Clustering
Today’s lecture

- Clustering
- Hierarchical models
- K-means et al.
- Spectral clustering
- Gaussian mixtures and EM
Back to unsupervised

- Supervised learning
 - Use labeled data to do something smart

- What if the labels don’t exist?
Some inspiration

El Capitan, Yosemite National Park
The way we’ll see it
A new question

- I see classes, but ...

- How do I find them?
 - Can I automate this?
 - How many are there?

- Answer: Clustering
Clustering

- Discover classes in data
 - Divide data in sensible clusters

- Fundamentally ill-defined problem
 - There is often no correct solution

- Relies on many user choices
Clustering process

- Describe your data using features
 - What’s your objective?

- Define a proximity measure
 - How is the feature space shaped?

- Define a clustering criterion
 - When do samples make a cluster?
Know what you want

• Features & objective matter
 • Which are the two classes?

Basketball player recruiting

Player's height

Player's knowledge of entomology
Know your space

• Define a sensible proximity measure

Angle of incidence

\[0 \quad 2\pi \quad 4\pi \]
Know your cluster type

- What forms a cluster in your space?
Know your cluster type

- What forms a cluster in your space?
Know your cluster type

• What forms a cluster in your space?
Know your cluster type

- What forms a cluster in your space?
How many clusters?

- The deeper you look the more you’ll get
There are no right answers!

- Part of clustering is an art
- You need to experiment to get there
- But some good starting points exist
How to cluster

- Tons of methods

- We can use step-based logical steps
 - e.g., find two closest point and merge, repeat

- Or formulate a global criterion
Hierarchical methods

- Agglomerative algorithms
 - Keep pairing up your data

- Divisive algorithms
 - Keep breaking up your data
Agglomerative Approach

- Look at your data points and form pairs
 - Keep at it
More formally

- Represent data as vectors:
 \[\mathbf{X} = \{ \mathbf{x}_i, i = 1, \ldots, N \} \]
- Represent clusters by: \(C_j \)
- Represent the clustering by:
 \[R = \{ C_j, j = 1, \ldots, m \} \]
 e.g. \(R = \{ \{ \mathbf{x}_1, \mathbf{x}_3 \}, \mathbf{x}_2 \{ \mathbf{x}_4, \mathbf{x}_5, \mathbf{x}_6 \} \} \)
- Define a distance measure: \(d(C_j, C_i) \)
Agglomerative clustering

• Choose: \(R_0 = \{ C_i = \{ x_i \}, i = 1, \ldots , N \} \)

• For \(t = 1, \ldots \)
 • Among all clusters in \(R_{t-1} \), find cluster pair \(\{ C_i, C_j \} \) such that:
 \[
 \arg \min_{i,j} d(C_i, C_j)
 \]
 • Form new cluster and replace pair:
 \[
 C_q = C_i \cup C_j
 \]
 \[
 R_t = \left(R_{t-1} - \{ C_i, C_j \} \right) \cup \{ C_q \}
 \]
 • Until we only have one cluster
Representing this process

• The Dendrogram

\[R_0 \ x_1 \ x_2 \ x_3 \ x_4 \ x_5 \]

\[R_1 \ R_3 \ R_4 \ R_2 \]
Another way

• Venn diagram
Cluster distance?

- Complete linkage
 - Merge clusters that result in the smallest diameter

- Single linkage
 - Merge clusters with two closest data points

- Group average
 - Use average of distances
Linkage behavior

- Clustering uniformly distributed data
- Where there aren’t really any clusters

single linkage

Links nearby points until the loneliness one is left out

complete linkage

Makes two compact clusters

average linkage

Finds “roundest” clusters that are separated by a void
What’s involved

- At level t we have $N - t$ clusters
- At level $t + 1$ the pairs we consider are:
 \[
 \binom{N - t}{2} = \frac{(N - t)(N - t - 1)}{2}
 \]
- Overall comparisons:
 \[
 \sum_{t=0}^{N-1} \binom{N - t}{2} = \frac{(N - 1)N(N + 1)}{6}
 \]
Not good for our problem

- El Capitan picture has 63,140 pixels
- How many cluster comparisons is that?

\[\sum_{t=0}^{N-3} \binom{N-t}{2} = 41,946,968,141,536 \]

- Thanks, but no thanks ...
Divisive Clustering

- Works the other way around
- Start with all data in one cluster
- Start dividing into sub-clusters
Divisive Clustering

