to d then f can be written as a sum of squares of $n^{O(d)}$ polynomials
- (Shor-Parillo-Lasserre) If the SOS degree of f is atmost d then one can find a degree d SOS certificate for $f+2^{-p o l y(n)}$ in time $n^{O(d)}$.

Unique Games Conjecture

In light of this, we can go back to the original MaxCut example to say that, what the "Unique Games Conjecture" implies is that there exists a graph G such that $\forall \epsilon>0, \operatorname{Max} \operatorname{Cut}(G)-(0.878+\epsilon) f(x)$ is a non-neative function with a SOS degree $\geq n^{\Omega(1)}$ (and hence can't be certified in polynomial time)

SSEH \Longrightarrow UGC

The original formulation of the "Small Set Expansion Hypothesis" (SSEH) states that, (analogously to the Unique Games Conjecture),

SSEH

For every $\epsilon>0$ there exists $\delta>0$ so that it is NP-hard to distinguish between,

SSEH \Longrightarrow UGC

The original formulation of the "Small Set Expansion Hypothesis" (SSEH) states that, (analogously to the Unique Games Conjecture),

SSEH

For every $\epsilon>0$ there exists $\delta>0$ so that it is NP-hard to distinguish between,

- "YES" instance: There exists a $S \subseteq V$ s.t $\mu(S)=|S| /|V| \leq \delta$ such that it has "expansion" $=\phi(S)=\frac{E(S, \bar{S})}{d|S|}<\epsilon$.

SSEH \Longrightarrow UGC

The original formulation of the "Small Set Expansion Hypothesis" (SSEH) states that, (analogously to the Unique Games Conjecture),

SSEH

For every $\epsilon>0$ there exists $\delta>0$ so that it is NP-hard to distinguish between,

- "YES" instance: There exists a $S \subseteq V$ s.t $\mu(S)=|S| /|V| \leq \delta$ such that it has "expansion" $=\phi(S)=\frac{E(S, \bar{S})}{d|S|}<\epsilon$.
- "NO" instance : Every such δ measure set has expansion at least $1-\epsilon$

SSEH \Longrightarrow UGC

The original formulation of the "Small Set Expansion Hypothesis" (SSEH) states that, (analogously to the Unique Games Conjecture),

SSEH

For every $\epsilon>0$ there exists $\delta>0$ so that it is NP-hard to distinguish between,

- "YES" instance: There exists a $S \subseteq V$ s.t $\mu(S)=|S| /|V| \leq \delta$ such that it has "expansion" $=\phi(S)=\frac{E(S, \bar{S})}{d|S|}<\epsilon$.
- "NO" instance : Every such δ measure set has expansion at least $1-\epsilon$

Famously in 2010, Raghavendra, Steurer and Tulsiani have shown a polynomial reduction from SSEH to UGC

SSEH \Longrightarrow UGC

The original formulation of the "Small Set Expansion Hypothesis" (SSEH) states that, (analogously to the Unique Games Conjecture),

SSEH

For every $\epsilon>0$ there exists $\delta>0$ so that it is NP-hard to distinguish between,

- "YES" instance: There exists a $S \subseteq V$ s.t $\mu(S)=|S| /|V| \leq \delta$ such that it has "expansion" $=\phi(S)=\frac{E(S, \bar{S})}{d|S|}<\epsilon$.
- "NO" instance : Every such δ measure set has expansion at least $1-\epsilon$

Famously in 2010, Raghavendra, Steurer and Tulsiani have shown a polynomial reduction from SSEH to UGC (proving the converse would be a breakthrough!)

SSEH \Longrightarrow UGC

The original formulation of the "Small Set Expansion Hypothesis" (SSEH) states that, (analogously to the Unique Games Conjecture),

SSEH

For every $\epsilon>0$ there exists $\delta>0$ so that it is NP-hard to distinguish between,

- "YES" instance: There exists a $S \subseteq V$ s.t $\mu(S)=|S| /|V| \leq \delta$ such that it has "expansion" $=\phi(S)=\frac{E(S, \bar{S})}{d|S|}<\epsilon$.
- "NO" instance : Every such δ measure set has expansion at least $1-\epsilon$

Famously in 2010, Raghavendra, Steurer and Tulsiani have shown a polynomial reduction from SSEH to UGC (proving the converse would be a breakthrough!) So we now focus on SOS methods to certify small set expansion properties!

Bounded hypercontractivity \Longrightarrow expansion guarantees

We would like to call a d-regular graph $G=(V, E)$ a "small-set expander" if for any subset $S \subseteq V$ such that $\mu(S) \leq \delta$ it would imply that $\phi(S) \geq(1-\delta) d$.

