1. (5 points) Consider a two player game where pure-action sets of player one and two are respectively S_1 and S_2. Let $m = |S_1|$ and $n = |S_2|$. Then such a game can be represented by two $m \times n$ dimensional matrices (A, B). Here, player 1 plays $i \in S_1$ and 2 plays $j \in S_2$ then their respective payoffs are $A(i, j)$ and $B(i, j)$. Let Δ_1 and Δ_2 be the set of probability distributions over S_1 and S_2 respectively (sets of mixed-strategies of the players). Consider the following function $f : \Delta_1 \times \Delta_2 \rightarrow \Delta_1 \times \Delta_2$ defined by Nash, where $(x', y') = f(x, y)$:

$$
\forall i \in S_1 : \quad x'_i = \frac{x_i + \sigma_i(x, y)}{\sum_{k \in S_1} x_k + \sigma_k(x, y)} \quad \text{where} \quad \sigma_i(x, y) = \max\{0, (Ay)_i - x^T Ay\}
$$

$$
\forall j \in S_2 : \quad y'_j = \frac{y_j + \tau_j(x, y)}{\sum_{k \in S_2} y_k + \tau_k(x, y)} \quad \text{where} \quad \tau_j(x, y) = \max\{0, (x^T B)_j - x^T By\}
$$

Show that if (x, y) is a fixed-point of f, i.e., $x' = x$ and $y' = y$, then $\forall i \in S_1, \sigma_i(x, y) = 0$ and $\forall j \in S_2, \tau_j(x, y) = 0$, and in turn (x, y) is a Nash equilibrium of game (A, B).

Solution. Since (x, y) is a fixed point of f, we have,

$$
\forall i \in S_1 : \quad x_i = \frac{x_i + \sigma_i(x, y)}{\sum_{k \in S_1} x_k + \sigma_k(x, y)}
$$

Let $\sum_{k \in S_1} \sigma_k(x, y) = \alpha$. Note that $\alpha \geq 0$, since, $\sigma_k(x, y) \geq 0$ by definition for all k.

Then, using $\sum_{k \in S_1} x_k = 1$, we can write,

$$
\forall i \in S_1 : \quad x_i = \frac{x_i + \sigma_i(x, y)}{1 + \alpha}
$$

$$
\therefore \forall i \in S_1 : \quad \alpha x_i = \sigma_i(x, y) \tag{1}
$$

Now, we want to show that $\forall i \in S_1, \sigma_i(x, y) > 0$. For the sake of contradiction, suppose $\exists i \in S_1$ s.t. $\sigma_i(x, y) > 0$. Equivalently, $\alpha > 0$. Then, using (1), we have,

$$
\alpha x_i > 0 \iff \sigma_i(x, y) > 0
$$

$$
\iff (Ay)_i > x^T Ay \tag{2}
$$

The second equivalence follows from the definition of $\sigma_i(x, y)$. Let $P = \{i \mid x_i > 0\}$. Note that, $\sum_{i \in P} x_i = 1$. Using (2), we also have, $\forall i \in P, (Ay)_i > x^T Ay$. \tag{3}

Now,

$$
x^T Ay = \sum_{i \in S_1} x_i (Ay)_i
$$

$$
= \sum_{i \in P} x_i (Ay)_i + \sum_{i \in S_1 \setminus P} x_i (Ay)_i
$$
\[= \sum_{i \in P} x_i (Ay)_i + \sum_{i \in S_1 \setminus P} 0 (Ay)_i \]
\[= \sum_{i \in P} x_i (Ay)_i \]
\[> \sum_{i \in P} x_i (x^T Ay) \quad \text{(using (3))} \]
\[= (x^T Ay) \sum_{i \in P} x_i \]
\[= (x^T Ay) \]

Thus, we get a contradiction, as required. Hence,

\[
\forall i \in S_1 : \quad \sigma_i (x, y) = 0 \\
\Leftrightarrow \forall i \in S_1 : \quad (Ay)_i \leq x^T Ay \\
\Leftrightarrow x^T Ay \geq \max_{i \in S_1} (Ay)_i
\]

However, \(x^T Ay\) is simply a convex combination of \((Ay)_i\)'s, and so, can be at most \(\max_{i \in S_1} (Ay)_i\). Hence, we have,

\[x^T Ay = \max_{i \in S_1} (Ay)_i\]

