Learning Time Series
Today’s lecture

- Doing machine learning on time series
- Dynamic Time Warping
- Hidden Markov Models
Our view of data so far

- Data are points in a high-dimensional space
What time series are

• A sequence of samples, can be thought of as a point in a very very high-D space
 • Often a bad idea
 • Remember the curse!!
Shift variance

- Time series have shift variance
- Are these two points close?
Time warp variance

- Slight changes in timing are not relevant
- Are these two points close?
Noise/filtering variance

- Small changes can look serious
- How about these two points?
A real-world case

- Spoken digits
What now?

• Our models so far were too simple

• How do we incorporate time?

• How do we get around all these problems?
A small case study

- How to recognize words
 - e.g. yes/no, or spoken digits

- Build reliable features
 - Invariant to minor differences in inputs

- Build a classifier that can deal with a time index
 - Invariant to temporal differences in inputs
Example data
Going from fine to coarse

- Small differences are not important
- Find features that obscure them
Frequency domain

- Look at the magnitude Fourier transform
Time/Frequency features

- A more robust representation
- Bypassing small waveform differences
A new problem

- What about time warping?
Time warping

• There is a “warped” time map
• How do we find it?
Matching warped series

- Represent the warping with a path on a grid

\[r(i), i = 1, 2, \ldots, 6 \quad t(j), j = 1, 2, \ldots, 5 \]
Finding the overall “distance”

- Each node will have a cost
 - e.g., \(d(i, j) = \|r(i) - t(j)\| \)
- Overall path cost is:
 \[D = \sum_k d(i_k, j_k) \]
- Optimal path \((i_k, j_k)\) defines the “distance” between two given sequences
- But how do we find the optimal path?
 - Big search space ...
Bellman’s optimality principle

- For an optimal path passing through

\[(i, j): (i_0, j_0) \rightarrow (i_f, j_f) \]

- Then:

\[(i_0, j_0)^{opt} \rightarrow (i_f, j_f) = \begin{cases} (i_0, j_0)^{opt} \rightarrow (i, j), (i, j)^{opt} \rightarrow (i_f, j_f) \end{cases} \]
Finding an optimal path

- Optimal path to \((i_k, j_k)\):
 \[
 D_{\min}(i_k, j_k) = \min_{i_{k-1}, j_{k-1}} D_{\min}(i_k - 1, j_k - 1) + d(i_k, j_k | i_{k-1}, j_{k-1})
 \]

- Smaller search!

- Local/global constraints
 - Limited transitions
 - Nodes we never visit
And adding some constraints

- **Global constraints**
 - Can only visit these
 - Bold dots

- **Local constraints**
 - Can only transition using them
 - Black lines

- **Optimal path**
 - Blue line
Making this work for speech recognition

- Define a distance function
- Define local constraints
- Define global constraints
Distance function

- Given our robust feature we can use a simple measure like Euclidean distance: $d(i, j) = ||f_1(i) - f_2(j)||$
Global constraints

- Define time ratios that make sense
 - e.g. no sequence can be half as slow as the other one
Local constraints

- **Monotonicity:**
 \[i_{k-1} \leq i_k \quad j_{k-1} \leq j_k \]
 - Repeat, but don’t go backwards in time

- **This enforces time order**
 - Don’t match “ban” with “banana”
More local constraints

- Define acceptable local subpaths
 - Consider only these patterns
 - Application dependent
Toy data run

Local Constraint

Distance matrix

Cost matrix

Input 1

Input 2
Speech example with identical utterance
Ditto with similar utterance
Ditto with different utterance
A basic speech recognizer

- Collect template spoken words $T_i(t)$
- Get their DTW distances from input $x(t)$
 - Smallest distance wins
Example case

DTW-derived distances

Comparison with template 1

Comparison with template 2

Comparison with template 3

Comparison with template 4

Comparison with template 5

Input class
Defining a distance for time series

• Dynamic Time Warping computes time series distances
 • Dependent on the constraints, etc

• Having a time series distance gives us options
 • Nearest-neighbor classifiers (just did that)
 • Clustering of time series
 • Manifold embeddings of time series
 • ...
A real-world application of DTW

- Simplifying ADR
 - Costs time and money
- Automatically align audio tracks

Good take, lousy audio
Good audio, lousy sync
Good take, good audio!
What’s not quite right so far?

- Something I keep constantly complaining about ...
We prefer soft models

- The paths are hard decisions
- We’d rather have soft assignments
- Also obtaining probabilities would help
Starting with the GMM

- GMMs are “time agnostic”
- We don’t have a notion of a sequence
What if there is time order?