Bounded hypercontractivity \Longrightarrow expansion guarantees

We would like to call a d-regular graph $G=(V, E)$ a "small-set expander" if for any subset $S \subseteq V$ such that $\mu(S) \leq \delta$ it would imply that $\phi(S) \geq(1-\delta) d$. Informally the big idea we want to prove is, Barak-Brandao-Harrow-Kelner-Steurer-Zhou (2012)
For every even $q>2$ a graph G is a small-set expander if and only if for every vector w in the large adjacency eigenvalue spaces of G it holds that $\mathbb{E}_{i} w_{i}^{q} \leq O\left(\left(\mathbb{E}_{i} w_{i}^{2}\right)^{\frac{q}{2}}\right)$

Bounded hypercontractivity \Longrightarrow expansion guarantees

We would like to call a d-regular graph $G=(V, E)$ a "small-set expander" if for any subset $S \subseteq V$ such that $\mu(S) \leq \delta$ it would imply that $\phi(S) \geq(1-\delta) d$. Informally the big idea we want to prove is,

Barak-Brandao-Harrow-Kelner-Steurer-Zhou (2012)

For every even $q>2$ a graph G is a small-set expander if and only if for every vector w in the large adjacency eigenvalue spaces of G it holds that $\mathbb{E}_{i} w_{i}^{q} \leq O\left(\left(\mathbb{E}_{i} w_{i}^{2}\right)^{\frac{q}{2}}\right)$

The idea being that over $x \in\{0,1\}^{|V|}$,
$\phi(S)=\frac{n E(S, \bar{S})}{d \min \{|S|,|\bar{S}|\}}=\frac{\left\langle x,\left(L=I-\frac{A}{d}\right) x\right\rangle_{l_{2}}}{\|x\|_{l_{2}}^{2}}$ for $|S| \leq \frac{n}{2}$.

Bounded hypercontractivity \Longrightarrow expansion guarantees

We would like to call a d-regular graph $G=(V, E)$ a "small-set expander" if for any subset $S \subseteq V$ such that $\mu(S) \leq \delta$ it would imply that $\phi(S) \geq(1-\delta) d$. Informally the big idea we want to prove is,

Barak-Brandao-Harrow-Kelner-Steurer-Zhou (2012)

For every even $q>2$ a graph G is a small-set expander if and only if for every vector w in the large adjacency eigenvalue spaces of G it holds that $\mathbb{E}_{i} w_{i}^{q} \leq O\left(\left(\mathbb{E}_{i} w_{i}^{2}\right)^{\frac{q}{2}}\right)$

The idea being that over $x \in\{0,1\}^{|V|}$, $\phi(S)=\frac{n E(S, \bar{S})}{d \min \{|S|,|\bar{S}|\}}=\frac{\left\langle x,\left(L=I-\frac{A}{d}\right) x\right\rangle_{l_{2}}}{\|x\|_{l_{2}}^{2}}$ for $|S| \leq \frac{n}{2}$. Which basically means that if one wants a expanding sets i.e large $\phi(S)$ then their characteristic vectors shouldn't be close to low eigenspaces of the Laplacian.

Bounded hypercontractivity \Longrightarrow expansion guarantees

Towards the big goal we prove the following first step,

Bounded hypercontractivity \Longrightarrow expansion guarantees

Towards the big goal we prove the following first step,

2-4 bounded hypercontractivity \Longrightarrow expansion guarantee For any eigenvalue $\lambda \in(0,1)$ of $L=I-\frac{A}{d}$, let W be the $\operatorname{span}\left\{v_{i} \mid L v_{i}=(\leq \lambda) v_{i}\right\}$. If every $w \in W$ satisfies $\left.\mathbb{E}_{i} w_{i}^{4} \leq C\left(\mathbb{E}_{i} w_{i}^{2}\right)^{2}\right)$ then for all $S \subseteq V$ s.t $\mu(S) \leq \delta$ we have $\phi(S) \geq \lambda(1-\sqrt{C \delta})$

Bounded hypercontractivity \Longrightarrow expansion guarantees

Towards the big goal we prove the following first step,

2-4 bounded hypercontractivity \Longrightarrow expansion guarantee For any eigenvalue $\lambda \in(0,1)$ of $L=I-\frac{A}{d}$, let W be the $\operatorname{span}\left\{v_{i} \mid L v_{i}=(\leq \lambda) v_{i}\right\}$. If every $w \in W$ satisfies $\left.\mathbb{E}_{i} w_{i}^{4} \leq C\left(\mathbb{E}_{i} w_{i}^{2}\right)^{2}\right)$ then for all $S \subseteq V$ s.t $\mu(S) \leq \delta$ we have $\phi(S) \geq \lambda(1-\sqrt{C \delta})$

The above implies that if w is the characteristic vector of the set S then $\mu \geq \frac{1}{C}$. So for a "small set" is one with $\delta<\frac{1}{C}$ and hence it has expansion at least $\lambda-o(1)$

Introduction to expectation norms

We shall often be using the "expectation norm" or the " L_{p} - norm of a random variable" X which is to be defined as, $\|X\|_{p}=\left(\mathbb{E}\left[|X|^{p}\right]\right)^{1 / p}$ for $p \geq 1$. This comes with its associated "expectation inner-product" defined as $|<f, g>|=\mathbb{E}[f g]$.

