CS 598 RM : Algorithmic game theory
Lecture 1

Two-player games

For any two-player game, we have the following basic notation.

Table 1: Basic notation

Player 1 (Py) | Player 2 (P)
Set of actions S1 So
Action 1€ 5 ] €S,
Payoff/gain A;j B;;

When the two players choose actions i, j respectively, their payoffs are A;;, B;; respectively.
These can be conveniently represented as two matrices A, B each of size m X n, where
m = |S1| and n = |Sy|, as follows:

1 7 n

1 _(AlhBll) 7

i ; (Aij, Bij)

m (Amn7 an) .

Due to this representation, these games are also called Bi-matrix games.

Example : Matching pennies

Both the players have two actions each given by, S; = Sy = {Heads, Tails}. P; aims to
match the outcomes, while P, does not. The following payoffs capture this situation:

H T
T <_17 1) (17 _1)
In this game, no pair of actions is stable. In such a case, the players can randomize. We
formalize this next.



More notation and fundamentals

The randomization between possible actions, is achieved by what is called a mixed strategy.
We denote the set of mixed strategies for P; and P, by A; and Ay respectively, given by,

Ay ={z = (x1,22,...,78,) | &; > 0 Vi€ Sl,andzgci =1} and,

€S,

A2:{y:(y17y27"'7y|52|) ‘ Y zovj eSQaandZyj :1}

JES2
When the two players play strategies x € A; and y € A, respectively, the expected payoft
of Py is given by > Ayz;y; = 27 Ay, and similarly, that of P is 27 By. Thus, Py tries to

i€S1
JES2

maximize 27 Ay, and P, tries to maximize 27 By.

Definition (Nash equilibrium). A strategy profile (2, 4') is a Nash Equilibrium (NE) iff

2’ € argmax z’ Ay and y' € argmaxa’” By
rEA1 yEAg

Having defined the NE, one would like to answer the following questions:
e How to check if a given strategy profile is a NE?
e Does a NE exist in a given game? In every game?

e How to compute a NE?

Theorem (Nash ’51). Every n-player game has a NE (n € N).

Characterization of NE

Fix y for P,. Then, P, gets a payoff of (Ay); from action ¢ € S;. Thus, the maximum
possible from any action is m%X(Ay),» = (say) v. Hence, playing x gives P; a payoff of
1€01

v Ay = Z x;(Ay); = convex combination of (Ay);’s
i€S1

TAy<v & 2TAy=vwiff (Vi€ Sy, (z; > 0= (Ay); =v))

A similar analysis works for P, as well. Fixing P;’s strategy to x, P» gets a payoff of (z” B);
from action j € S,. Letting w = masx(a:TB)j, we can deduce,
JES2
Vye Ny, 2" By<w & 2"By=wiff (Vj € Sy, (y; > 0= (2" B); = w))

We summarize this analysis as the following theorem characterizing Nash Equilibria:



Theorem 1. (z,y) is a NE iff

VieS: x;>0= (Ay); =v and,
Vi€ Sy: y;>0= (z"B); =w
where,

= Ay);, & = TRB)y.
v =max (Ay) w =max (2" B);

This theorem allows us to easily check if a strategy profile is NE.

Zero-sum games

In these games, we have,
Bij = —A;; Vi € 81,Vj € Sy, Le., simply B =—A

Hence, these games are described by just one matrix A. P; tries to maximize its payoff, and
thus, maximize x7 Ay. Similarly, P, tries to maximize 7 (—A)y, and thus, minimize 7 Ay.
Hence, P; is called the maximizer and P, is called the minimizer.

Minimax play in zero-sum games

Suppose both the players play pessimistically. To elaborate, P, assumes that P, can find
out its strategy x, ahead of time and play y accordingly to achieve its goal of minimization
of T Ay. P, has a similar approach in choosing its strategy. Suppose they decide x*,y* as
their strategies respectively, by playing pessimistically as described. Then, it must mean,

x* € argmax (min a:TAy> & y" € argmin (max a:TAy)

zEA yEA yGAQ €A,

Now, let m; denote P;’s guaranteed payoff, that is, the minimum worst-case payoff it can
ensure - precisely as demonstrated in the pessimistic approach mentioned above. That is,
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Similarly, let my be Py’s guaranteed payoff, that is,

: T
= A 3
v = i (") )
T *
= A 4
e A W

We now show a remarkable result.



Theorem 2. For z*, y*, m, 7 as defined above, the following hold.
1. m =7 = 2*T Ay*
2. If («/,y) is a NE, then, 2T Ay = 2T Ay
3. (z*,y*) is a NE.

Proof. Using the definition of 7, as in (2), it follows that, 7, < z*7 Ay*.
Similarly, using the definition of 75 in (4), it follows that, my > 2*7 Ay*.
Combining the two, we get,
m <Ayt <m (5)

Further, for a NE (2/,4), by definition of NE, we have,

T4 T A/ 1T 4 7 . /T
Ay = A 6 Ay’ = A 7
2" Ay’ = maxa” Ay (6) 2 Ay’ = min 2" Ay (7)

From (7) and (1), we get, m > a'" Ay/.
Similarly, from (6) and (3), we get, my < /7 Ay/.
Combining the two, we get,
m <l Ay <m (8)

(5) and (8) together prove the first two parts of the theorem.

Having proven m, = 2*7 Ay*, and again from the definition of m in (2), it follows that

r* € argmaxx” Ay+. Similarly, we can get y* € argminz*? Ay. Hence, (z*,y*) is a NE by
TEA] yEA2
definition, proving part 3 of the theorem. O

Linear Programming Formulation (in zero-sum games)

Suppose the players are playing to optimize their worst-case payoffs as in the previous section.
From P5’s perspective, fixing its strategy to y € Ao, P;’s best payoff is max (Ay); = (say) vY.
1E0]

Hence, to minimize this, P, wants to solve for min v¥ - equivalently, this linear program LP:

yEA2
min v
st. v>(Ay); Vi€ S, (1)
Z Yy; = 1a (2)
JES2
Y; >0 VJ - SQ (3)



The constraints in (2) and (3) ensure that y € As.
Letting the dual variables corresponding to the inequalities in (1) be x;’s and the dual variable
corresponding to (2) be w, the dual DLP of the linear program above, can be written as,

max w

st. w<(zTA); VjeE S, (4)
1€S1

;>0 Yies, (6)

Then, it’s easy to see that DLP is equivalent to solving for max w®, where, w* = misn (T A);,
rEA1 JED2

and the constraints in (5) and (6) ensure that € A;. Thus, this is precisely what P, wants
to do to maximize its worst-case payoff.
Consequently, we have the following theorem:

Theorem 3. The solution of LP gives y*, and that of DLP gives x*.

Further, the following follow from the properties of the linear programming solutions:
e The set of Nash Equilibria of a zero-sum game are convex.

e Computing an equilibrium can be done in polynomial time.



