Underconstrained Signal Separation
Today’s lecture

• Underconstrained signal separation

• Single-channel signal separation
N-in / N-out separation

- Using ICA we can resolve N-sources by using N-sensors
N-in / N-out separation

- More sources create non-invertible mixing
 - A problem!

\[s(t) \xrightarrow{A} x(t) \xrightarrow{A^{-1}} \hat{s}(t) \]
Underconstrained separation

- When we have fewer sensors than sources

\[
\begin{bmatrix}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{bmatrix}
\begin{bmatrix}
s_1(t) \\
s_2(t) \\
s_3(t)
\end{bmatrix}
= \begin{bmatrix}
x_1(t) \\
x_2(t)
\end{bmatrix}
\]

- Ill-defined problem

\[
\begin{bmatrix}
w_{11} & w_{12} \\
w_{21} & w_{22} \\
w_{31} & w_{32}
\end{bmatrix}
\begin{bmatrix}
x_1(t) \\
x_2(t)
\end{bmatrix}
= \begin{bmatrix}
s_1(t) \\
s_2(t) \\
s_3(t)
\end{bmatrix}
\]
Straightforward solutions

- **Beamforming**
 - Boosts one signal, but does not separate

- **Source properties**
 - Known statistics of source characteristics

- **Deflation methods**
 - Extract one source at a time
But we live in a harsh world ...

- Let’s say you only get two sensors
 - Sensors are expensive!

- What can we do to resolve mixtures now?
Using the audio case again

- Put two microphones in a room
 - More than two sources present
- How can we recover the sources?
An alternative way to unmix

• With ICA we try to undo the mixing
 • We invert the mixing process
 • Tough and tedious for complex mixtures

• Masking alternative
 • Using binary masks on spectrograms we can isolate desired sources
 • Proper masks don’t derive from mixing conditions
 • Convolutive mixing, etc. are not an issue
Masking

- Two simultaneous sources
- What are the chances the two source spectrograms coincide at any pixel?
- We can pick only certain “pixels” from the spectrogram to get each source
Mask examples

Mask for which:

\[|F_{source1}(f, t)| > |F_{source2}(f, t)| \]

Mask for which:

\[|F_{source1}(f, t)| < |F_{source2}(f, t)| \]
Masks applied on mixture

- When applied on mixture spectrogram, masks produce good approximations of the two source spectrograms.
How do we get the proper masks?

- Spatial information can help us discover the appropriate source masks

- Time-frequency cells indicating the same direction form each binary mask

- A plus: No constraint on number of sources and sensors!
Spatial cues for masks

- Gather spatial statistics for each time-frequency point
 - Amplitude ratios
 - Phase differences
- Cluster cells with similar statistics to form masks
 - Each location would have its own set of features
Magnitude ratios as spatial features

- Time/frequency bin ratios between the sensors will be different depending on a source’s position

- We extract these as:

\[\alpha(\tau, \omega) = \log \frac{|F_2(\tau, \omega)|}{|F_1(\tau, \omega)|} \]
Normalized phase differences

- Use per-bin phase differences
 - But they depend on frequency
- Instead we can normalize:
 \[\delta(\tau, \omega) = \frac{1}{\omega} \left(\angle F_2(\tau, \omega) - \angle F_1(\tau, \omega) \right) \]
 - Which gives us a “delay” value
 - Only works if the delay is less than a sample though!
Normalized phases as spatial features

- Each spatial location will generate a unique value

- We will get clear peaks for each location’s contribution
Clustering the location statistics

- Histogram all measurements in the joint parameter space

- Peaks are spatially separate sources
 - \(N \) sources will result in \(N \) peaks

- Each peak corresponds to a location
 - We can now group time-frequency “pixels” according to the peaks
 - Each mask is made out of the time-freq “pixels” which are closest to a mode
2 microphone example

- Closely spaced mics, symmetric sources
- Each source creates a cluster with a unique center
Back-projecting to the spectrograms

- Use the cluster labels to assign each point to a source
- Place back into spectrogram and you get the desired binary mask
But sensors are so expensive ...

- What if we don’t have an array at all?
- One sensor – multiple inputs case
Defining the problem

- Another ill-defined problem!
- “Single-channel source separation”
The name of the game

- Finding signal priors to perform separation
 - School a: Perceptually-minded approaches
 - School b: Statistical approaches
The name of the game

- Finding signal priors to perform separation
 - School a: Perceptually-minded approaches
 - School b: Statistical approaches
Perceptual approaches

• “Computational Auditory Scene Analysis”
• Driven by psychoacoustic experiments
Some (general) statistical approaches

- Approaches with general source assumptions
 - Lee and Jang
 - ICA dictionaries of time waveforms
 - Reyes, Jojic and Ellis
 - Graphical model on TF distributions
 - Lagrange, et al.
 - Normalized cuts
 - Bach and Jordan
 - Spectral clustering for perceptual grouping