- Choose: \(R_0 = \{ X \} \)

- For \(t = 1, \ldots \)
 - For \(k = 1, \ldots, t \)
 - Find least similar sub-clusters in each cluster
 - Pick the least similar from that set:
 \[
 \arg \max_{k,i,j} d(C_{k,i}, C_{k,j})
 \]
 - New clustering is now:
 \[
 R_t = (R_{t-1} - \{C_k\}) \cup \{C_{k,i}, C_{k,j}\}
 \]
 - Repeat until each point is a cluster
Comparison

• Which one is faster?
 • Agglomerative
 • Divisive has a complicated search step

• Which one gives “better” results?
 • Divisive
 • Agglomerative makes only local observations
Using a global criterion

• Given a set of data x_i

• Define a cost function:

$$J(\theta, U) = \sum_i \sum_j u_{ij} d(x_i, \theta_j)$$

• θ are the cluster parameters (e.g. mean)
• $U \in \{0,1\}$ is an assignment matrix
• $d()$ is a distance function
An iterative solution

- We can’t use a gradient method
 - The assignment matrix is binary-valued

- We have two parameters to find: θ, U
 - Fix one and find the other, repeat flip case
 - Iterate until we’re content
Overall process

- Randomly initialize \(\theta \) and iterate:
 - Estimate \(U \)
 \[
 u_{ij} = \begin{cases}
 1, & \text{if } d(x_i, \theta_j) = \min_k d(x_i, \theta_k) \\
 0, & \text{otherwise}
 \end{cases}
 \]
 - Estimate \(\theta \)
 \[
 \sum_i u_{ij} \frac{\partial d(x_i, \theta_j)}{\partial \theta_j} = 0
 \]
 - Repeat until satisfied
K-means

- Standard and extremely-popular algorithm
- Finds clusters in terms of region means
- Optimizes squared Euclidean distance from cluster means

\[d(x, \mu) = \|x - \mu\|^2 \]
K-means algorithm

• Initialize k means μ_j

• Iterate
 • Assign samples x_i to closest mean μ_j
 • Estimate μ_j from assigned samples x_i

• Repeat until convergence
Example run – step 1
Example run – step 2
Example run – step 3
Example run – step 4
Example run – step 5
How well does it work?

- Converges to a minimum of cost function
 - Not for all distances though!
- Is heavily biased by starting positions
 - Many tricks to alleviate that
- Sensitive to outliers
K-means on El Capitan

Input data

Clustered data
K-means on El Capitan

Input data

Clustered data
K-means on El Capitan

Input data

Clustered data
K-means on El Capitan

Input data

Clustered data
One problem

- K-means struggles with outliers
K-medoids

- **Medoid:**
 - Least dissimilar data point to all others
 - Not as influenced by outliers as the mean

- **Replace means with medoids**
 - Redesign k-means as k-medoids
K-medoids
One more problem

- K-means finds compact clusters
- And screws up cases like this one
Solution: Go to another space

• Spectral clustering approach

 • Define affinity matrix:

 \[A_{i,j} = \begin{cases}
 e^{-\frac{\|x_i - x_j\|^2}{\sigma}} & \text{if } i \neq j \\
 0 & \text{if } i = j
 \end{cases} \]

 • And “normalize” it:

 \[D_{i,i} = \sum_{j} A_{i,j} \]

 \[L = D^{-\frac{1}{2}} \cdot A \cdot D^{-\frac{1}{2}} \]
Project and k-means it

- Compute its k largest eigenvectors
 - Which is the same as dimensionality reduction

- And perform k-means on the result
And voilà

- We can now discover non-compact clusters

- Does this sound familiar?
 - KPCA / Manifolds

- Spectral algorithms
 - Close relationship to graph theory
Works with really complex clusters

• E.g. three intertwined rings
Getting picky

- Any objection to k-means?
A familiar complaint

- Hard assignments are bad ...
 - Just like with kNN we make hard assignments
 - Which we should avoid!

