Today

- Why PRGs?
- The use of PRGs in randomized algorithms
- Introduce expander graphs
- Random walks on expanders and Impagliazzo-Zuckerman PRG
Expander Graphs

- We will study expanders a lot the next few weeks.
- Constant degree (regular typically), constant conductance.
- By Cheeger we saw that we can characterize expanders through eigenvalues.
- A family of graphs is expanding if for $i > 1$:
 \[|\lambda_i - d| \leq \epsilon d \text{ or } |\mu_i| \leq \epsilon d \]
Why Study PRGs?

- Pseudo-random number generators take a seed which is presumably random and generate a long string of random bits that are supposed to act random.
- Why would we want a PRG?
 - Random bits are scarce (e.g., low-order bits of temperature of the processor in a computer is random, but not too many such random bits). Randomized algorithms often need many random bits.
 - Re-run an algorithm for debugging, convenient to use same set of random bits. Can only do that by re-running the PRG with the same seed, but not with truly random bits.
Why Study PRGs?

- Standard PRGs are terrible (e.g. rand in C). Often produce bits that behave much differently than truly random bits.

- One can use cryptography to produce such bits, but much slower
Repeating an Experiment

• Consider wanting to run the same randomized algorithm many times.
• Let A be the algorithm, which returns “yes”/“no” and is correct 99% of the time (correctness function of the random bits)
• Boost accuracy by running A t times and taking majority vote
• Use truly random bits the first time we run A and then with the PRG we will see that every new time we only need 9 random bits.
• If we run t times, probability that majority answer is wrong is exponential in t.
The Random Walk Generator

- Let \(r \) be the number of bits out algorithm needs for each run: space of random bits is \(\{0,1\}^r \)
- Let \(X \subseteq \{0,1\}^r \) be the settings of random bits on which algorithm gives wrong answer for specific input.
- Let \(Y = \{0,1\}^r \setminus X \) be the settings on which algorithm gives the correct answer.
The Random Walk Generator: Expander Graphs

- Our PRG will use a random walk on a d-regular G with vertex set \{0,1\}^r, and degree d = constant.

- We want G to be an expander in the following sense: If \(A_G\) is G’s adjacency matrix and \(d = \alpha_1 > \alpha_2 \geq \cdots \geq \alpha_n\) its eigenvalues then we require that
 \[
 \frac{|\alpha_i|}{d} \leq \frac{1}{10}
 \]

Such graphs exist with d=400 (next weeks)
The Random Walk Generator

- For the first run of algorithm, we require r truly random bits. Treat those bits as vertex of expander G.
- For each successive run, we choose a random neighbor of the present vertex and feed the corresponding bits to our algorithm.
- I.e, choose random i between 1 and 400 and move to the i-th neighbor of present vertex. Need $\log(400) \sim 9$ random bits.
- Need concise description, don’t want to store the whole graph (e.g. see hypercube)
The Random Walk Generator

$G \quad \nu_0 \in \{0,1\}^r$

$t=0$
The Random Walk Generator

\[G \]

\[v_1 \in N(v_0) \quad t=1 \]
The Random Walk Generator

\[G \]

\[v_2 \in N(v_1) \]
The Random Walk Generator

\[G \]

\[v_3 \in N(v_2) \]

\[t=3 \]
The Random Walk Generator
Assume we will run the algorithm \(t+1 \) times. Start with truly random vertex \(u \) and take \(t \) random walk steps.

Recall that \(X \) is the set of vertices on which the algorithm is not correct, we assume that \(|X| \leq \frac{2^r}{100} \) (algorithm correct 99% of time)

If at the end, we report the majority of the \(t+1 \) runs of algorithm, then we will return the correct answer as along as the random walk is inside \(X \) less than half the time.
We will show that
\[\Pr[|S| > \frac{t}{2}] \leq \left(\frac{2}{\sqrt{5}}\right)^{t+1} \]

T={0,...,t} time steps
S={i: \nu_i \in X}
Formalizing the Problem

- Initial distribution is uniform (start with truly random string): $p_0 = 1/n$
- Let χ_X and χ_Y the characteristic vectors of X and Y.
- Let $D_X = diag(X)$ and $D_Y = diag(Y)$
- Let $W = \frac{1}{d}A$ (not lazy) random walk matrix, with eigenvalues $\omega_1, \ldots, \omega_n$ such that $\omega_i \leq \frac{1}{10}$ by the expansion requirement.
- Want to show $\Pr[|S| > t/2] \leq \left(\frac{2}{\sqrt{5}}\right)^{t+1}$
The Probability to be in X

- Fix a set $R \subseteq \{0, \ldots, t\}$ of time steps.
- The probability that the walk is in X exactly during the steps in R is
 $$\Pr[W \text{ walk in } X \text{ exactly for } i \in R] = \langle 1, D_{Z_t}W \ldots WD_{Z_0}p_0 \rangle$$
- Where $Z_i = X$ if $i \in R$ and Y otherwise
- Show that this probability is $\left(\frac{1}{5}\right)^{|R|}$.
- $\Pr[|S| > t/2] \leq \left(\frac{2}{\sqrt{5}}\right)^{t+1}$ follows.
The Proof

- **Claim.**
 \[
 \Pr[W \text{ walk in } X \text{ exactly for } i \in R] = \langle 1, D_{Z_t}W \ldots WD_{Z_0}p_0 \rangle = \left(\frac{1}{5}\right)^{|R|}
 \]

- **Lemma.**
 \[
 \|D_XW\| \leq 1/5.
 \]