Introduction to expectation norms

We shall often be using the "expectation norm" or the " L_{p} - norm of a random variable" X which is to be defined as, $\|X\|_{p}=\left(\mathbb{E}\left[|X|^{p}\right]\right)^{1 / p}$ for $p \geq 1$. This comes with its associated "expectation inner-product" defined as $|<f, g>|=\mathbb{E}[f g]$.

This satisfies three famous inequalities given as,

Introduction to expectation norms

We shall often be using the "expectation norm" or the " L_{p} - norm of a random variable" X which is to be defined as, $\|X\|_{p}=\left(\mathbb{E}\left[|X|^{p}\right]\right)^{1 / p}$ for $p \geq 1$. This comes with its associated "expectation inner-product" defined as $|<f, g>|=\mathbb{E}[f g]$.

This satisfies three famous inequalities given as,
(1) For $1<p, q<\infty$ satisfying the constraint $1 / p+1 / q=1$ and for X, Y random variables such that $\mathbb{E}\left[|X|^{p}\right], \mathbb{E}\left[|X|^{q}\right]<\infty$ we have,

$$
|\mathbb{E}[X Y]| \leq \mathbb{E}[|X Y|] \leq\|X\|_{p}\|Y\|_{q}
$$

Introduction to expectation norms

We shall often be using the "expectation norm" or the " L_{p} - norm of a random variable" X which is to be defined as, $\|X\|_{p}=\left(\mathbb{E}\left[|X|^{p}\right]\right)^{1 / p}$ for $p \geq 1$. This comes with its associated "expectation inner-product" defined as $|<f, g>|=\mathbb{E}[f g]$.

This satisfies three famous inequalities given as,
(1) For $1<p, q<\infty$ satisfying the constraint $1 / p+1 / q=1$ and for X, Y random variables such that $\mathbb{E}\left[|X|^{p}\right], \mathbb{E}\left[|X|^{q}\right]<\infty$ we have,

$$
|\mathbb{E}[X Y]| \leq \mathbb{E}[|X Y|] \leq\|X\|_{p}\|Y\|_{q}
$$

(2) $\|X\|_{q}=\max _{\|Y\|_{q /(q-1)} \leq 1}|\langle X, Y\rangle|$

Bounded hypercontractivity \Longrightarrow expansion guarantee

 So for $\mu(S)=\delta \leq \frac{1}{2}$, over $x \in\{0,1\}^{|V|}$ we have,$$
\begin{gathered}
\phi(S)=\frac{n E(S, \bar{S})}{d \min \{|S|,|\bar{S}|\}}=\frac{\left\langle x,\left(L=I-\frac{A}{d}\right) x\right\rangle_{12}}{\|x\|_{L_{2}}^{2}} \\
\Longrightarrow \phi(S)=\frac{\langle x, L x\rangle}{\|x\|_{2}^{2}=\delta}
\end{gathered}
$$

Bounded hypercontractivity \Longrightarrow expansion guarantee

So for $\mu(S)=\delta \leq \frac{1}{2}$, over $x \in\{0,1\}^{|V|}$ we have,

$$
\begin{gathered}
\phi(S)=\frac{n E(S, \bar{S})}{d \min \{|S|,|\bar{S}|\}}=\frac{\left\langle x,\left(L=I-\frac{A}{d}\right) x\right\rangle_{l_{2}}}{\|x\|_{l_{2}}^{2}} \\
\Longrightarrow \phi(S)=\frac{\langle x, L x\rangle}{\|x\|_{2}^{2}=\delta}
\end{gathered}
$$

We decompose $x=x^{\prime}+x^{\prime \prime}$ where $x^{\prime} \in W$ and $x^{\prime \prime} \in W^{\perp}$ and then we have the following inequality by using orthogonality and Holder's inequality (with $p=4$ as defined in the previous slide),

$$
\left\|x^{\prime}\right\|_{2}^{2}=\left\langle x^{\prime}, x^{\prime}\right\rangle=\left\langle x^{\prime}, x\right\rangle \leq\left\|x^{\prime}\right\|_{4}\|x\|_{\frac{4}{3}}
$$

Bounded hypercontractivity \Longrightarrow expansion guarantee

So for $\mu(S)=\delta \leq \frac{1}{2}$, over $x \in\{0,1\}^{|V|}$ we have,

$$
\begin{gathered}
\phi(S)=\frac{n E(S, \bar{S})}{d \min \{|S|,|\bar{S}|\}}=\frac{\left\langle x,\left(L=I-\frac{A}{d}\right) x\right\rangle_{l_{2}}}{\|x\|_{l_{2}}^{2}} \\
\Longrightarrow \phi(S)=\frac{\langle x, L x\rangle}{\|x\|_{2}^{2}=\delta}
\end{gathered}
$$

We decompose $x=x^{\prime}+x^{\prime \prime}$ where $x^{\prime} \in W$ and $x^{\prime \prime} \in W^{\perp}$ and then we have the following inequality by using orthogonality and Holder's inequality (with $p=4$ as defined in the previous slide),

$$
\left\|x^{\prime}\right\|_{2}^{2}=\left\langle x^{\prime}, x^{\prime}\right\rangle=\left\langle x^{\prime}, x\right\rangle \leq\left\|x^{\prime}\right\|_{4}\|x\|_{\frac{4}{3}}
$$

But we know by our hypercontractivity hypothesis about W that, $\left\|x^{\prime}\right\|_{4} \leq C^{\frac{1}{4}}\left\|x^{\prime}\right\|_{\frac{4}{3}}$.

