CS 598: Spectral Graph Theory. Lecture 12

A construction of Expanders

Alexandra Kolla
Today

- Deterministic construction of expanders
- Start from small graph, what to do next?
- Squaring the graph
- Replacement product
- A construction of $1/10$-expanders.
Operations on a Graph

- We saw last time that we can start from a small good expander (can find one easily), perform some operation and get a bigger expander. Few ways to do it:
 - Lifts (in two weeks)
 - Squaring
 - Replacement Products
 - Combinations of the above
Attempt 1: Squaring a Graph

- We can improve the expansion of a graph by squaring it.
- So we could start from large non-expanding graph and get expander perhaps? 😊

Definition: We define the square of a graph G^2 to be a the graph with adjacency matrix $A_{G^2} = A_G^2 - dI_n$

- G^2 has an edge between (u,v) if (u,v) are connected with path of length two. Remove self-loops.
- If graph has no 4-cycles, then $A_G^2(u,v) = 1$ for such two nodes.
Theorem:
Let G be a d-regular graph with Laplacian eigenvalues $\lambda_1, \ldots, \lambda_n$. Then, G^2 is a $d(d-1)$ regular graph with Laplacian eigenvalues $2d\lambda_i - \lambda_i^2$. In particular, the largest eigenvalue is at most d^2.

- If G is ϵ-expander, then ratio of eigenvalues to degree is $(1 \pm \epsilon)$.
- Squaring the graph, we get ratio of eigenvalues to degree $(1 \pm \epsilon^2)$, so it is an ϵ^2-expander.
Squaring a Weak Expander

- By previous theorem we can see that if a graph is a weak expander in the sense $\lambda_2 = \delta d$, where $\delta \ll 1$, then the expansion almost doubles by squaring.

- The degree also squares –not so useful 😞
Attempt 2: Line Graph

- Line graph H of G has a vertex per edge of G, where two are connected if they share an endpoint in G.
- G d-regular has $nd/2$ edges, so H has that many vertices.
- H has degree $2(d-1)$
- If we consider one vertex u of G, then all the d edges (u,v) will be connected in H: They form a d-clique!
- Every u belongs to two d-cliques.
Spectrum of Line Graph

- **Theorem.**

Let G be a d-regular graph with n vertices and H be the line graph. Then the spectrum of the Laplacian of H is the same as the spectrum of the Laplacian of G, except that it has \(\frac{nd}{2} - n \) extra eigenvalues equal to $2d$.
Attempt 2: Line Graph

- Line graph is bigger than G, and degree is only a factor of two bigger, so we are in better shape, but still need to keep degree down 😞

- Measure the quality of expansion with spectral ratio: \(r(G) = \min \left(\frac{\lambda_2}{d}, \frac{2d - \lambda_n}{d} \right) \)
 - If G is a-expander then \(r(G) > 1 - a \).
 - The closer to 1 (bigger) \(r(G) \) is, the better the expansion.
Spectrum of Line Graph

- **Theorem.**

Let G be a d-regular graph for $d > 5$ and let H be its line graph. Then

$$r(H) = \frac{\lambda_2(G)}{2(d - 1)} \geq \frac{r(G)}{2}$$
Plan of Attack

- We see that line graph has half the spectral radius of G. But also has more vertices.
- Plan is to build an infinite family of d-regular graphs with spectral ratio bounded below by some absolute constant b:
 - Begin with small expander.
 - Take the line graph (Increase size)
 - Replace the cliques with expanders (decrease degree).
 - Square (improve expansion).
 - Repeat.
Approximation of Line Graph

- In order to increase degree, we approximate line graph.
- We know how to approximate cliques with expanders.
- Let’s replace every d-clique in the line graph of G with an expander Z of d nodes and degree z call this new graph G_{OLZ}.
Approximation of Line Graph

• **Theorem.** Let G be a d-regular graph. Let H be the line graph of G and let Z be a z-regular ϵ — expander. Then

$$ (1 - \epsilon) \frac{z}{d} H \preceq Go_L Z \preceq (1 + \epsilon) \frac{z}{d} H $$
Approximation of Line Graph

- Corrolary.

\[r(G_{o_L}Z) \geq \frac{(1-\epsilon)}{2} r(G) \]

- Now can we put all of those things together to get d-regular expanders?
Putting it Together

- Start from G_0 a d-regular graph, with spectral ratio $\beta = \frac{1}{5}$ (say). Also take Z to be a z-regular ϵ-expander on d nodes where $d = \left(2z(2z - 1)\right)^2 - 2z(2z - 1)$. Take $\epsilon = \frac{1}{6}$ (say).
- Goal is to create arbitrarily large d-regular graphs of same spectral ratio (or better).
Putting it Together

- Construct $G_{o_L}Z$. Degree is 2z, spectral radius about $\beta/2$. Need to increase spectral radius (need it to be bigger than β for every size graph), so square twice.
- Let $G_1 = ((G_{o_L}Z)^2)^2$
- Need Z of degree z and number of nodes $d = (2z(2z - 1))^2 - 2z(2z - 1)$ as taken.
- Repeat, and set $G_i = ((G_{i-1}o_LZ)^2)^2$