Deep Learning and Stochastic Neural Models
Today’s lecture

- Shallow vs. Deep learning
- Stochastic neural models
 - Deep learning structures
- Varying network architectures
“Shallow” models

- Most models we used so far were “shallow”
 \[y = W \cdot x \]
- Single level of processing (PCA, linear classifier, ...)
 - Allows us to use simple representations of the input
 - e.g. linear features, likelihoods, etc.
Looking for depth

- The way we think is inherently hierarchical (i.e. “deep”)
 - e.g. remember the perceptual pathways?
 - Features of features of features, ...

- We don’t really make algorithms like that
 - Maybe we should!
Trying to get some depth

• How about we try multilayer PCA?

\[y = W_1 \cdot W_2 \cdot x \]

• \(W_1 \) can contain eigenvectors of eigenvectors!
 • Is that a good idea?

• Not really, \(W_1 = I \) since \(W_2 \cdot x \) is whitened already
 • Also with other linear approaches, extra layers make no sense
 • They all collapse to a single linear transform
Revisiting the neural net

- An example of a “deep” architecture
Example classifier

- A “0” vs. “1” digit classifier
- 2-layer neural net with 2 hidden units and one output
Learned weights

- First layer is a “feature” transform
- Second layer is a simple classifier
The magic ingredient is the non-linearity

- At every layer we apply a sigmoid:

\[y = g(W_1 \cdot g(W_2 \cdot x)) \]

- This allows us to meaningfully stack transforms
 - Hence to obtain a deep architecture
Multiple levels of features

- First layer contains low-level features, second layer contains mid-level features, ..., final layer is a classifier.
Arbitrarily deep architectures

- We can stack as many transforms as we like
 - The goal is to find rich representations
 - Thus we make a "deep" model

- The goal is to get features of features of features of ...
 - "Like the brain does"
Whoa, wait a minute ...

- You told us that 3 layers are enough for anything!
 - Why should we use more layers than that?
 - Aren't shallow models good enough?

- Yes, a shallow model is fine, but
 - There is no guarantee that you'll easily find the parameters!
 - Nor that you won't need a bazillion units
But there is a problem with depth

- Deep architectures have lots of parameters
 - In some cases in the billions!
- Typical neural net optimization becomes a problem

\[x_0 \rightarrow x_1 \rightarrow \delta_1 \rightarrow 1st \text{ Hidden Layer} \rightarrow x_2 \rightarrow \delta_2 \rightarrow 2nd \text{ Hidden Layer} \rightarrow \cdots \rightarrow x_{N-1} \rightarrow \delta_{N-1} \rightarrow Nth \text{ Hidden Layer} \rightarrow x_N \rightarrow \delta_N \rightarrow \text{Output Layer} \]

\[
x_i = g\left(W_i \cdot x_{i-1} \right) \\
\delta_i = \left(W_i^T \cdot \delta_{i+1} \right) \cdot g'(W_i \cdot x_{i-1})
\]
Problems with backpropagation

- Through many layers gradient becomes too small
 - We can’t propagate errors too far back

- Lots of local minima (lots of parameters!)
 - Even with shallow networks this can be a problem

- Biologically it’s a stretch
 - Does the visual cortex influence the retina?
 - Do we really have target values?
Desiderata

- We need a stable learning procedure

- We like biological plausibility
 - Computations should be mostly local
 - We like distributed systems

- We thus need to move away from backprop methods
A digression

- A bit on stochastic neural networks
 - A different structure from what we’ve seen so far
 - Hopfield and Boltzmann models

- Strong influences from physics and neuroscience
 - Recently resurgent models
The Hopfield/Boltzmann networks

- Auto-associative memory
 - Learns patterns by finding stable equilibria

- Fully connected & recurrent
 - All nodes have binary states \{0,1\}

- Model can learn to recall patterns
Energy minimization

- Parameters: State s_i, Weight w_{ij}, Threshold θ_i
- After assigning patterns we minimize model “energy”

$$E = -\sum_{i<j} w_{i,j} s_i s_j + \sum_i \theta_i s_i$$

- Painful optimization problem!
 - Gradient solution to Hopfield
 - Stochastic solution to Boltzmann
The Restricted Boltzmann Machine (RBM)

- A more manageable form of Boltzmann machines
 - Two-layer, no intra-layer connections

- Visible and hidden nodes
 - Visible nodes represent known data
 - Hidden nodes are used for internal representation

- Easier to train and very useful for many tasks
Getting a handle on RBMs

- Define a probability of the network energy:
 \[E(v, h) = -a^\top \cdot v - b^\top \cdot h - h^\top \cdot W \cdot v \]
 \[P(v, h) = \frac{1}{Z} e^{-E(v, h)} \]
- \(Z\) is a partition function and \(a, b\) are node biases

- We also define the node probabilities
 \[P(h_i | v) = g\left(b_i + \sum_j w_{i,j} v_j\right), \quad P(v_i | h) = g\left(a_i + \sum_j w_{i,j} h_j\right) \]
Contrastive Divergence learning

- Maximize product of all $P(v)$
 1) For a training sample v_1 compute hidden node probabilities
 2) Generate a hidden layer activation vector h_1 from above
 3) Go back and generate a new input vector v_2 based on h_1
 4) Go forth and generate a new activation vector h_2 from v_2
 5) Update corresponding w using: $\Delta w \propto v_1 h_1 - v_2 h_2$

“Positive gradient” \(\rightarrow\) “Negative gradient”
So what does this do?