Bounded hypercontractivity \Longrightarrow expansion guarantee

So for $\mu(S)=\delta \leq \frac{1}{2}$, over $x \in\{0,1\}^{|V|}$ we have,

$$
\begin{gathered}
\phi(S)=\frac{n E(S, \bar{S})}{d \min \{|S|,|\bar{S}|\}}=\frac{\left\langle x,\left(L=I-\frac{A}{d}\right) x\right\rangle_{l_{2}}}{\|x\|_{l_{2}}^{2}} \\
\Longrightarrow \phi(S)=\frac{\langle x, L x\rangle}{\|x\|_{2}^{2}=\delta}
\end{gathered}
$$

We decompose $x=x^{\prime}+x^{\prime \prime}$ where $x^{\prime} \in W$ and $x^{\prime \prime} \in W^{\perp}$ and then we have the following inequality by using orthogonality and Holder's inequality (with $p=4$ as defined in the previous slide),

$$
\left\|x^{\prime}\right\|_{2}^{2}=\left\langle x^{\prime}, x^{\prime}\right\rangle=\left\langle x^{\prime}, x\right\rangle \leq\left\|x^{\prime}\right\|_{4}\|x\|_{\frac{4}{3}}
$$

But we know by our hypercontractivity hypothesis about W that, $\left\|x^{\prime}\right\|_{4} \leq C^{\frac{1}{4}}\left\|x^{\prime}\right\|_{\frac{4}{3}}$. Hence we have,

$$
\left\|x^{\prime}\right\|_{2} \leq C^{\frac{1}{4}}\|x\|_{\frac{4}{3}}=C^{\frac{1}{4}} \delta^{\frac{3}{4}}
$$

Bounded hypercontractivity \Longrightarrow expansion guarantee

So for $\mu(S)=\delta \leq \frac{1}{2}$, over $x \in\{0,1\}^{|V|}$ we have,

$$
\begin{gathered}
\phi(S)=\frac{n E(S, \bar{S})}{d \min \{|S|,|\bar{S}|\}}=\frac{\left\langle x,\left(L=I-\frac{A}{d}\right) x\right\rangle_{l_{2}}}{\|x\|_{l_{2}}^{2}} \\
\Longrightarrow \phi(S)=\frac{\langle x, L x\rangle}{\|x\|_{2}^{2}=\delta}
\end{gathered}
$$

We decompose $x=x^{\prime}+x^{\prime \prime}$ where $x^{\prime} \in W$ and $x^{\prime \prime} \in W^{\perp}$ and then we have the following inequality by using orthogonality and Holder's inequality (with $p=4$ as defined in the previous slide),

$$
\left\|x^{\prime}\right\|_{2}^{2}=\left\langle x^{\prime}, x^{\prime}\right\rangle=\left\langle x^{\prime}, x\right\rangle \leq\left\|x^{\prime}\right\|_{4}\|x\|_{\frac{4}{3}}
$$

But we know by our hypercontractivity hypothesis about W that, $\left\|x^{\prime}\right\|_{4} \leq C^{\frac{1}{4}}\left\|x^{\prime}\right\|_{\frac{4}{3}}$. Hence we have,

$$
\left\|x^{\prime}\right\|_{2} \leq C^{\frac{1}{4}}\|x\|_{\frac{4}{3}}=C^{\frac{1}{4}} \delta^{\frac{3}{4}}
$$

Bounded hypercontractivity \Longrightarrow expansion guarantee

Further,

$$
\langle x, L x\rangle=\sum_{i} \lambda_{i}\left\langle x, v_{i}\right\rangle^{2} \geq \lambda\left\|x^{\prime \prime}\right\|_{2}^{2}=\lambda\left(\|x\|_{2}^{2}-\left\|x^{\prime}\right\|_{2}^{2}\right) \geq \lambda\left(\delta-C^{\frac{1}{2}} \delta^{\frac{3}{2}}\right)
$$

Bounded hypercontractivity \Longrightarrow expansion guarantee

Further,

$$
\langle x, L x\rangle=\sum_{i} \lambda_{i}\left\langle x, v_{i}\right\rangle^{2} \geq \lambda\left\|x^{\prime \prime}\right\|_{2}^{2}=\lambda\left(\|x\|_{2}^{2}-\left\|x^{\prime}\right\|_{2}^{2}\right) \geq \lambda\left(\delta-C^{\frac{1}{2}} \delta^{\frac{3}{2}}\right)
$$

