Features Part II – ICA and NMF
Today’s lecture

• What comes after PCA

• Independent Component Analysis
 • Achieving complete “decorrelation”

• Non-Negative Matrix Factorization
PCA and decorrelation

• Goal of PCA
 • Diagonalize the covariance
 $x^\top \cdot y = E\{xy\} = 0$
 • i.e. Decorrelate the feature weights

• Why?
 • We want to have the features activated in a statistically independent manner
 • So that they capture more structure
Statistical Independence

- We defined statistical independence as:

\[P(x, y) = P(x)P(y) \]
Statistical Independence

- We defined statistical independence as:
 \[P(x, y) = P(x)P(y) \]
- Which implies:
 \[E\{f(x)g(y)\} = E\{f(x)\}E\{g(y)\} \]
 - For all measurable functions \(f \) and \(g \)
- Essentially independence means that we can’t tell anything about \(x \) if we observe \(y \)
Decorrelation and Independence

- Decorrelation does not imply independence!
 - Decorrelation: \(E{xy} = E{x}E{y} \)
 - Independence: \(E{f(x)g(y)} = E{f(x)}E{g(y)} \)

- But independence implies decorrelation
 - When \(f \) and \(g \) are identity functions
 - Independence is a superset of decorrelation
Decorrelation and Independence

- An example with discrete variables
 - Are they uncorrelated?

<table>
<thead>
<tr>
<th></th>
<th>$x = -1$</th>
<th>$x = 0$</th>
<th>$x = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = -1$</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>0</td>
</tr>
<tr>
<td>$y = 0$</td>
<td>$\frac{1}{4}$</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
</tr>
<tr>
<td>$y = 1$</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>0</td>
</tr>
</tbody>
</table>
Decorrelation and Independence

• An example with discrete variables

 • Are they correlated?

 \[
 \begin{array}{ccc}
 y = -1 & x = -1 & x = 0 & x = 1 \\
 0 & \frac{1}{4} & 0 \\
 y = 0 & \frac{1}{4} & 0 & \frac{1}{4} \\
 y = 1 & 0 & \frac{1}{4} & 0 \\
 \end{array}
 \]

 • \(x, y\) are uncorrelated

 \[
 E\{xy\} = E\{x\}E\{y\} = 0
 \]
Decorrelation and Independence

- An example with discrete variables
- Are they independent?

<table>
<thead>
<tr>
<th></th>
<th>$x = -1$</th>
<th>$x = 0$</th>
<th>$x = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$y = -1$</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>0</td>
</tr>
<tr>
<td>$y = 0$</td>
<td>$\frac{1}{4}$</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
</tr>
<tr>
<td>$y = 1$</td>
<td>0</td>
<td>$\frac{1}{4}$</td>
<td>0</td>
</tr>
</tbody>
</table>
Decorrelation and Independence

- An example with discrete variables
 - Are they independent?

<table>
<thead>
<tr>
<th></th>
<th>x == −1</th>
<th>x == 0</th>
<th>x == 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>y == −1</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
<tr>
<td>y == 0</td>
<td>1/4</td>
<td>0</td>
<td>1/4</td>
</tr>
<tr>
<td>y == 1</td>
<td>0</td>
<td>1/4</td>
<td>0</td>
</tr>
</tbody>
</table>

- \(x, y\) are not statistically independent

\[
E\{x^2 y^2\} = 0 \neq E\{x^2\}E\{y^2\} = \frac{1}{4}
\]
The signals version

- Decorrelated?

\[x = \sin(t) \]
\[y = \sin(2t) \]
The signals version

- Decorrelated?
 \[x = \sin(t) \]
 \[y = \sin(2t) \]
- Yes: \(E\{xy\} = 0 \)
 - But I can predict one from the other
 - Not independent!
So how do we get independence?

