Missing Data and Dynamical Systems

25 October 2018
Today’s lecture

• Dealing with missing data

• Tracking and linear dynamical systems
Missing data

• You don’t always have all your data!
 • e.g. cell phone drops, gaps in pictures, ...

• How do we deal with that?
A simple case
A real-world case!
General classification of cases

- Missing completely at random (MCAR)
 - “Missingness” is really random

- Missing at random (MAR)
 - “Missingness” depends on some variable
 - But not on the missing data values
 - Typical problem with questionnaires

- Not missing at random (NMAR)
 - None of the above
 - Often depending on the data values
Starting with 1D

- Assume a small gap in 1D data
- Can we find the missing values?
Key observations

- Temporal structure
 - The signal is somewhat periodic

- We could predict the future from the past

- How do we formalize this?
A predictive model

- Predict current sample from the past
 - Using a weighted average of preceding samples

\[x_t = \sum a_i x_{t-i} + e_t \]

- Autoregressive (AR) model
 - We can learn the coefficients \(a \) using various methods
Rewriting the model

- Linear algebra notation

\[e = A \cdot x \]

\[
A = \begin{bmatrix}
-a_p & \ldots & -a_1 & 1 & 0 & 0 & \ldots & 0 & 0 \\
0 & -a_p & \ldots & -a_1 & 1 & 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & -a_p & \ldots & -a_1 & 1 & 0 \\
0 & 0 & \ldots & 0 & -a_p & \ldots & -a_1 & 1 & 0 \\
0 & 0 & \ldots & 0 & 0 & -a_p & \ldots & -a_1 & 1 \\
0 & 0 & \ldots & 0 & 0 & 0 & -a_p & \ldots & -a_1 \\
\end{bmatrix}
\]
Filling gaps

- Model the input sequence as:

\[e = A \cdot x = A \cdot \left(U \cdot x_u + K \cdot x_k \right) = A_u \cdot x_u + A_k \cdot x_k \]

- \(x_u \) and \(x_k \) are the unknown and known samples
- \(U \) and \(K \) are repositioning matrices, e.g.:

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
 x_4
\end{bmatrix}
=
\begin{bmatrix}
 0 & 0 \\
 1 & 0 \\
 0 & 1 \\
 0 & 0
\end{bmatrix}
\begin{bmatrix}
 x_2 \\
 x_3
\end{bmatrix}
+
\begin{bmatrix}
 1 & 0 \\
 0 & 0 \\
 0 & 0 \\
 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x_1 \\
 x_4
\end{bmatrix}
\]
Isolating the unknowns

- Final form isolates unknowns as a variable
 - These are values that should conform to the model
 - Assuming they aren’t missing at random!

- We thus want to find x_u so that we minimize e
 - i.e. fill in the blanks with least unpredictable samples

\[
A_u \cdot x_u + A_k \cdot x_k = e
\Rightarrow x_u = -A_u^+ \cdot A_k \cdot x_k
\]
• Works pretty well!
But not for large windows!
Looking for a new idea

- We should move away from the sample level, and look at a coarser scale
 - e.g. a time-frequency view
A simpler idea

- Find sections most similar to the gap edges
- Replace missing sections with their neighbors

\[
\begin{bmatrix}
\uparrow & \uparrow & \uparrow & ? & ? & \uparrow & \uparrow & \uparrow \\
\downarrow & \downarrow & \downarrow & ? & ? & \downarrow & \downarrow & \downarrow \\
\end{bmatrix}
\]

- How do we find the close match?
In action

Iteration 0

Match with left edge of gap
Match with right edge of gap
In action

Iteration 1

- Match with left edge of gap
- Match with right edge of gap
In action

Matching with left edge of gap
Matching with right edge of gap
In action

Iteration 3

Frequency

Time
Some examples

Speech

In
Out

Music

In
Out

Sound effects

In
Out
What about images?

- Basic idea is the same
 - Find a neighbor and blend it

- A bit more complicated
 - We need to blend carefully, we can’t just add
 - Poisson blending

- Also more computationally intensive (2d search!)
A real-world example

- Inpainting, recomposing, warping the truth!
The statistical viewpoint

- Nearest-neighbor search was local
 - We ignore global data structure

- Missing data should conform to a statistical model of the input
 - i.e. they shouldn’t be outliers
SVD-based imputation

• Simple global approach
 • Replace missing data with some values
 \[x_u = E\{x\} \quad \text{or} \quad x_u \sim \mathcal{N}(\mu, \sigma^2) \quad \text{or ...} \]
 • Perform an SVD approximation of the data
 \[\mathbf{X} \approx \mathbf{U} \cdot \mathbf{S} \cdot \mathbf{V}^\top \]
 • Replace missing data with SVD approximation
 \[x_u = \left(\mathbf{U} \cdot \mathbf{S} \cdot \mathbf{V}^\top \right)_u \]
 • Repeat!
Why?