So substituting in the definition of ϕ we have,

Bounded hypercontractivity \Longrightarrow expansion guarantee

Further,

$$
\langle x, L x\rangle=\sum_{i} \lambda_{i}\left\langle x, v_{i}\right\rangle^{2} \geq \lambda\left\|x^{\prime \prime}\right\|_{2}^{2}=\lambda\left(\|x\|_{2}^{2}-\left\|x^{\prime}\right\|_{2}^{2}\right) \geq \lambda\left(\delta-C^{\frac{1}{2}} \delta^{\frac{3}{2}}\right)
$$

So substituting in the definition of ϕ we have,

$$
\phi(S) \geq \lambda(1-\sqrt{C \delta})
$$

Bounded hypercontractivity \Longrightarrow expansion guarantee

Further,

$$
\langle x, L x\rangle=\sum_{i} \lambda_{i}\left\langle x, v_{i}\right\rangle^{2} \geq \lambda\left\|x^{\prime \prime}\right\|_{2}^{2}=\lambda\left(\|x\|_{2}^{2}-\left\|x^{\prime}\right\|_{2}^{2}\right) \geq \lambda\left(\delta-C^{\frac{1}{2}} \delta^{\frac{3}{2}}\right)
$$

So substituting in the definition of ϕ we have,

$$
\phi(S) \geq \lambda(1-\sqrt{C \delta})
$$

But why is this expansion guarantee from the hypercontractivity assumption helpful?

Bounded hypercontractivity \Longrightarrow expansion guarantee

Further,

$$
\langle x, L x\rangle=\sum_{i} \lambda_{i}\left\langle x, v_{i}\right\rangle^{2} \geq \lambda\left\|x^{\prime \prime}\right\|_{2}^{2}=\lambda\left(\|x\|_{2}^{2}-\left\|x^{\prime}\right\|_{2}^{2}\right) \geq \lambda\left(\delta-C^{\frac{1}{2}} \delta^{\frac{3}{2}}\right)
$$

So substituting in the definition of ϕ we have,

$$
\phi(S) \geq \lambda(1-\sqrt{C \delta})
$$

But why is this expansion guarantee from the hypercontractivity assumption helpful? That is because in the important case of the Boolean hypercube this condition is easy to check!

For the Boolean hypercube $\{ \pm\}^{n}$ one can write the eigenvectors as the functions, $\left\{\chi_{S}\right\}_{S \subseteq[n]}$. And these functions χ_{S} are defined on the vertices $x \in\{ \pm 1\}^{n}$ as $\chi_{s}(x)=\prod_{i \in S} x_{i}$. And the eigenvalue of χ_{s} is $|S| / n$.

For the Boolean hypercube $\{ \pm\}^{n}$ one can write the eigenvectors as the functions, $\left\{\chi_{S}\right\}_{S \subseteq[n]}$. And these functions χ_{S} are defined on the vertices $x \in\{ \pm 1\}^{n}$ as $\chi_{S}(x)=\prod_{i \in S} x_{i}$. And the eigenvalue of χ_{s} is $|S| / n$.

Hence for any λ the subspace spanned by the eigenvectors of eigenvalue at most λ are is the subspace of $\left\{f:\{ \pm 1\}^{n} \rightarrow \mathbb{R}\right\}$ which are spanned by $\chi_{S}(x)=\prod_{i \in S} x_{i}$ such that $\operatorname{deg}\left(\chi_{S}\right)=|S| \leq \lambda n$.

This motivates the definition of the "k-junta" polynomials.

With a view towards later use we define the projector to low-degree polynomials. We will efectively showing that this projector has a bounded hypercontractive norm.

With a view towards later use we define the projector to low-degree polynomials. We will efectively showing that this projector has a bounded hypercontractive norm. We start off defining the projector \mathcal{P}_{d} as the map,

$$
\begin{gathered}
\mathcal{P}_{d}:\left(\{ \pm\}^{n} \rightarrow \mathbb{R}\right) \rightarrow\left(\{ \pm\}^{n} \rightarrow \mathbb{R}\right) \\
f=\sum_{\alpha \subseteq[n]} \hat{f}_{\alpha} \chi_{\alpha} \rightarrow f^{\prime}=\sum_{|\alpha| \leq d} \hat{f}_{\alpha} \chi_{\alpha}
\end{gathered}
$$

With a view towards later use we define the projector to low-degree polynomials. We will efectively showing that this projector has a bounded hypercontractive norm. We start off defining the projector \mathcal{P}_{d} as the map,

$$
\begin{gathered}
\mathcal{P}_{d}:\left(\{ \pm\}^{n} \rightarrow \mathbb{R}\right) \rightarrow\left(\{ \pm\}^{n} \rightarrow \mathbb{R}\right) \\
f=\sum_{\alpha \subseteq[n]} \hat{f}_{\alpha} \chi_{\alpha} \rightarrow f^{\prime}=\sum_{|\alpha| \leq d} \hat{f}_{\alpha} \chi_{\alpha}
\end{gathered}
$$