- Things aren’t great ...
Forgoing unsupervised methods

• It is hard to define source structure
 • We should learn it instead

• Supervised source separation
 • Use training data as hints on what you want
Learning models of sounds

• Starting with a sound having simple elements
A simple factorization model

- Factor input as: $F = w \cdot h$
Upping the rank

- Use PCA instead: $\mathbf{F} = \mathbf{W} \cdot \mathbf{H}$
Trying something else

- Use ICA instead: \(F = W \cdot H \)
One last try …

- Use NMF instead: $F = W \cdot H$
Interpreting the model

- Rank-R model returns R components
 \[F = W \cdot H \]
 \[F \in \mathbb{R}^{M \times N, \geq 0}, \quad W \in \mathbb{R}^{M \times R, \geq 0}, \quad H \in \mathbb{R}^{R \times N, \geq 0} \]

- W matrix holds spectral templates
 - vertical structure

- H matrix their time activations
 - horizontal structure

- Or vice-versa!
Element-wise reconstructions

- Each component latches to a “subsound”
- and can then be isolated!

\[
\begin{align*}
W_{,:1} &\cdot H_{1,:} \\
W_{,:2} &\cdot H_{2,:} \\
W_{,:3} &\cdot H_{3,:}
\end{align*}
\]
Making NMF sound models
Mixtures of sounds

- Use spectrogram additivity
 - combine models to explain mixture

\[
F = \begin{bmatrix}
W_{\text{chimes}} & W_{\text{speech}}
\end{bmatrix}
\begin{bmatrix}
H_{\text{chimes}} \\
H_{\text{speech}}
\end{bmatrix}
\]

- We estimate only the weights
- The known bases claim only the parts that they can fit best
Separation

- Recompose sources individually

\[
F_{speech} = W_{speech} \cdot H_{speech}
\]
\[
F_{chimes} = W_{chimes} \cdot H_{chimes}
\]

- And convert spectrograms to time domain
 - Use the phase of the mixture
 - Unlike before this is a soft mask
Two problems

• Sounds in mixture have to be distinct
 • but not my much!

Speech & speech mixture Extracted speaker 1 Extracted speaker 2

• What are the chances we know all sounds?
 • Usually we know a target or a noise
Separation with unknown sounds

- Same as before, use only one model:
 \[F = \begin{bmatrix} W_{\text{known}} & W_{\text{unknown}} \end{bmatrix} \cdot \begin{bmatrix} H_{\text{known}} \\ H_{\text{unknown}} \end{bmatrix} \]

- Learn weights and unknown bases
 - Unknown bases converge to the unknown parts in the mixture
Setting up the problem

- **Can be done in two ways**
 - Have model of noise, extract extras
 - Have model of target, remove extras

- **All cases can be binary**
 - What you want vs. the rest

- **Can be applied to denoising**
 - Can deal with non-stationary noise
Why this model?

- We need to measure the presence of something
 - Therefore our domain is inherently non-negative

- PCA, ICA, etc don’t work
 - The use of cross-cancellation gives nonsensical results

- VQ/K-means is not additive
 - Can’t model mixtures

- NMF is best at this
Measuring presence

• Recognition in mixtures
 • We can’t use classifiers!
 • No hard answer
 • Not even a soft one ...

• Measuring source presence
 • Observe source weights
 • Deduce amount of sounds
Sound recognition in mixtures

- Use known models to estimate presence of these sounds in a mixture

\[F = \begin{bmatrix} W_{\text{shaker}} & W_{\text{cymbals}} & W_{\text{jingles}} & W_{\text{pig}} \end{bmatrix} \]

\[\begin{bmatrix} H_{\text{shaker}} \\ H_{\text{cymbals}} \\ H_{\text{jingles}} \\ H_{\text{pig}} \end{bmatrix} \]

- We are explaining the mixture, not doing simple classification

\[\text{Known/fixed} \]

\[\text{Estimated} \]
Video Content Analysis

- Detecting sounds in mixtures
 - We learn dictionaries offline and explain the movie soundtrack
Audio layer editing

Original drum loop
No tambourine
No congas
Congas!

Extracted layers

Remixer

Polyphonic music

Music layer

Voice layer

Selective pitch shifting

Piano + Soprano

Soprano layer

Remixed layers

Piano layer
Using priors

- We can bias the NMF models while learning
- In each iteration we can add a bias to the estimate of the two factors
 \[
 W = W + \alpha B_w \quad \text{How we want } W \text{ to be}
 \]
 \[
 H = H + \beta B_h \quad \text{How we want } H \text{ to be}
 \]
- Forces them to assume a specific form
- This allows using user guidance in learning
User-guided sound selection
Recap

- Under-constrained signal separation
 - The DUET algorithm

- Single-channel separation
 - Spectral factorizations
Reading

- The DUET algorithm

- Spectral factorizations for separation