- Both plots are the same data
- But we see time structure on the left
Representing time

• Hidden Markov Model
 • Gaussian variant for now

• Each state is represented by a Gaussian distribution

• Transition probabilities between all states
 • Only the last state matters

Initial Probabilities: $P(A)$, $P(B)$, $P(C)$
Problems to solve

- **Evaluation**
 - Given a model, evaluate likelihoods

- **Decoding**
 - Given a model, find state sequences

- **Learning**
 - Given the data, find the model parameters
Evaluation

- Propagate likelihoods using the *forward algorithm*:

\[
\alpha_i(1) = P_1(i)P(x_1 | i)
\]

\[
\alpha_i(t + 1) = P(x_{t+1} | i) \sum_j \alpha_j(t)P(i | j)
\]
Evaluation

- Forward pass provides probability of a specific state and time, given past inputs

\[\alpha_i(t) = P(x_t | i) \sum_j \alpha_j(t - 1)P(i | j) \]

- Terminal time point values provide the overall likelihood of model given an input

\[P(x) = \sum_i \alpha_i(T) \]
Decoding

• The forward pass provides us with the state likelihoods
 • “soft” decisions

• With a backwards pass we can find most likely transitions
 • Just as we did with DTW

• The Viterbi algorithm
The Viterbi algorithm

• Similar to forward algorithm, but with a hard decision:

\[
v_i(1) = P_1(i)P(x_1 | i)
\]

\[
v_i(t + 1) = P(x_{t+1} | i) \max \left(P(j | i)v_j(t - 1) \right)
\]

• Probability of most likely path up to time \(t + 1 \) that ends in state \(i \)
• For every step remember most likely transition (as with DTW)

• Backwards pass
 • Get most likely terminal state
 • Work backwards using the most likely transitions
Learning

- An EM-type approach
 - Known as Baum-Welch training

- E-step
 - Find likelihood of each data point being associated with each state

- M-step
 - Estimate each state’s parameters based on the associations from the E-step
E-step: Forward-backward pass

- Forward pass provides probability of a specific state and time given past inputs $\alpha_i(t)$

- A backward pass will provide probability of given state and time given future inputs $\beta_i(t)$
 - Same as forward pass, but computed backwards in time

- The product of these will be the probability of a state and time given all inputs $\gamma_i(t) = \alpha_i(t) \beta_i(t)$
M-step: Parameter estimation

- State models
 - Use $\gamma_i(t)$ as weights to compute state parameters, e.g.:

 $$
 \mu_i = \frac{\sum_t x_t(t) \gamma_i(t)}{\sum_t \gamma_i(t)}
 $$

 $$
 \Sigma_i = \frac{\sum_t \gamma_i(t)(x_t - \mu_i)(x_t - \mu_i)^T}{\sum_t \gamma_i(t)}
 $$

- Transition matrix and initial probabilities
 - Count potential transitions between states
Noteworthy things

- HMM learning works with multiple training sequences
- Use log probabilities
 - What’s a state likelihood after a million time points? Can you represent it?
 \[\alpha_i(t) = P(x_t | i) \sum_j \alpha_j(t-1)P(i | j) \]
- Use an arbitrary state model
 - e.g. a neural net, or a GMM
Learning an HMM model

![Graph showing Log Likelihood and Epochs](image1)

![Graph showing Input and State sequence](image2)

Initial/Transition probabilities

Log Likelihood: -83.83
Back to speech

- Learning an HMM for a word
 - Each state should correspond to a coherent part
 - e.g. a syllable, a phoneme, etc

![Diagram of an HMM for speech]

- States labeled with words and phonemes
- Transitions between states
- Time axis and frequency axis shown

Silence /w/ /ə/ /n/ Silence
Fully-connected model

Log Likelihood: 135125.74

Initial/Transition probabilities

State sequence

Input
Left-to-right model

Log Likelihood: 144358.50

Initial/Transition probabilities

State sequence

Input

State

Time step

Epoch
Digit recognition results

Model log likelihoods

Distance

Likelihood 1

Distance

Likelihood 2

Distance

Likelihood 3

Distance

Likelihood 4

Distance

Likelihood 5

Input class
Speech recognition in a nutshell

- Small scale speech recognition

- Large scale systems are another beast ...
Elaborations

- Denser interconnections
 - e.g., second order time ties
- Markov random fields
Recap

- Learning with time series
- Dynamic Time Warping
- Hidden Markov Models
- Some basic speech recognition
Next lecture

- **Missing data**
 - Using temporal dynamics to fill in missing values

- **Dynamical systems**
 - Learning continuous time-series
Reading

- Textbook chapters 8, 9
- A tutorial on HMMs
Final projects!

• Time to start thinking about projects
 • Send us (me/TAs) an informal proposal by end of next week
 • 1-2 paragraphs

• You have to be part of a team
 • $2 \leq N \leq 3$, no solo projects, $N = 4$ if you have a good excuse

• Deliverables
 • A poster presentation/demo and a 3-4 page writeup
Some project advice

- Work on a domain you have expertise in (if any)
 - Bring your own (signal) data, don’t stick to generic projects

- Show me that you learned something in class
 - Demonstrate proper use of the tools we cover, use some signals-fu

- Propose multiple objectives, see how far you can go
 - One objective will be really easy to do (you pass the class)
 - Another will be tough, but doable (you get a potential paper out of it)
 - Final should be an amazing result (here’s your dissertation!)