Where $\chi_{\alpha}=\prod_{i \in \alpha} \chi_{i}$

With a view towards later use we define the projector to low-degree polynomials. We will efectively showing that this projector has a bounded hypercontractive norm. We start off defining the projector \mathcal{P}_{d} as the map,

$$
\begin{gathered}
\mathcal{P}_{d}:\left(\{ \pm\}^{n} \rightarrow \mathbb{R}\right) \rightarrow\left(\{ \pm\}^{n} \rightarrow \mathbb{R}\right) \\
f=\sum_{\alpha \subseteq[n]} \hat{f}_{\alpha} \chi_{\alpha} \rightarrow f^{\prime}=\sum_{|\alpha| \leq d} \hat{f}_{\alpha} \chi_{\alpha}
\end{gathered}
$$

Where $\chi_{\alpha}=\prod_{i \in \alpha} \chi_{i}$
A " n-variate Fourier polynomial" with degree at most d is a function $f:\{ \pm\}^{n} \rightarrow \mathbb{R}$ of the form, $f=\sum_{\alpha \subseteq[n],|\alpha| \leq d} \hat{f}_{\alpha} \chi_{\alpha}$

Theorem
Over the space of n-variate Fourier polynomials f with degree at most d, $\mathbb{E}\left[f^{4}\right] \leq 9^{d}\left(\mathbb{E}\left[f^{2}\right]\right)^{2}$

Theorem
Over the space of n-variate Fourier polynomials f with degree at most d, $\mathbb{E}\left[f^{4}\right] \leq 9^{d}\left(\mathbb{E}\left[f^{2}\right]\right)^{2}$

The modern SOS version of this proof is inspired by a proof by Ryan O'Donnel in 2007. This proof is kind of the simplest example of how to lift proofs about functions over reals into proofs about the "fictitios random variables".

Theorem
Over the space of n-variate Fourier polynomials f with degree at most d, $\mathbb{E}\left[f^{4}\right] \leq 9^{d}\left(\mathbb{E}\left[f^{2}\right]\right)^{2}$

The modern SOS version of this proof is inspired by a proof by Ryan O'Donnel in 2007. This proof is kind of the simplest example of how to lift proofs about functions over reals into proofs about the "fictitios random variables". We will actually prove a stronger theorem as in,

Theorem
If f and g are n-variate Fourier polynomials with degrees atmost d and e then it holds that, $\mathbb{E}\left[f^{2} g^{2}\right] \leq 9^{\frac{d+e}{2}}\left(\mathbb{E}\left[f^{2}\right]\right)\left(\mathbb{E}\left[g^{2}\right]\right)$

Proof

Case 1

If one of the polynomials is a constant i.e d or $e=0$ then it trivially follows from the implied independence that $\mathbb{E}\left[f^{2} g^{2}\right]=\mathbb{E}\left(f^{2}\right) \mathbb{E}\left(g^{2}\right)$

Proof

Case 1

If one of the polynomials is a constant i.e d or $e=0$ then it trivially follows from the implied independence that $\mathbb{E}\left[f^{2} g^{2}\right]=\mathbb{E}\left(f^{2}\right) \mathbb{E}\left(g^{2}\right)$

Case 2

Let $f_{0}, f_{1}, g_{0}, g_{1}$ be Fourier polynomials depending on $x_{1}, x_{2}, . ., x_{n-1}$ s.t $f=f_{0}+x_{n} f_{1}$ and $g=g_{0}+x_{n} g_{1}$. Now we prove by induction by assuming that the inequality is true for all polynomials over $\left\{x_{0}, x_{1}, . ., x_{n-1}\right\}$

So rearranging the RHS (using $\mathbb{E}\left[x_{n}^{\text {odd }}\right]=0$) we have,

$$
\begin{gathered}
\mathbb{E}\left[f^{2} g^{2}\right]=\mathbb{E}\left[\left(f_{0}+x_{n} f_{1}\right)\left(g_{0}+x_{n} g_{1}\right)\right]= \\
\mathbb{E}\left[\left(f_{0}^{2} g_{0}^{2}+f_{1}^{2} g_{1}^{2}+f_{0}^{2} g_{1}^{2}+f_{1}^{2} g_{0}^{2}+4 f_{0} f_{1} g_{0} g_{1}\right)\right]
\end{gathered}
$$

Proof

Case 1

If one of the polynomials is a constant i.e d or $e=0$ then it trivially follows from the implied independence that $\mathbb{E}\left[f^{2} g^{2}\right]=\mathbb{E}\left(f^{2}\right) \mathbb{E}\left(g^{2}\right)$

Case 2

Let $f_{0}, f_{1}, g_{0}, g_{1}$ be Fourier polynomials depending on $x_{1}, x_{2}, . ., x_{n-1}$ s.t $f=f_{0}+x_{n} f_{1}$ and $g=g_{0}+x_{n} g_{1}$. Now we prove by induction by assuming that the inequality is true for all polynomials over $\left\{x_{0}, x_{1}, . ., x_{n-1}\right\}$

