Sensor Arrays
Today’s lecture

• Sensor arrays

• Beamforming and localization

• Array-based source separation
A question

- Why do you have two ears? (or eyes)
Sensor arrays

- Multiple sensors allow us to do more
 - They reveal the “spatial dimension”

- We can thus do things involving space
 - Focus on one direction only
 - Locate the emanating source of a signal
One more question

- Why does your ear have that strange shape on the outside?
Collecting from multiple sources

- A parabolic sensor
 - Focuses right ahead and ignores other directions
Known for a while

[Images of historical equipment and people]
Discretizing the parabolic dish

- Emulating that process with a small number of discrete sensors
That’s been known for a while too
A more flexible setup

- Use adjustable delays for each sensor
- We can now “steer” the array
The delay and sum beamformer

- Adjust sensor delays to focus on a source coming from a specific direction
 \[y(t) = \sum \tau_i \ast x_i(t) \]
- The delays depend on the array layout
 - We need to know the layout a priori
Uniform Linear Array (ULA)

- Far field assumption
- “Wavefront is flat”

\[\tau_i(t) = \begin{cases}
1 & t = \frac{d \cos \phi}{C} \\
0 & \text{otherwise}
\end{cases} \]
Some problems

• Direction confusion

$$\delta t = \frac{d \cos \phi}{C} = \frac{d \cos(-\phi)}{C}$$

• Need at least $D+1$ sensors for D dimensions
• But also the more the better!
The array response

• Spatial aliasing = ambiguities in high frequencies
• Sensor distance must be less than half wavelength of highest freq
Many more things ...

- Sensors might have non-uniform response
 - In direction or frequency

- Adaptive filters instead of delays
 - Suppress certain areas, boost others

- Rich literature in radio, sonar and audio
Extreme beamforming demo
Localization

- Determine delays that align with input
 - If you know the delays you can determine the angle of most likely incidence
Localization of a single source

- Cross-correlate sensor inputs
 \[c_{i,j}(t) = x_i(t) \ast x_j(-t) \]

- Peak denotes relative delay between inputs
 - Convert delays to angle
 \[\phi_{i,j} = \arcsin \frac{\tau_{i,j} C}{d_{i,j}} \]

- But there’s a problem
Localization of multiple sources

• If we have multiple sources estimation of one delay is not feasible

• Instead we can measure the energy from each location in the space we operate
 • Steer the array beam and measure signal

• This provides a spatial energy map
Multi-source demo

Situation video

Energy over angle and time
Arrays are everywhere
One more

USS San Francisco – after hitting an underwater mountain in 2005
Using more machine learning

- Most array literature is DSP-based
 - Beamforming has its limitations

- Source separation and blind methods
 - Machine learning applications on arrays
A “simple” audio problem

foo! → bar!
Formalizing the problem

- Each mic receives a mix of both sounds
 - Sound waves superimpose linearly
 - Ignoring propagation delays for now

- The simplified mixing model is:

\[
x(t) = A \cdot s(t)
\]

- How do we solve this system and find the original signals \(s(t) \)?
When can we solve this?

- The mixing equation is:
 \[x(t) = A \cdot s(t) \]

- Our estimates of \(s(t) \) will be:
 \[\hat{s}(t) = A^{-1} \cdot x(t) \]

- To recover \(s(t) \), \(A \) must be invertible:
 - We need as many mics as sources
 - The mics/sources must not coincide
 - All sources must be audible

- Otherwise this is a different story …
A simple example

- A simple invertible problem

\[
\begin{bmatrix}
 x(t)
\end{bmatrix}
= \begin{bmatrix}
 2 & 1 \\
 1 & 1
\end{bmatrix}
\begin{bmatrix}
 s(t)
\end{bmatrix}
\]

- \(s(t)\) contains two structured waveforms
- \(A\) is invertible (but we don’t know it’s values)
- \(x(t)\) looks messy, doesn’t reveal \(s(t)\) clearly

- Known as the Blind Source Separation problem (BSS)
 - \textit{Blind} because we don’t see a lot of the information
What to look for

• We can only use $x(t)$

$$x(t) = A \cdot s(t)$$

• Is there a property we can take advantage of?
 • Yes! We know that different sounds are “different”

• The plan: Find a solution that enforces “differentness”
A first try

- Find $s(t)$ by minimizing correlations

- Our estimate of $s(t)$ is computed by: \(\hat{s}(t) = W \cdot x(t) \)
 - If $W \approx A^{-1}$ then we have a good solution

- The goal is that the outputs become uncorrelated:

\[
\left\langle \hat{s}_i(t) \cdot \hat{s}_j(t) \right\rangle = 0, \forall i \neq j
\]

- We assume here that our signals are zero mean

- So the problem to solve is:
 \[
 \arg \min_W \left\langle \sum_k w_{ik} x_k(t) \cdot \sum_k w_{jk} x_k(t) \right\rangle, \forall i \neq j
 \]
Seen that before?