- Multiple ways of dealing with the problem
 - Family of algorithms known as ICA
 - Independent Component Analysis
- Formal definition:

\[y = W \cdot x \]

\[P(y_i, y_j) = P(y_i)P(y_j), \forall i, j \]
Approach 1

- **Non-linear decorrelation** (assume zero mean inputs from now on)
 - Achieve: \(E\{f(y_i)g(y_j)\} = 0 \)
 - for a fixed \(f \) and \(g \)

- **Cichocki-Unbehauen algorithm**
 - Stops updating when independence holds

\[
\begin{align*}
\Delta W & \propto \left(D - f(y_i) \cdot g(y_j^\top) \right) \cdot W \\
W & = W + \mu \Delta W
\end{align*}
\]

\[
D = \begin{bmatrix}
d_1 & 0 \\
\vdots & \ddots \\
0 & d_n
\end{bmatrix}
\]

\(f(x), g(x) \) can be \(\tanh(x), x^3, \ldots \)
Approach 2

- Higher-order “diagonalization”
 - In PCA we diagonalized the covariance matrix
 - which is a $N \times N$ structure (a matrix)
 $$\text{Cov}(y)_{i,j} = E\{y_i y_j\} = \kappa_2(y_i, y_j)$$
 - In ICA we also diagonalize the quadricovariance tensor
 - which is a $N \times N \times N \times N$ structure (a tensor!)
 $$Q(y)_{i,j,k,l} = \kappa_4(y_i, y_j, y_k, y_l) = E\{y_i y_j y_k y_l\} -$$
 $$E\{y_i y_j\} E\{y_k y_l\} - E\{y_i y_k\} E\{y_j y_l\} - E\{y_i y_l\} E\{y_j y_k\}$$
 - confused yet?
Approach 2

• Conceptually we perform a tensor singular value decomposition

• Comon’s algorithm
 • 1) Do PCA
 • Imposes decorrelation (halfway there)
 • 2) Find unitary transform that minimizes fourth order cross-cumulants
Approach 3

- Information theoretic optimization

 - Minimize mutual information: \(I(y) = \sum H(y_k) - H(y) \)

 - Which implies minimizing: \(D(y) = -\int P(y) \log \frac{P(y)}{\prod P(y_k)} \)

- Iterative rule: \(\Delta W \propto (I - f(y) \cdot y^T) \cdot W \)

 - Looks familiar?
Approaches 4, 5, ...

- Maximum likelihood
- FastICA
 - A fast fixed-point algorithm
- Neural nets
 - Directly optimize KL divergence/Mutual information
- Negentropy
 - A measure of non-gaussianity
- ...

What approach works best?

- As usual, no good answer ...
- Algebraic algorithms
 - HSVD, cumulant tensors, etc.
 - Computationally demanding
- Iterative algorithms
 - Non-linear decorrelation, infomax, etc
 - Small, fast, but prone to blowups
- FastICA
 - Fixed-point algorithm
 - Quite robust and reliable
So what does ICA do?

- Take two uniform RVs and mix them
 \[r_1, r_2 \sim U(-1,1) \]
 \[x = 2r_1 + r_2 \]
 \[y = r_1 + r_2 \]

- This creates a dependent \(x \) and \(y \)
- Seen as rotation and stretching of data
Performing PCA

- PCA will decorrelate
 - Note that rotation highlights maximal variance directions

- The resulting projection has not produced independence
So what does ICA do?

- ICA output is independent!
- We essentially recover the original RVs that composed the input
ICA issues

• Most estimators are approximate
 • The resulting output is not necessarily the correct one

• There might not be independence
 • ICA returns a maximally independent projection, not an independent one
 • Again the output might not be what you expected to get!
ICA limitations

- Invariance to output permutations

\[P(y_1, y_2, y_3) = P(y_1)P(y_2)P(y_3) = P(y_2)P(y_1)P(y_3) = \ldots \]

 - Output order is not guaranteed and can differ through runs

- No sense of ordering of components
 - PCA orders outputs in terms of variance
 - ICA doesn’t have an order
 - As a result we can’t reduce dimensionality!
Combining PCA and ICA

• If we need to perform dimensionality reduction we precede ICA with PCA
 • 1) Use PCA to reduce dimensionality
 • 2) Use ICA to impose independence
 • Apply ICA on the output of the PCA

• That’s ok, since ICA is a generalization of PCA
So what about the features?