So rearranging the RHS (using $\mathbb{E}\left[x_{n}^{\text {odd }}\right]=0$) we have,

$$
\begin{gathered}
\mathbb{E}\left[f^{2} g^{2}\right]=\mathbb{E}\left[\left(f_{0}+x_{n} f_{1}\right)\left(g_{0}+x_{n} g_{1}\right)\right]= \\
\mathbb{E}\left[\left(f_{0}^{2} g_{0}^{2}+f_{1}^{2} g_{1}^{2}+f_{0}^{2} g_{1}^{2}+f_{1}^{2} g_{0}^{2}+4 f_{0} f_{1} g_{0} g_{1}\right)\right]
\end{gathered}
$$

Proof

We have the positivity identity that,

$$
2 \mathbb{E}\left[\left(f_{0} f_{1}-g_{0} g_{1}\right)^{2}\right] \geq 0 \Longrightarrow 2 \mathbb{E}\left[f_{0}^{2} g_{1}^{2}+f_{1}^{2} g_{0}^{2}\right] \geq 4 \mathbb{E}\left[f_{0} f_{1} g_{0} g_{1}\right]
$$

Proof

We have the positivity identity that,

$$
2 \mathbb{E}\left[\left(f_{0} f_{1}-g_{0} g_{1}\right)^{2}\right] \geq 0 \Longrightarrow 2 \mathbb{E}\left[f_{0}^{2} g_{1}^{2}+f_{1}^{2} g_{0}^{2}\right] \geq 4 \mathbb{E}\left[f_{0} f_{1} g_{0} g_{1}\right]
$$

Substituting this in the last equation and invoking the inductive hypothesis for the $f_{0}, g_{0}, f_{1}, g_{1}$ we have,

Proof

We have the positivity identity that,

$$
2 \mathbb{E}\left[\left(f_{0} f_{1}-g_{0} g_{1}\right)^{2}\right] \geq 0 \Longrightarrow 2 \mathbb{E}\left[f_{0}^{2} g_{1}^{2}+f_{1}^{2} g_{0}^{2}\right] \geq 4 \mathbb{E}\left[f_{0} f_{1} g_{0} g_{1}\right]
$$

Substituting this in the last equation and invoking the inductive hypothesis for the $f_{0}, g_{0}, f_{1}, g_{1}$ we have,

$$
\mathbb{E}\left[f^{2} g^{2}\right] \leq 9^{\frac{d+e}{2}}\left(\mathbb{E}\left[f_{0}^{2}\right]+\mathbb{E}\left[f_{1}^{2}\right]\right)\left(\mathbb{E}\left[g_{0}^{2}\right]+\mathbb{E}\left[g_{1}^{2}\right]\right)
$$

Proof

We have the positivity identity that,

$$
2 \mathbb{E}\left[\left(f_{0} f_{1}-g_{0} g_{1}\right)^{2}\right] \geq 0 \Longrightarrow 2 \mathbb{E}\left[f_{0}^{2} g_{1}^{2}+f_{1}^{2} g_{0}^{2}\right] \geq 4 \mathbb{E}\left[f_{0} f_{1} g_{0} g_{1}\right]
$$

Substituting this in the last equation and invoking the inductive hypothesis for the $f_{0}, g_{0}, f_{1}, g_{1}$ we have,

$$
\begin{gathered}
\mathbb{E}\left[f^{2} g^{2}\right] \leq 9^{\frac{d+e}{2}}\left(\mathbb{E}\left[f_{0}^{2}\right]+\mathbb{E}\left[f_{1}^{2}\right]\right)\left(\mathbb{E}\left[g_{0}^{2}\right]+\mathbb{E}\left[g_{1}^{2}\right]\right) \\
\Longrightarrow \mathbb{E}\left[f^{2} g^{2}\right] \leq 9^{d+e} 2 \mathbb{E}\left[f^{2}\right] \mathbb{E}\left[g^{2}\right]
\end{gathered}
$$

Proof

We have the positivity identity that,

$$
2 \mathbb{E}\left[\left(f_{0} f_{1}-g_{0} g_{1}\right)^{2}\right] \geq 0 \Longrightarrow 2 \mathbb{E}\left[f_{0}^{2} g_{1}^{2}+f_{1}^{2} g_{0}^{2}\right] \geq 4 \mathbb{E}\left[f_{0} f_{1} g_{0} g_{1}\right]
$$

Substituting this in the last equation and invoking the inductive hypothesis for the $f_{0}, g_{0}, f_{1}, g_{1}$ we have,

$$
\begin{gathered}
\mathbb{E}\left[f^{2} g^{2}\right] \leq 9^{\frac{d+e}{2}}\left(\mathbb{E}\left[f_{0}^{2}\right]+\mathbb{E}\left[f_{1}^{2}\right]\right)\left(\mathbb{E}\left[g_{0}^{2}\right]+\mathbb{E}\left[g_{1}^{2}\right]\right) \\
\Longrightarrow \mathbb{E}\left[f^{2} g^{2}\right] \leq 9^{d+e} 2 \mathbb{E}\left[f^{2}\right] \mathbb{E}\left[g^{2}\right]
\end{gathered}
$$

The moral of the story is..

