CS 598 RM : Algorithmic game theory Lecture 1

Two-player games

For any two-player game, we have the following basic notation.

Table 1: Basic notation

	Player 1 (P_1)	Player 2 (P_2)
Set of actions	S_1	S_2
Action	$i \in S_1$	$j \in S_2$
Payoff/gain	A_{ij}	B_{ij}

When the two players choose actions i, j respectively, their payoffs are A_{ij}, B_{ij} respectively. These can be conveniently represented as two matrices A, B each of size $m \times n$, where $m = |S_1|$ and $n = |S_2|$, as follows:

$$\begin{bmatrix} (A_{11},B_{11}) & j & n \\ & \ddots & & & \\ & & \ddots & & \\ i & \vdots & (A_{ij},B_{ij}) & & \\ \vdots & & & \ddots & \\ m & & & & & & & \\ (A_{mn},B_{mn}) \end{bmatrix}$$

Due to this representation, these games are also called Bi-matrix games.

Example: Matching pennies

Both the players have two actions each given by, $S_1 = S_2 = \{Heads, Tails\}$. P_1 aims to match the outcomes, while P_2 does not. The following payoffs capture this situation:

In this game, no pair of actions is *stable*. In such a case, the players can randomize. We formalize this next.

More notation and fundamentals

The randomization between possible actions, is achieved by what is called a mixed strategy. We denote the set of mixed strategies for P_1 and P_2 , by Δ_1 and Δ_2 respectively, given by,

$$\Delta_1 = \{ x = (x_1, x_2, \dots, x_{|S_1|}) \mid x_i \ge 0 \ \forall i \in S_1, \text{ and } \sum_{i \in S_1} x_i = 1 \}$$
 and
$$\Delta_2 = \{ y = (y_1, y_2, \dots, y_{|S_2|}) \mid y_j \ge 0 \ \forall j \in S_2, \text{ and } \sum_{j \in S_2} y_j = 1 \}$$

When the two players play strategies $x \in \Delta_1$ and $y \in \Delta_2$ respectively, the expected payoff of P_1 is given by $\sum_{\substack{i \in S_1 \ j \in S_2}} A_{ij} x_i y_j = x^T A y$, and similarly, that of P_2 is $x^T B y$. Thus, P_1 tries to

maximize $x^T A y$, and P_2 tries to maximize $x^T B y$.

Definition (Nash equilibrium). A strategy profile (x', y') is a Nash Equilibrium (NE) iff

$$x' \in \underset{x \in \Delta_1}{\operatorname{argmax}} x^T A y'$$
 and $y' \in \underset{y \in \Delta_2}{\operatorname{argmax}} x'^T B y$

Having defined the NE, one would like to answer the following questions:

- How to check if a given strategy profile is a NE?
- Does a NE exist in a given game? In every game?
- How to compute a NE?

Theorem (Nash '51). Every *n*-player game has a NE $(n \in \mathbb{N})$.

Characterization of NE

Fix y for P_2 . Then, P_1 gets a payoff of $(Ay)_i$ from action $i \in S_1$. Thus, the maximum possible from any action is $\max_{i \in S_1} (Ay)_i = (\text{say}) v$. Hence, playing x gives P_1 a payoff of

$$x^{T}Ay = \sum_{i \in S_{1}} x_{i}(Ay)_{i} = \text{convex combination of } (Ay)_{i}\text{'s}$$

$$\therefore \quad x^{T}Ay \leq v \quad \& \quad x^{T}Ay = v \text{ iff } (\forall i \in S_{1}, (x_{i} > 0 \Rightarrow (Ay)_{i} = v))$$

A similar analysis works for P_2 as well. Fixing P_1 's strategy to x, P_2 gets a payoff of $(x^T B)_j$ from action $j \in S_2$. Letting $w = \max_{j \in S_2} (x^T B)_j$, we can deduce,

$$\forall y \in \Delta_2, \ x^T B y \leq w \quad \& \quad x^T B y = w \text{ iff } (\forall j \in S_2, (y_j > 0 \Rightarrow (x^T B)_j = w))$$

We summarize this analysis as the following theorem characterizing Nash Equilibria:

Theorem 1. (x, y) is a NE iff

$$\forall i \in S_1: x_i > 0 \Rightarrow (Ay)_i = v$$
 and $\forall j \in S_2: y_j > 0 \Rightarrow (x^T B)_j = w$

where,

$$v = \max_{i \in S_1} (Ay)_i$$
 & $w = \max_{j \in S_2} (x^T B)_j$

This theorem allows us to easily check if a strategy profile is NE.

Zero-sum games

In these games, we have,

$$B_{ij} = -A_{ij} \ \forall i \in S_1, \forall j \in S_2, \text{ i.e., simply } B = -A$$

Hence, these games are described by just one matrix A. P_1 tries to maximize its payoff, and thus, maximize x^TAy . Similarly, P_2 tries to maximize $x^T(-A)y$, and thus, minimize x^TAy . Hence, P_1 is called the maximizer and P_2 is called the minimizer.