• How do ICA and PCA features differ?

• ICA features provide a more compact/sparse “code”
 • PCA “code” can still have statistical dependencies

• PCA features and projection are decorrelated
 • There is no constraint on the ICA features
 • Only the decomposition output is independent
Analysis vs. synthesis features

• One more distinction to make

• PCA features are “bi-directional”
 \[z = W \cdot x \]
 \[\hat{x} = W^\top \cdot z \]

• That won’t hold anymore
 • We have analysis features: \[z = W \cdot x \]
 • And synthesis features: \[\hat{x} = W^+ \cdot z \]
Be careful when combining the two!

• If we want both dimensionality reduction and independence
 • Step 1: Do PCA to reduce the dimensions
 \[Z_p = W_p \cdot X, \quad X \in \mathbb{R}^{M \times N}, \quad W_p \in \mathbb{R}^{K \times M}, \quad Z_p \in \mathbb{R}^{K \times N} \]
 • Step 2: Do ICA on the PCA weights to produce independence
 \[Z_I = W_I \cdot Z_p, \quad W_I \in \mathbb{R}^{K \times K}, \quad Z_I \in \mathbb{R}^{K \times N} \]

• What’s what?
 • Analysis features: \[Z_I = \left(W_I \cdot W_p \right) \cdot X \Rightarrow W = W_I \cdot W_p, \quad W \in \mathbb{R}^{K \times M} \]
 • Synthesis features: \[\hat{X} = \left(W_I \cdot W_p \right)^+ \cdot Z_I \]
Example features from sounds

• Obtain lots and lots of natural sounds
 • E.g. sounds found in nature, birds, walking on leaves, etc.

• Place short windows in a large matrix
 • and do PCA and ICA

\[
\mathbf{Z} = \mathbf{W} \cdot \begin{bmatrix}
x(t) & x(t+1) \\
\vdots & \vdots \\
x(t+N) & x(t+1+N)
\end{bmatrix}
\]

• We know that PCA results in sinusoids
Example features from sounds
Same with images

- ICA components look a lot like the V1 receptive fields!
What about faces?

Eigenfaces

ICA-faces
One lesson learned from ICA

- PCA assumes a Gaussian world
 - For a multivariate Gaussian input it does indeed return independent outputs
 - >2nd order Gaussian cumulants are already zero

- ICA work relaxes the Gaussian assumption and assumes a “heavy-tailed” world
 - This is more like the world we live
 - This was a big revelation in machine learning!
Non-Negative Matrix Factorization

• A recent algorithm (Lee & Seung 1999) closely related to components analyses

• Has one magical property
 • It always gives you what you want!

• Has one annoying property
 • Nobody knows quite why!!!
Non-negative data

• We often deal with “non-negative data”
 • Pixels, energies, compositions, counts, etc

• Non-negative data need special treatment
 • Negative valued features can contradict reality
Example case

• The Iris data set
 • Each row is a size measurement (i.e. positive)

<table>
<thead>
<tr>
<th>Iris Setosa</th>
<th>Iris Versicolour</th>
<th>Iris Virginica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sepal length in cm</td>
<td>Sepal width in cm</td>
<td>Petal length in cm</td>
</tr>
<tr>
<td>Petal width in cm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PCA/ICA analysis on iris data

- Both give features that are partly negative
 - What does that mean?

- **PCA features**
- **ICA features**
Same with eigenfaces

- “Negative” images as bases – why??
Obtaining non-negative features

- Define the factorization problem
 \[X \approx W \cdot H \]
 \[X \in \mathbb{R}^{M\times N, \geq 0}, \quad W \in \mathbb{R}^{M\times R, \geq 0}, \quad H \in \mathbb{R}^{R\times N, \geq 0} \]
 - This is similar to the PCA/ICA setup
 - \(R \) defines the low-rank dimensionality

- How do we solve this one?
 - One known, two unknowns, ugh ...
Solving for the factorization