Hence we have shown that,

The moral of the story is..

Hence we have shown that,
The Boolean hypercube is a small-set expander.

The moral of the story is..

Hence we have shown that,
The Boolean hypercube is a small-set expander.
(1) Colloquially one would say that this is a degree-4 SOS proof since we needed to assume the positivity of expectation of a degree 4 polynomial i.e $\left(f_{0} f_{1}-g_{0} g_{1}\right)^{2}$ as a polynomial over the "Fourier coefficients" \hat{f}_{α}.

The moral of the story is..

Hence we have shown that,
The Boolean hypercube is a small-set expander.
(1) Colloquially one would say that this is a degree-4 SOS proof since we needed to assume the positivity of expectation of a degree 4 polynomial i.e $\left(f_{0} f_{1}-g_{0} g_{1}\right)^{2}$ as a polynomial over the "Fourier coefficients" \hat{f}_{α}.
(2) This is a degree-2 SOS certificate since the positive quantity $\mathbb{E}\left[f^{2} g^{2}\right]-9^{\frac{d+e}{2}} \mathbb{E}\left[f^{2}\right] \mathbb{E}\left[g^{2}\right]$ is shown to be a sum over squares of a quadratic polynomial over the Fourier coefficients.

The moral of the story is..

Hence we have shown that,
The Boolean hypercube is a small-set expander.
(1) Colloquially one would say that this is a degree-4 SOS proof since we needed to assume the positivity of expectation of a degree 4 polynomial i.e $\left(f_{0} f_{1}-g_{0} g_{1}\right)^{2}$ as a polynomial over the "Fourier coefficients" \hat{f}_{α}.
(2) This is a degree-2 SOS certificate since the positive quantity $\mathbb{E}\left[f^{2} g^{2}\right]-9^{\frac{d+e}{2}} \mathbb{E}\left[f^{2}\right] \mathbb{E}\left[g^{2}\right]$ is shown to be a sum over squares of a quadratic polynomial over the Fourier coefficients.
(3) For an automorphism A of a vector space V we define its $p \rightarrow q$, "hypercontractive norm" as $\|A\|_{p \rightarrow q}=\max _{\mathrm{v} \in \mathrm{V}} \frac{\|A v\|_{q}}{\|v\|_{p}}$. Hence we have effectively shown that there is an efficient SOS certificate for the hypercontractive norm bound, $\|\mathcal{P}\|_{p \rightarrow q} \leq 9^{d}$

Be wise. Generalize!

We can similarly define the projector $\mathcal{P}_{\geq \lambda}(G)$ into the subspace of a d-regular graph where adjacency eigenvectors are all atleast λ. Then using very similar techniques as above we can show that,

Be wise. Generalize!

We can similarly define the projector $\mathcal{P}_{\geq \lambda}(G)$ into the subspace of a d-regular graph where adjacency eigenvectors are all atleast λ. Then using very similar techniques as above we can show that,

Norm bound implies expansion!
For all $\epsilon, \delta 0,\left\|\mathcal{P}_{\geq \lambda}(G)\right\|_{2 \rightarrow q} \leq \frac{\epsilon}{\delta^{\frac{(q-2)}{2 q}}}$ implies $\phi(|S| \leq \delta) \geq 1-\lambda-\epsilon^{2}$

Be wise. Generalize!

We can similarly define the projector $\mathcal{P}_{\geq \lambda}(G)$ into the subspace of a d-regular graph where adjacency eigenvectors are all atleast λ. Then using very similar techniques as above we can show that,

Norm bound implies expansion!
For all $\epsilon, \delta 0,\left\|\mathcal{P}_{\geq \lambda}(G)\right\|_{2 \rightarrow q} \leq \frac{\epsilon}{\delta^{\frac{(q-2)}{2 q}}}$ implies $\phi(|S| \leq \delta) \geq 1-\lambda-\epsilon^{2}$
But amazingly enough even the converse is true!

Be wise. Generalize!

We can similarly define the projector $\mathcal{P}_{\geq \lambda}(G)$ into the subspace of a d-regular graph where adjacency eigenvectors are all atleast λ. Then using very similar techniques as above we can show that,

Norm bound implies expansion!
For all $\epsilon, \delta 0,\left\|\mathcal{P}_{\geq \lambda}(G)\right\|_{2 \rightarrow q} \leq \frac{\epsilon}{\delta^{\frac{(q-2)}{2 q}}}$ implies $\phi(|S| \leq \delta) \geq 1-\lambda-\epsilon^{2}$
But amazingly enough even the converse is true!
Expansion implies norm bound!
There are constants $c_{1}, c_{2}>0$ such that for all $\delta>0$, $\Phi(|S| \leq \delta)>1-c_{1}\left(\frac{\lambda^{2}}{2^{c}}\right)^{q}$ implies $\|\mathcal{P}\|_{2 \rightarrow q} \leq \frac{2}{\sqrt{\delta}}$

But this is a much longer proof to present right now..