Minimax play in zero-sum games

Suppose both the players play pessimistically. To elaborate, P_1 assumes that P_2 can find out its strategy x, ahead of time and play y accordingly to achieve its goal of minimization of $x^T A y$. P_2 has a similar approach in choosing its strategy. Suppose they decide x^*, y^* as their strategies respectively, by playing pessimistically as described. Then, it must mean,

$$x^* \in \underset{x \in \Delta_1}{\operatorname{argmax}} \left(\min_{y \in \Delta_2} x^T A y \right) \quad \& \quad y^* \in \underset{y \in \Delta_2}{\operatorname{argmin}} \left(\max_{x \in \Delta_1} x^T A y \right)$$

Now, let π_1 denote P_1 's guaranteed payoff, that is, the minimum worst-case payoff it can ensure - precisely as demonstrated in the pessimistic approach mentioned above. That is,

$$\pi_1 = \max_{x \in \Delta_1} \left(\min_{y \in \Delta_2} x^T A y \right) \tag{1}$$

$$= \min_{y \in \Delta_2} x^{*T} A y \tag{2}$$

Similarly, let π_2 be P_2 's guaranteed payoff, that is,

$$\pi_2 = \min_{y \in \Delta_2} \left(\max_{x \in \Delta_1} x^T A y \right) \tag{3}$$

$$= \max_{x \in \Delta_1} x^T A y^* \tag{4}$$

We now show a remarkable result.

Theorem 2. For x^*, y^*, π_1, π_2 as defined above, the following hold.

- 1. $\pi_1 = \pi_2 = x^{*T}Ay^*$
- 2. If (x', y') is a NE, then, $x'^{T}Ay' = x^{*T}Ay^{*}$
- 3. (x^*, y^*) is a NE.

Proof. Using the definition of π_1 as in (2), it follows that, $\pi_1 \leq x^{*T}Ay^*$. Similarly, using the definition of π_2 in (4), it follows that, $\pi_2 \geq x^{*T}Ay^*$. Combining the two, we get,

$$\pi_1 \le x^{*T} A y^* \le \pi_2 \tag{5}$$

Further, for a NE (x', y'), by definition of NE, we have,

$$x'^{T}Ay' = \max_{x \in \Delta_{1}} x^{T}Ay'$$
 (6) $x'^{T}Ay' = \min_{y \in \Delta_{2}} x'^{T}Ay$ (7)

From (7) and (1), we get, $\pi_1 \ge x'^T A y'$. Similarly, from (6) and (3), we get, $\pi_2 \le x'^T A y'$. Combining the two, we get,

$$\pi_2 \le x'^T A y' \le \pi_1 \tag{8}$$

(5) and (8) together prove the first two parts of the theorem.

Having proven $\pi_2 = x^{*T}Ay^*$, and again from the definition of π_2 in (2), it follows that $x^* \in \underset{x \in \Delta_1}{\operatorname{argmax}} x^TAy^*$. Similarly, we can get $y^* \in \underset{y \in \Delta_2}{\operatorname{argmin}} x^{*T}Ay$. Hence, (x^*, y^*) is a NE by definition, proving part 3 of the theorem.

Linear Programming Formulation (in zero-sum games)

Suppose the players are playing to optimize their worst-case payoffs as in the previous section. From P_2 's perspective, fixing its strategy to $y \in \Delta_2$, P_1 's best payoff is $\max_{i \in S_1} (Ay)_i = (\text{say}) \ v^y$. Hence, to minimize this, P_2 wants to solve for $\min_{y \in \Delta_2} v^y$ - equivalently, this linear program LP:

$$\min v$$

s.t.
$$v \ge (Ay)_i \quad \forall i \in S_1,$$
 (1)

$$\sum_{j \in S_2} y_j = 1,\tag{2}$$

$$y_j \ge 0 \quad \forall j \in S_2 \tag{3}$$

The constraints in (2) and (3) ensure that $y \in \Delta_2$.

Letting the dual variables corresponding to the inequalities in (1) be x_i 's and the dual variable corresponding to (2) be w, the dual DLP of the linear program above, can be written as,

$$\max u$$

s.t.
$$w \le (x^T A)_i \quad \forall j \in S_2,$$
 (4)

$$\sum_{i \in S_1} x_i = 1,\tag{5}$$

$$x_i \ge 0 \quad \forall i \in S_1 \tag{6}$$

Then, it's easy to see that DLP is equivalent to solving for $\max_{x \in \Delta_1} w^x$, where, $w^x = \min_{j \in S_2} (x^T A)_j$, and the constraints in (5) and (6) ensure that $x \in \Delta_1$. Thus, this is precisely what P_1 wants to do to maximize its worst-case payoff.

Consequently, we have the following theorem:

Theorem 3. The solution of LP gives y^* , and that of DLP gives x^* .

Further, the following follow from the properties of the linear programming solutions:

- The set of Nash Equilibria of a zero-sum game are convex.
- Computing an equilibrium can be done in polynomial time.