- Known data will dominate statistics
 - Assuming they are enough!

- Each approximation will try to conform to the global statistics of the input
 - i.e. made up values will not be random

- With each new iteration, that conformance to global statistics will increase
Variations

• We don’t have to use an SVD
 • e.g. our data might be non-negative
 • So use NMF, or probabilistic models, or whatever makes sense

• Any global statistical model would work
 • Just make sure that it fits the data well
Example

• Learn from input and fill-in missing values
Learning from outside

- Bandwidth expansion
 - Learn model from other recordings
Tracking

- Tracking things that evolve in time
 - missiles, faces, finances, etc...

- A time-series model again
A simple problem

• I’m looking at a star which is about “there”
 • So does my drunken friend

• How do we consolidate our observations?
An uncertain estimate

- My observation is a Gaussian that helps me account for some uncertainty
 - Mean is what I think is right
 - Variance is an indication of how sure I am

\[\mathcal{N}(\mu_1, \sigma_1^2) \]
More uncertainty

- My drunken friend’s estimate is unreliable
- Therefore his variance is higher

\[\mathcal{N}(\mu_1, \sigma_1^2) \]
\[\mathcal{N}(\mu_2, \sigma_2^2) \]
\[\sigma_2 > \sigma_1 \]
Consensus estimate

- The consensus estimate is proportional to a Gaussian

\[
\mathcal{N}(m, s) \propto \mathcal{N}(\mu_1, \sigma_1) \mathcal{N}(\mu_2, \sigma_2)
\]

\[
K = \frac{\sigma_1^2}{\sigma_1^2 + \sigma_2^2}
\]

\[
m = \mu_1 + K(\mu_2 - \mu_1)
\]

\[
s = (1 - K)\sigma_1^2
\]
Serializing this process

• Assume a noisy time series

\[z_t = z_{t-1} + e_t \]

\[e_t \sim \mathcal{N} \]

• Can we use that consensus idea for removing noise in successive values?
Example case

- Track the position of a moving ball
Some simple processing

- Background removal
 - Subtract constant part, find center of remaining pixels
The problem

- The position estimate is very noisy
- Lets see how we can clean it up
Making a model

• Defining a transition process
 • Looks familiar?
 \[
 \begin{bmatrix}
 x_t \\
 y_t
 \end{bmatrix}
 = A \cdot
 \begin{bmatrix}
 x_{t-1} \\
 y_{t-1}
 \end{bmatrix}
 + e_t \rightarrow z_t = A \cdot z_{t-1} + e_{t-1}
 \]
 \[
 A = I
 \]
 \[
 e_t \sim \mathcal{N}
 \]
 • In short, the next input will be a random value away from the current input
Starting with it

- Initial estimate will be the first input: $\hat{Z}_1 = z_1$

- With a given certainty: $P_1 = \begin{bmatrix} \sigma^2 & 0 \\ 0 & \sigma^2 \end{bmatrix}$

- And two noise models: $Q = \begin{bmatrix} q_x & 0 \\ 0 & q_y \end{bmatrix}$, $R = \begin{bmatrix} r_x & 0 \\ 0 & r_y \end{bmatrix}$

 - Process noise (how much the data changes)
 - Measurement noise (how reliable my measurements are)
Setting up sequential estimates

• Predict future value

\[\hat{z}_t^- = \hat{z}_{t-1} \quad \text{We don't expect change other than noise} \]

\[P^- = P_{t-1} + Q \quad \text{And we accumulate the uncertainty} \]

• Correct that estimate given new input

\[K = P^- \cdot (P^- + R)^{-1} \quad \text{Get uncertainty of a consensus estimate} \]

\[\hat{z}_t = z^-_t + K \cdot (z_t - z^-_t) \quad \text{And the estimate itself} \]

\[P_t = (I - K) \cdot P^- \quad \text{Get new uncertainty} \]
Single step
Example output

- Estimate is closer to ground truth
Example output

- Tracking is more smooth
- But it lags a bit (why?)
Complicating the process

- Adding velocity information
 - Internal state representation
 \[z_t = \begin{bmatrix} x_t & y_t & \frac{dx}{dt} & \frac{dy}{dt} \end{bmatrix}^\top \]