- Example on digit data
- 28×28 visible nodes
 - Set each pattern to a digit
- 100 hidden nodes
- W is 784×100
 - i.e. 100 “basis” functions
Back to deep learning

- The RBM is a shallow learner

- But we can use it to connect multiple layers
 - Treat each layer in a multi-layer input as an RBM

- The big idea: Train locally, group globally
 - This helps computational complexity and is biologically plausible
Deep Belief Networks (DBN)

• A stack of multiple RBMs
 • A deep generative model

• Initial weights are set using RBM training

• Further refinement using backpropagation
Greedy learning

• Step 1: Train an RBM for first layer
 • Visible nodes are the inputs

• Step 2: Fix hidden layer
 • Pretend it’s visible and train next layer

• Step 3: Keep going
So what is it good for?

- We can learn complex representations of data
 - Learn a deep model with multiple feature levels

- We can learn to classify
 - Use visible nodes to represent classes

- Example simulations on digit data:
 - Hinton's Neural Network Simulation (Generative)
 - Demo: https://www.youtube.com/watch?v=KuPai0ogiHk&t=47s
 - 10 labels / 2000 l3 units / 500 l2 units / l1 500 units / 784 pixels
Some well-known press exposure

- A billion weights network trained on 10M YouTube frames
 - 1,000 machines for 3 days!
- Conclusion: YouTube has lots of cats! :)
 - and that we can get some great features that way

The cat neuron
The human body neuron
Helping out backpropagation

- We can also use this approach to learn large networks
 - e.g. a multiple layer classification network

- Use greedy learning to find initial values for weights
 - Treat each layer set as an RBM

- Once trained use as initial values for backprop
The importance of a good start

- Find “sensible” weight values
 - Don’t start from irrelevant points

- Starts from a space that is well-tuned to the data at hand

- Reduces the amount of required computations
Ugh, that RBM business is difficult ...

- There’s no reason to stick to RBMs
 - The math is a little tricky and the optimization costly

- Instead we could use another type of “shallow” learner
 - But it has to have a structure conducive to what we want
 - E.g. overcomplete ICA so that we can have more output nodes

- Or we can use an “autoencoder”
Autoencoders

- A very simple approach to designing a shallow non-linear feature extractor
- Try to learn an identity mapping
 - but we won’t make it that easy!
 - We won't give it enough resources
Ways to constraint an autoencoder

• Restrict the number of hidden nodes
 • Creates an information bottleneck
 • Resulting in an informative low-rank representation

• Go to higher dimensions but use sparsity
 • Creates informative “bases” and projects to high-D space

• Add some structure to the form of the layers
 • e.g. orthogonality, independence, etc.
Example case

- Running on digit data
Noisy autoencoders

- Find a “robust” representation
 - But stochastically corrupt the input
 - e.g. adding noise, removing random bits, transform it in non-linear ways, etc.

- Now the input is not always the same as the output
 - We need robust features that map all the noisy inputs to the proper output
Noisy autoencoders for enhancement

- We can also use noisy autoencoders to clean signals
 - Learn to predict a desirable output for a noisy input

- Can be used for multiple enhancement tasks
 - Removing noise, recovering higher resolution, ...

- Generate noisy/clean training data and learn a network
Toy example: Speech denoising

- Trained on 30sec inputs
 - Speech + street noise
 - Known speaker
 - Takes 30sec to train
 - on a laptop (2-3sec with GPU)

- Parameters
 - 1024pt spectra
 - 1 hidden layer, 100 nodes
 - Leaky ReLU activations
Runtime denoising

- Very lightweight process
 - ~300x real-time
 - 0.01sec in this case

- Works better than NMF
 - But can’t generalize to new noise types!
Stacked autoencoders

- Similar to DBNs
 - Multiple-layer architecture
 - Train each layer separately
 - Stack them all in the end

- Can also be used to classify
 - Once trained, add a classification layer and refine with backprop
So what’s new from the 90’s?

• Cynical view: Not much
 • We have more data and better processors
 • This allows us to train more useful models
 • The RBM/DBN business might have been a distraction …

• But, we now have many more tricks of the trade
 • Better activations, smarter training strategies, many little tricks to assist better convergence, more elaborate models than before, …
Dropout for better training

• Drop-out training
 • Randomly “turn off” units at every training iteration
 • Usually 50%
 • Puts pressure on units to be useful

• Results in a more robust networks
 • Equivalent to training multiple nets with shared weights, but slightly different connectivity patterns
Modern activation functions

• Rectified Linear Units (ReLU’s)
 • Instead of a sigmoid use: $y_i = \max(0, x_i)$
 • Much faster since there is minimal computation
 • Leaky versions: $y_i = \max(\varepsilon, x_i)$
 • Noisy versions: $y_i = \max(0, x_i + n_i)$, ...