- Like before we’ll “soften up” the model
A new look towards the means

- Instead of the mean vectors use Gaussians
 \[
 d(x, \mu) = \|x - \mu\|^2 \rightarrow \frac{1}{\left(\frac{d}{2}\pi\right)^{d/2} |\Sigma|^{1/2}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1} (x-\mu)}
 \]
- Instead of a hard assignment use soft assignments
 \[
 u_{ij} \in \{0,1\} \rightarrow u_{ij} \equiv P(z_j | x_i, \mu_j, \Sigma_j)
 \]
A Gaussian Mixture Model

- This effectively defines each cluster as a Gaussian distribution
Formal definition

• Maximize model likelihood given data

\[P(x) = \sum_k \pi_k \mathcal{N}(x | \mu_k, \Sigma_k) \]

• We can’t solve this in a closed-form solution!
 • But we can use a process similar to the one we used to solve the k-means problem
“Softening” k-means

- You have multiple components

- Step 1:
 - Find soft assignment of each component on data

- Step 2:
 - Re-estimate component models using soft assignment as weights on the given data points

- Repeat until convergence
 - Will always increase likelihood towards a local maximum
Expectation-Maximization

- For a latent model: $P(X, Z | \theta)$
 - Maximize $P(X | \theta)$

- Choose initial parameters θ (may be random, or not)
 - E-step: Evaluate $P(Z | X, \theta)$
 - M-step: Estimate updated parameters
 \[
 \theta^{new} = \arg \max_{\theta} \sum_{Z} P(Z | X, \theta^{old}) \log P(X, Z | \theta)
 \]

- Repeat until convergence
EM for GMMs

- Initialize μ_k, Σ_k, π_k
 - Can be random or based on previous clustering results

- E-step
 - Find how much each Gaussian explains every available data point

$$\gamma_{n,k} = \frac{\pi_k \mathcal{N}(x_n \mid \mu_k, \Sigma_k)}{\sum_j \pi_j \mathcal{N}(x_n \mid \mu_j, \Sigma_j)}$$
EM for GMMs

• M-step
 • Weigh data and re-estimate parameters

\[
N_k = \sum_n \gamma_{nk}
\]

\[
\mu_k \leftarrow \frac{1}{N_k} \sum_n \gamma_{nk} \mathbf{x}_n
\]

\[
\Sigma_k \leftarrow \frac{1}{N_k} \sum_n \gamma_{nk} (\mathbf{x}_n - \mu_k) (\mathbf{x}_n - \mu_k)^T
\]

\[
\pi_k \leftarrow \frac{N_k}{N}
\]
EM for GMMs

- Alternate between E and M steps until convergence
- Upon conclusion we have the model parameters
GMMs on El Capitan
GMMs on El Capitan

- More accurate than k-means
- Graceful handling of ambiguous regions
- Probabilistic interpretation!

Input
k-means
CMM
One more example

- Taking the spectrogram of a TV show
- Let’s see what the clusters are like
Drop the dimensions

- We can do PCA
 - Dropping from 2049 dimensions down to 8
- Can you see any clusters?
Performing GMM

- Looking for three clusters
- Finds frames with similar spectra (in the low PCA space)

What do these frames sound like?
- Cluster 3 = Music
- Cluster 2 = Speech
- Cluster 1 = Audience laughter
Some notes on GMMs

• In practice full covariances can explode!
 • You can use diagonal covariance matrices instead
 • Use more Gaussians to make up for the fewer parameters

• Initial conditions matter a lot
 • Can initialize means using k-means
GMMs for classification

- GMMs model the distribution of data

- We can model multiple classes separately
 - One GMM per class

- Then evaluate likelihood given GMMs
 - Input belongs to most likely GMM
Example case

- Training data
Learned GMMs

- Fitted class Gaussians (2 per class)
Making a classifier

- Implied decision boundaries from Gaussians
Close ties to unsupervised

• PCA/ICA/NMF are latent variable models
 • We can also learn them through EM

• K-means and PCA have a close connection
 • We can perform k-means through PCA

• Features and clusters are similar ideas
Recap

• Hierarchical clustering
• K-means/medoids
 • Hard decisions, fast, reliable
• Spectral clustering
 • Finds quirky clusters
• Gaussian Mixture Models
 • Soft decisions, probabilistic, fantastic tool
• Expectation Maximization
 • Parameter estimation with mixture models
Next lecture

- Learning time series
- Hidden Markov models
Reading

- Textbook chapter 11, 14.5, 2.5.5

- Optional: all of the clustering chapters

- Spectral clustering:
It’s that time again

- The third problem set is out
 - This one is on classification
 - Hint: The problem sets have you write all the code you would need for your final project, thus making your life easier later

- Yes, this one is easier