- Transition forces constant velocity
 \[z_t = A \cdot z_{t-1} + e_t = \begin{bmatrix} 1 & 0 & dt & 0 \\ 0 & 1 & 0 & dt \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{t-1} \\ y_{t-1} \\ \frac{dx}{dt} \\ \frac{dy}{dt} \end{bmatrix} + e_t \]
Measurements

• What we measure is position only:

\[w_t = H \cdot z_t + v_t = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \cdot z_t + v_t \]

• Internal state is not same as measurement
 • And it has it’s own noise
The Kalman filter

• Predict future value

\[
\begin{align*}
 z_t^- &= A \cdot \hat{z}_{t-1} & \text{Change state according to model}
 \\
 P_t^- &= A \cdot P_{t-1} \cdot A^\top + Q & \text{Accumulate the uncertainty}
\end{align*}
\]

• Correct that estimate given new input

\[
\begin{align*}
 K &= P_t^- \cdot H^\top \cdot \left(H \cdot P_t^- \cdot H^\top + R \right)^{-1} & \text{Get uncertainty of a consensus estimate}
 \\
 \hat{z}_t &= z_t^- + K \cdot \left(w_t - H \cdot z_t^- \right) & \text{And the estimate itself}
 \\
 P_t &= \left(I - K \cdot H \right) \cdot P_t^- & \text{Get new uncertainty}
\end{align*}
\]
More elaborate extensions

- Add acceleration, etc ...
 - More complex internal state
 - More accurate models given various inputs

- Use this to track moving processes
 - Missile over an ocean
 - Finger over a touchscreen
 - Cars on the highway
 - Head movements of a VR headset
 - ...

And yet more extensions

- **Non-linear processes**
 \[z_t = f(z_{t-1}) + e_t , \quad w_t = h(w_{t-1}) + v_t \]
 - Extended Kalman filter
 - Unscented Kalman filter (for very nonlinear)

- **Particle filters**
 - Sampling based method
 - Bypasses Gaussian assumptions
An example
In the real world
Using dynamical systems to classify

• We can also classify sequences using dynamical models
 • So far we only did prediction, tracking and smoothing

• Dynamical models can be fit on training sequences
 • And evaluated on new sequences that we want to classify

• Goodness of fit (for now) can be used for classification
An example

- 3D Accelerometer data from a cell phone
 - Classes are the user’s activity (sitting, walking, going upstairs, etc)
 - Each activity has a unique temporal pattern
The VAR model (Vector AutoRegression)

- We can make a linear model to predict future samples using the past

\[
\begin{bmatrix}
 x_{t+1} \\
 y_{t+1} \\
 z_{t+1}
\end{bmatrix} =
\begin{bmatrix}
 x_t \\
 y_t \\
 z_t \\
 1
\end{bmatrix} + e_t
\]

- Matrix A should be unique to each class
 - Captures the temporal structure of each class
 - Can easily estimate A with e.g. least squares
Predicting new inputs

- Get each model’s prediction error on new samples
- Model with least error belongs to the same class as input
- Can also reformulate probabilistically to get likelihoods instead
One big happy family

ICA
\[
A = 0 \implies x = g \left(\mathcal{N}(0, Q) \right)
\]
\[
y = C \cdot x + \mathcal{N}(0, R)
\]

PCA
\[
A = 0 \implies x = \mathcal{N}(0, Q)
\]
\[
y = C \cdot x + \mathcal{N}(0, R)
\]

LDS
\[
x_{t+1} = A \cdot x + \mathcal{N}(0, Q)
\]
\[
y_t = C \cdot x_t + \mathcal{N}(0, R)
\]

HMM
\[
x_{t+1} = \text{WTA} \left[A \cdot x + \mathcal{N}(0, Q) \right]
\]
\[
y_t = C \cdot x_t + \mathcal{N}(0, R)
\]

k-means / GMM
\[
A = 0 \implies x = \text{WTA} \left[\mathcal{N}(\mu, Q) \right]
\]
\[
y_t = C \cdot x_t + \mathcal{N}(0, R)
\]
So it’s all really the same model!

- Like I said in the beginning of this class, DSP and ML are pretty much the same equation over and over
Recap

• Missing data techniques
 • AR models → using temporal dynamics
 • NN, SVD, NMF → using context information

• Tracking and prediction
 • Kalman filter *et al.*

• The broader Linear Dynamical System family
Next week

- Source separation
 - Array methods using machine learning
 - Monophonic signal separation methods
Reading

- Missing data in audio
 - http://www-sigproc.eng.cam.ac.uk/~sjg/springer/index.html

- Inpainting (and more) in images

- The Kalman filter

- LDS
Date night!

• If you do not have a project partner (or want more partners) hang around in the classroom for a few more minutes so you get to meet each other