- This is PCA!

\[
\begin{bmatrix}
\hat{s}_1(t) & \hat{s}_1(T) \\
\hat{s}_2(t) & \cdots & \hat{s}_3(T) \\
\hat{s}_3(t) & \hat{s}_3(T) \\
\hat{s}(1) & \cdots & \hat{s}(T)
\end{bmatrix} = W \cdot
\begin{bmatrix}
x_1(t) & x_1(T) \\
x_2(t) & \cdots & x_2(T) \\
x_3(t) & \cdots & x_3(T) \\
x(1) & \cdots & x(T)
\end{bmatrix} \Rightarrow
\]

\[
\Rightarrow \hat{S} = WX
\]

- Easy to compute with a simple decomposition:

\[
W = \text{eig}(X \cdot X^T)
\]
So how well does this work?

Mixing process:
\[x(t) \]

Unmixing process:
\[\hat{s}(t) = W x(t) \]
\[A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \]
\[s(t) \]

Well, that was a waste of time ...
What went wrong?

\[x(t) = A \cdot s(t) \]

\[A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \]
PCA does the wrong thing

What are the mixture eigenvectors?

Scaling/rotating to get decorrelation
What’s wrong?

• Our data is not Gaussian
 • Been there before, right?

• We can’t trust decorrelation, we need “statistical independence”
 • We should use independent component analysis!
ICA for array mixtures

• Given the input:

\[\hat{s}(t) = W \cdot x(t) \]

• Find \(W \) so that the transformed data has maximally statistically independent outputs

• So far in ICA we looked at the features (\(W \)), now we care about the transformed data itself (\(s \))
Trying this on our dataset

- We can now separated the mixture!

\[
\begin{bmatrix}
\hat{s}(t) \\
x(t)
\end{bmatrix}
= \begin{pmatrix}
A \\
W
\end{pmatrix}
= \begin{bmatrix}
2 & 1 \\
1 & 1
\end{bmatrix}
= \begin{bmatrix}
-1.3 & 2.7 \\
2.5 & -2.5
\end{bmatrix}
\begin{bmatrix}
s(t) \\
x(t)
\end{bmatrix}
\]
A couple of issues (not bad ones yet)

- Permutation invariance
 - Order of outputs is random

- Scaling invariance
 - Scale is also random

- ICA will actually recover:
 \[\hat{s}(t) = D \cdot P \cdot s(t) \]
 - Where D is diagonal and P is a permutation matrix
Instantaneous mixing limitations

- Sounds don’t mix instantaneously
- There are multiple effects
 - Room reflections
 - Sensor response
 - Propagation delays
 - Propagation and reflection filtering
- Most can be seen as filters
- We must model a convolutive mixture
Convolutional mixing

- Instead of *instantaneous mixing*:
 \[x_i(t) = \sum_{j=1} a_{ij} s_j(t) \]
- We now have *convolutional mixing*:
 \[x_i(t) = \sum_{j} \sum_{k} a_{ij}(k) s_j(t - k) \]
- The mixing filters \(a_{ij}(k) \) capture all the mixing effects in this model
- How do we do ICA now?
FIR matrix algebra

- Matrices with FIR filters as elements

\[
A = \begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix}
\]

\[
a_{ij} = \begin{bmatrix}
a_{ij}(0) & \cdots & a_{ij}(k-1)
\end{bmatrix}
\]

- FIR matrix multiplication performs convolution and accumulation

\[
A \cdot b = \begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix} \cdot \begin{bmatrix}
b_1 \\
b_2
\end{bmatrix} = \begin{bmatrix}
a_{11} \ast b_1 + a_{12} \ast b_2 \\
a_{21} \ast b_1 + a_{22} \ast b_2
\end{bmatrix}
\]
Back to convolutive mixing

- Rewrite convolutive mixing as:

\[
x_i(t) = \sum_j \sum_k a_{ij}(k)s_j(t-k) \Rightarrow
\]

\[
\Rightarrow x(t) = A \cdot s(t) = \begin{bmatrix}
a_{11} \ast s_1(t) + a_{12} \ast s_2(t) \\
a_{21} \ast s_1(t) + a_{22} \ast s_2(t)
\end{bmatrix}
\]

- Tidier formulation!
- We can use the FIR matrix abstraction to solve this problem
The easy solution

- Straightforward translation of instantaneous learning rules using FIR matrices, e.g.:

\[
\Delta W \propto (I - f(W \cdot x)(W \cdot x)^T) \cdot W
\]

- Not so easy with algebraic approaches
 - FIR tensors, FIR eigendecompositions, etc ...