A similar analysis for player 2 gives

\[x^T By = \max_{j \in S_2} (x^T B)_j\]

Hence, \((x, y)\) is a Nash Equilibrium by definition.
2. (5 points) Given the two player game \((A, B)\) of Problem 1 where \(A(i, j), B(i, j) > 0, \forall i \in S_1, \forall j \in S_2\), consider the symmetric game \((C, C^T)\) with the following \((m + n) \times (m + n)\)-dimensional block-matrix:

\[
C = \begin{bmatrix}
0 & A \\
B^T & 0
\end{bmatrix}
\]

Show that a symmetric Nash equilibrium of game \((C, C^T)\) gives a Nash equilibrium of game \((A, B)\). (That is, show that a symmetric equilibrium \((z, z)\) of the symmetric game, can be used to easily obtain an equilibrium \((x, y)\) of the game \((A, B)\).)

Solution. We know \((z, z)\) is a NE of the \((C, C^T)\) game. Clearly \(z\) is a \((m + n)\)-dimensional vector. Let \(z = x|y\) where,

\[
\forall i \leq m : \quad x_i = z_i, \quad \text{and} \quad \forall i \leq n : \quad y_j = z_{m+j}
\]

Then, we can write,

\[
Cz = \begin{bmatrix}
A y \\
B^T x
\end{bmatrix}
\]

(1)

Now, we first prove that \(x \neq 0\). For the sake of contradiction, suppose \(x = 0\).

Now, if \(y = 0\), then \(z = 0\), contradicting that \(z\) is a probability vector. So, \(y \neq 0\).

Therefore, \(\exists j \leq n\) s.t. \(y_j > 0\). Equivalently, for such \(j\),

\[
z_{m+j} > 0
\]

(2)

Now, since \(y \neq 0\), and given \(A > 0\), hence, \((Ay)_i > 0\) for all \(i \leq m\).

Consequently, using (1) we get, \(\max_{l \leq m+n} (Cz)_l > 0\). Further,

\[
(Cz)_{m+j} = (B^Tx)_{j} = 0
\]

\[
\therefore (Cz)_{m+j} < \max_{l \leq m+n} (Cz)_l
\]

(3)

(2) and (3) imply that \(\exists k\) s.t. \(z_k > 0\) \& \((Cz)_k < \max_{l \leq m+n} (Cz)_l\) which contradicts the Nash Equilibrium characterization for \((z, z)\).

Hence, this proves \(x \neq 0\). Similarly, we can show \(y \neq 0\).

Now, let \(\sum_{i \leq m} x_i = \alpha\) and \(\sum_{j \leq n} y_j = \beta\). Clearly, \(\alpha, \beta > 0\) since \(x, y \neq 0\).

Further, let \(x', y'\) be given by \(x'_i = x_i/\alpha \forall i \leq m\) and \(y'_j = y_j/\beta \forall j \leq n\). We now show that \((x', y')\) is a NE of the \((A, B)\) game.

Since \((z, z)\) is a NE of the \((C, C^T)\) game,

\[
\forall k \leq m + n : z_k > 0 \Rightarrow (Cz)_k = \max_{l \leq m+n} (Cz)_l \geq \max_{l \leq m} (Cz)_l
\]

(4)
However, by definition of max, \(\forall k \leq m : (Cz)_k \leq \max_{l \leq m} (Cz)_l \). Hence, using (4), we get,

\[
\forall k \leq m : z_k > 0 \Rightarrow (Cz)_k = \max_{l \leq m} (Cz)_l
\]

\[\therefore \quad \forall i \leq m : x_i > 0 \Rightarrow (Ay)_i = \max_{k \leq m} (Ay)_k\]

\[\therefore \quad \forall i \leq m : x_i/\alpha > 0 \Rightarrow (Ay)_i/\beta = \max_{k \leq m} (Ay)_k/\beta\]

\[\therefore \quad \forall i \leq m : x'_i > 0 \Rightarrow (Ay')_i = \max_{k \leq m} (Ay')_k\] \(5\)

Similarly, we can also show that

\[
\forall j \leq n : y'_j > 0 \Rightarrow (B^T x')_i = \max_{k \leq n} (B^T x')_k
\] \(6\)

With (5) and (6), and the fact that \(x', y' \) are valid probability vectors, we have proven that \((x', y') \) is a NE of the \((A, B) \) game.
3. (5 points) Show that if a mixed-strategy profile \((x, y)\) is a Nash equilibrium of game \((A, B)\), then matrix \(P\) where \(P_{ij} = x_i \cdot y_j\) is a correlated equilibrium (CE) of the game.