• Softplus: $y_i = \log(1 + e^{x_i})$
 • “Softer” version of ReLU
Moving past gradient descent

- **Stochastic Gradient (with optional momentum)**
 - Use random batches, update using: $\Delta w_t = \nabla f(w_t) + \mu \Delta w_{t-1}$
 - Nesterov momentum: $\Delta w_t = \nabla f(w_t + \mu \Delta w_{t-1}) + \mu \Delta w_{t-1}$

- **Rprop**
 - Use gradient sign, make steps using adaptive learning rate/momentum
 - RMSprop: Normalize individual weight learning rates by the running average of past gradient magnitudes

- **Adagrad / Adadelta / Adam**
 - Learning rate-free approaches

- ...
What difference does it make?

- Alec Radford’s excellent training animations:

[Images of optimization landscapes and animations]

http://imgur.com/a/Hqolp
Model Compression

• Is being shallow necessary?
 • Remember that three layers should be all we need

• Using a deep structure tends to facilitate training
 • Despite the introduction of many more parameters

• Train shallow networks to mimic trained deep networks
 • Train a deep network, generate a lot of outputs for random inputs and use them as training data for a shallow network
Getting more into signals

- As we’ve seen before we care about time!
 - That’s what makes a signal

- What we have so far is time-agnostic
 - Therefore a bad idea for signals

- How can we add some temporal structure?
Recursive Neural Networks

- Use node outputs as inputs
 - From anywhere to anywhere

- Some problems
 - Can form an unstable system
 - Can struggle with large data
 - More on RNNs on Friday

- RNNs are Turing complete!
 - In theory they can compute anything!
Long Short-Term Memory Networks

- RNNs are notoriously hard to train (inherently deep!)
 - RNNs are notoriously hard to train (inherently deep!)
 - LSTMs resolve that using gating:
 - New memory from input & past output
 - Forget gate: how much past memory counts
 - Memory gate: how much new memory counts
 - Output gate: combine all to make output

\[
\begin{align*}
 y_t &= W x_t \\
 y_0 &= y_1 = y_2 = \cdots = y_N \\
 y_0 &= y_1 = y_2 = \cdots = y_N \\
 x_0 &= x_1 = x_2 = \cdots = x_N
\end{align*}
\]
Lots of time-aware topologies

- **Many samples to one** (e.g. speech to emotion)
 - Input sequence
 - Output sequence

- **Single input to many outputs** (e.g. picture to text)
 - Input
 - Output sequence

- **Synchronous sequence to sequence** (e.g. noisy speech to clean speech)
 - Input sequence
 - Output sequence

- **Asynchronous sequence to sequence** (e.g. speech to text)
 - Input sequence
 - Output sequence

Many samples to one (e.g. speech to emotion)

Single input to many outputs (e.g. picture to text)

Synchronous sequence to sequence (e.g. noisy speech to clean speech)

Asynchronous sequence to sequence (e.g. speech to text)
FIR Neural Networks

- Extend the scope of a neural net
 - Instead of weights, use FIR filters
 \[x_i^l = \sum_j w_{i,j} \ast x_j^{l-1} \]
- Convolution is still linear
 - The usual backprop approach still works
 - Convolution is a matrix multiply, i.e. a simple layer
- Good fit for temporal prediction tasks!
Convolutional Networks

- Generalizing the FIR filter idea
 - Unit weights are 2D filters (or 3D, 4D, ...)

- Max-pooling
 - For each neighborhood of filter outputs, keep only the max value
Convolutional networks for vision

- We extract deep features that make sense
 - These features are the filters at each layer
 - Also results in state of the art recognition!
And there are many evolving ideas

- Extreme Learning Machines & Echo State Machines
 - Using a lot of fixed random nodes

- Residual Networks
 - Map to output + input, allows for deeper models

- Wavenet
 - Using convolutions over multiple time-scales

- Generative Adversarial Models
 - We’ll cover these later

- ...
So what’s the verdict?

• **Good news:**
 • Very powerful and flexible approaches
 • Potential biological plausibility
 • And computability implications

• **Bad news:**
 • Too flexible, picking right structure is very much an art
 • Cumbersome and potentially finicky training procedures
Running deep learning today

• You need data, GPUs and software for it
 • GPUs and software are easy to get!

• Software takes care of learning/deriving models:
 • http://pytorch.org ← Paris’ tool of choice, super flexible
 • https://www.tensorflow.org ← Probably the most popular today
 • http://keras.io ← Higher-level API, easy for quick prototyping
Recap

- Deep learning concepts
- Stochastic shallow networks
 - Boltzmann machine
- Common deep architectures
 - DBNs, auto-encoders, recurrent and convolutional networks
More material

- “Deep Learning”, the book:
 - http://www.deeplearningbook.org
 - (no PDF but you can read online)

- Learning Convolutional Feature Hierarchies for Visual Recognition

- A Fast Learning Algorithm for Deep Belief Nets
Next lecture

• Probabilistic Graphical Models
• Cem guest lectures