- Multiple other (and more rigorous/better behaved) approaches have been developed
Complications with this approach

- Required convolutions are expensive
 - Real-room filters are long
 - Their FIR inverses are very long
 - FIR products can become very time consuming

- Convergence is hard to achieve
 - Huge parameter space
 - Tightly interwoven parameter relationships

- A slow optimization nightmare!
FIR matrix algebra, part II

- FIR matrices have frequency domain versions:

\[
\mathbf{A} = \begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix}
\xrightarrow{\text{frequency domain}}
\hat{\mathbf{A}} = \begin{bmatrix}
\hat{a}_{11} & \hat{a}_{12} \\
\hat{a}_{21} & \hat{a}_{22}
\end{bmatrix}
\]

\[\hat{a}_{ij} = \text{DFT} \left[a_{ij} \right] \]

- And their products are simpler:

\[
\hat{\mathbf{A}} \cdot \hat{\mathbf{b}} = \begin{bmatrix}
\hat{a}_{11} \circ \hat{b}_1 + \hat{a}_{12} \circ \hat{b}_2 \\
\hat{a}_{21} \circ \hat{b}_1 + \hat{a}_{22} \circ \hat{b}_2
\end{bmatrix}
\]

\[
\hat{a} \circ \hat{b} = \begin{bmatrix}
a(0) \cdot b(0) & \cdots & a(k-1) \cdot b(k-1)
\end{bmatrix}
\]
Yet another formulation

• We now model the mixing in the frequency domain instead:

\[\hat{X} = \hat{A} \cdot \hat{S} \]

• Compact form as before
 • Makes the notation manageable
 • But also has an advantage!
Peeking a little deeper

• Looking at slices of the FIR matrices in $\hat{X} = \hat{A} \cdot \hat{S}$

• Each slice is:

$$\hat{X}(f) = \begin{bmatrix} x_1^{(f)} \\ x_2^{(f)} \end{bmatrix} = \begin{bmatrix} a_{1,1}^{(f)} & a_{1,2}^{(f)} \\ a_{2,1}^{(f)} & a_{2,2}^{(f)} \end{bmatrix} \cdot \begin{bmatrix} s_1^{(f)} \\ s_2^{(f)} \end{bmatrix}$$

Hey, that’s an instantaneous mixture!
Overall flowgraph

Convolved Mixtures

\(\chi_1 \)
\(\chi_2 \)
\(\ldots \)
\(\chi_N \)

\(\chi \)

Frequency Transform

Mixed Frequency Bins

\(W_1 \)
\(W_2 \)
\(\ldots \)
\(W_M \)

Instantaneous ICA unmixers

Unmixed Frequency Bins

Time Transform

Recovered Sources

\(S_1 \)
\(S_2 \)
\(\ldots \)
\(S_N \)

Input mixture

Source 1

Source 2

Source 1 in normal speed
Some complications ...

- **Permutation issues**
 - We don’t know which source will end up in each narrowband output ...
 - Resulting output can have separated narrowband elements from both sounds!

- **Scaling issues**
 - Narrowband outputs can be scaled arbitrarily
 - This results in spectrally colored outputs
Scaling issue

- One simple fix is to normalize the separating matrices:
 \[W_{f}^{\text{norm}} = W_{f}^{\text{orig}} \cdot |W_{f}^{\text{orig}}|^{1/N} \]

- Results into more reasonable scaling

- More sophisticated approaches exist but this is not a major problem

- Some spectral coloration is unavoidable
The permutation problem

- Continuity of unmixing matrices
 - Adjacent unmixing matrices tend to be similar
 - We can permute/bias them accordingly (doesn’t work that great)

- Smoothness of spectral output
 - Narrowband components from each source tend to modulate the same way
 - Permute unmixing matrices to ensure adjacent narrowband output are similarly modulated (works ok)

- The above can fail miserably for more than two sources!
 - Combinatorial explosion!
Beamforming and ICA

• If we know the placement of the sensors we can obtain the spatial response of the ICA solution

• ICA places nulls to cancel out interfering sources
 • Just as in the instantaneous case we cancel out sources

• We can visualize the permutation problem now
 • Out of place bands
Beamforming to resolve permutations

- Spatial information can be used to resolve permutations
 - Find permutations that preserve zeros or smooth out the responses
- Works fine, although can be flaky if the array response is not clean
The N-input N-output problem

- ICA, in any formulation, inverts a square mixing matrix
 - Implies that we have the same number of input as outputs
 - E.g. in a street with 30 sources we need at least 30 mics!

- Solutions exist for M ins – N outs where $M > N$

- If $N > M$ we can only beamform
 - In some cases extra sources can be treated as noise
 - This can be very restrictive
 - But we’ll see ways out of it in the next lecture
Recap

- Sensor arrays
- Beamforming and localization
- Array source separation
 - FIR Matrix algebra
Next lecture

- Underconstrained source separation
- Single-channel source separation
Reading

• Beamforming and localization
 (uiuc access only)

• Blind source separation and ICA
 • http://www.cs.illinois.edu/~paris/pubs/smaragdis-neurocomp.pdf
Blind-date afternoon!!

- What better event after Blind Source Separation! :)

- If you don’t have a project-mate stick around after class
 - Meet eligible project mates!
 - Mingle and find cool projects