Solution. By definition, \(P\) is a CE if

\[
\forall i, i' \in S_1 : \sum_{j \in S_2} P_{ij} A_{ij} \geq \sum_{j \in S_2} P_{ij} A_{i'j}
\]

and,

\[
\forall j, j' \in S_2 : \sum_{i \in S_1} P_{ij} A_{ij} \geq \sum_{i \in S_1} P_{ij} A_{ij'}
\]

We first prove the first condition. Here, \(P\) is defined by \(P_{ij} = x_i y_j\) for all \(i, j\).

Let \(T = \{ i \mid x_i = 0 \}\). Consider 2 cases as follows:

- Consider all \(i \in T\). We have,

\[
\forall i \in T, \forall j \in S_2 : P_{ij} = x_i y_j = 0.
\]

\[\therefore \forall i \in T, \forall i' \in S_1 : \sum_{j \in S_2} P_{ij} A_{ij} = 0 \geq \sum_{j \in S_2} P_{ij} A_{i'j} \quad (1)\]

- Consider all \(i \in S_1 \setminus T\). By definition of \(T\), \(\forall i \in S_1 \setminus T\), \(x_i > 0\). But since \((x, y)\) is a NE of the game, we get,

\[
\forall i \in S_1 \setminus T : (Ay)_i = \max_{k \in S_1} (Ay)_k
\]

\[\therefore \forall i, i' \in S_1 \setminus T : (Ay)_i \geq (Ay)_{i'}
\]

\[
\iff \sum_{j \in S_2} A_{ij} y_j \geq \sum_{j \in S_2} A_{i'j} y_j
\]

\[
\iff x_i \sum_{j \in S_2} A_{ij} y_j \geq x_i \sum_{j \in S_2} A_{i'j} y_j
\]

\[
\iff \sum_{j \in S_2} A_{ij} (x_i y_j) \geq \sum_{j \in S_2} A_{i'j} (x_i y_j)
\]

\[
\iff \sum_{j \in S_2} A_{ij} P_{ij} \geq \sum_{j \in S_2} A_{i'j} P_{ij} \quad (2)
\]

Thus, (1) and (2) together prove the first condition of the CE. The proof for the second condition is similar.
There is a weaker notion than CE called coarse-correlated equilibrium (CCE). Here, the mediator announces the joint distribution matrix P, and asks each player to opt in or out before suggesting them any actions. If a player chooses to opt out, then it can play whatever it wants; on the other hand, if it chooses to opt in, then it has to play what the mediator suggests. In other words, unlike CE, a player can not get the suggestions and then choose to not play what is suggested. Matrix P is called CCE of a game (A, B) if no player wants to opt out IF everyone else is opting in.

(a) (5 points) Show that every correlated equilibrium is a coarse-correlated equilibrium.

(b) (5 points) Show that all the coarse-correlated equilibria of game (A, B) can be captured by a linear feasibility problem formulation.

Solution. By definition, if P is a CE, then for player 1, we have

$$\forall i, i' \in S_1 : \sum_{j \in S_2} P_{ij} A_{ij} \geq \sum_{j \in S_2} P_{ij} A_{i'j}$$

(1)

By definition, if P is a CCE, then if player 2 is opting in, then the expected payoff for player 1 by opting in is at least as much as the expected payoff by opting out - by opting for any action $i \in S_1$. Formally,

$$\forall i' \in S_1 : \sum_{i \in S_1} \sum_{j \in S_2} P_{ij} A_{ij} \geq \sum_{i \in S_1} \sum_{j \in S_2} P_{ij} A_{i'j}$$

(2)

Now, given that P is a CE, (1) holds for each $i \in S_1$. Hence, summing the inequality over all $i \in S_1$ precisely gives (2) as required. We can similarly prove the CCE condition for player 2 by using the CE condition for player 1. Hence, every CE is also a CCE.

Next, the Linear feasibility formulation for computing a CCE is given by

$$\forall i' \in S_1 : \sum_{i \in S_1} \sum_{j \in S_2} P_{ij} A_{ij} \geq \sum_{i \in S_1} \sum_{j \in S_2} P_{ij} A_{i'j}$$

(3)

$$\forall j' \in S_2 : \sum_{i \in S_1} \sum_{j \in S_2} P_{ij} A_{ij} \geq \sum_{i \in S_1} \sum_{j \in S_2} P_{ij} A_{ij'}$$

(4)

$$\forall i \in S_1, \forall j \in S_2 : P_{ij} \geq 0$$

(5)

$$\sum_{i \in S_1} \sum_{j \in S_2} P_{ij} = 1$$

(6)

This has mn variables P_{ij} which capture the distribution P used by the mediator. The constraints in (5) and (6) ensure that P is indeed a probability distribution. Constraints in (3) and (4) imply that P is a CCE by definition. It’s easy to verify that all the constraints are linear in the said variables.
5. (5 points) Problem 1.2 of the AGT book.

Solution. Let’s compute the probability that there is no pure NE. For any \(j \leq n \), let \(b_j \) be an action in \(S_1 \) which maximizes the payoff of \(p_1 \) when \(p_2 \) plays action \(j \), that is \(A_{b_j} = \max_i A_{ij} \). Since the entries of \(A \) are coming u.a.r. from \([0, 1]\) which is an infinite set, so \(b_j \) is unique with probability 1. Now, if \(j \) is not the action which maximizes \(p_1 \)'s payoff when \(p_2 \) plays \(b_j \), i.e. \(B_{b_j} = \max_k A_{b_j k} \), then there is no PNE corresponding to column \(j \). Let this event be represented by an indicator random variable \(X_j \) - which is 1 if there is no PNE corresponding to column \(j \), 0 otherwise. We want to compute the probability of \(X_j = 1 \) for all \(j \). It’s easy to see that \(X_j \) is a Bernoulli r.v. with \(\Pr(X_j = 1) = 1 - \frac{1}{n} \) (Since the maximum entry in row \(b_j \) of matrix \(B \) could be in any column with equal probability and we want it to not be in \(j \) for \(X_j = 1 \)). Consider two such indicator variables, \(X_i \) and \(X_j \). We can compute,

\[
E[X_i] = E[X_j] = 1 - \frac{1}{n}
\]

\[
Var(X_i) = Var(X_j) = \frac{1}{n} \left(1 - \frac{1}{n} \right)
\]

\[
E[X_i X_j] = Pr(X_i = 1, X_j = 1)
\]

\[
= Pr(b_i = b_j)Pr(X_i = 1, X_j = 1| b_i = b_j) + Pr(b_i \neq b_j)Pr(X_i = 1, X_j = 1| b_i \neq b_j)
\]

\[
= \frac{1}{n} \left(1 - \frac{2}{n} \right) + \left(1 - \frac{1}{n} \right) \left(1 - \frac{1}{n} \right)^2
\]

\[
= (1 - \frac{1}{n})^2 - \frac{1}{n^3}
\]

\[\therefore \text{cov}(X_i, X_j) = E[X_i X_j] - E[X_i]E[X_j]
\]

\[= -\frac{1}{n^3}
\]

\[\therefore \text{corr}(X_i, X_j) = \frac{\text{cov}(X_i, X_j)}{\sqrt{Var(X_i)Var(X_j)}}
\]

\[= \frac{-1}{n^2(1 - \frac{1}{n})}
\]

Thus \(\text{corr}(X_i, X_j) \to 0 \) as \(n \to \infty \). Hence, for a computation involving just the limiting case of \(n \to \infty \), the variables \(X_i, X_j \) can taken to be independent.

Finally, the game has no PNE if \(X_j = 1 \) \(\forall j \in S_2 \). Using the independence, this equals \(\prod_j Pr(X_j = 1) = (1 - \frac{1}{n})^n \), which approaches \(1/e \) as \(n \to \infty \).

Hence, the probability of the complement event that there is a PNE, is simply \(1 - 1/e \).