- We need to estimate two factors
 - Alternate their estimation

- Example algorithm
 - Start with random W
 - estimate an H given W
 - estimate a new W given H
 - repeat until convergence
Solving for one factor

- The problem is simpler
 - Only one unknown

\[
\min_{W \text{ or } H} \sum_{i,j} \left| X - W \cdot H \right|^2
\]

\[
X \in \mathbb{R}^{M \times N, \geq 0}, \ W \in \mathbb{R}^{M \times R, \geq 0}, \ H \in \mathbb{R}^{R \times N, \geq 0}
\]

- Imposing non-negativity
 - Non-negative least squares (slow)
 - Constrained optimization (slow)
 - Do least-squares and clip the negative numbers (fast!)
A simple NMF algorithm

• Start with random W
 • estimate new H given W: $H = W^+ \cdot X$
 $H = \max(H, 0)$
 • estimate new W given H: $W = X \cdot H^+$
 $W = \max(W, 0)$
• repeat until convergence
Conceptual problem

- We don’t want to use pseudoinverses
 - They imply least-squares minimization
 - Least squares imply Gaussian data
 - We don’t have Gaussian data ...

- We define a special distance
 - A variant of KL divergence

\[
\min_{w, h} \left[\sum_{i, j} x_{i, j} \log \frac{x_{i, j}}{(w \cdot h)_{i, j}} - x_{i, j} + (w \cdot h)_{i, j} \right]
\]
Multiplicative updates

- Using some optimization magic we get:

\[
W_{i,j} = W_{i,j} \sum_k \frac{X_{i,k}}{(W \cdot H)_{i,k}} H_{j,k}
\]

\[
H_{j,k} = H_{j,k} \sum_i W_{i,j} \frac{X_{i,k}}{(W \cdot H)_{i,k}}
\]

- Significantly faster operations
 - Just matrix and scalar multiplications
 - No inversions
An example

- Start with input X
- NMF will decompose as $X \approx W \cdot H$
- The columns of W will contain “vertical” information about X
- The rows of H will contain “horizontal” information about X
Back to the iris data

- NMF on iris provides interpretable results
 - We see the structure
 - The features are meaningful as sizes

- PCA/ICA features
 - Not so useful
Decomposition by parts

• NMF does “additive decompositions”
 • Explains data in terms of things you add

• This correlates with how we think
 • Scenes are made out of objects
 • We never have “negative” object presence
Example on faces

- Both PCA and NMF describe the data to a good degree
 - Eigenfaces are not interpretable though (very abstract notions)
 - NMF-faces find parts that are additive (noses, eyes, etc.)

- NMF is a better way to explain structured data
Component analyses on movies

- Movies are fun data for component analyses
 - Immense dimensionality
 - Too much data to train on, we need a more compact form
 - PCA/NMF can do that!
 - Scenes are composed out of elements
 - We want to discover these elements to better analyze the input
 - ICA/NMF can do that!
 - There are visual data and audio data
 - Both exhibit their own structure, often they interrelate
 - All techniques help there!
A Video Example

- The movie is a series of frames
 - Each frame is a data point
 - 126, 80 × 60 pixel frames
 - Data will be 4800 × 126

- Using different analyses
 - PCA, ICA, NMF
 - Compare features and weights
PCA Results

- Nothing special about the visual components
- They are orthogonal pictures
 - Does this mean anything? (not really ...)
 - Some segmentation between constant vs. moving parts
- Some highlighting of the action in the weights
ICA Results

- Much more interesting visual components
- They are independent
 - Unrelated elements (l/r hands, background) are now highlighted
 - We have a decomposition by parts
- Component weights are now describing the scene
NMF Results

- A different take on the visual components
- We don’t know how they relate, but ...
 - They describe some of the possible states of the video
 - Perhaps a more semantically meaningful representation
- Component weights are as vague as with PCA (because we have more components than we need)
If we use the right dimensions

- The results look exactly as we would want them!
Audio Visual Components?

• We can even take in both audio and video data and try to find structure.
• Sometimes there is a very strong correlation between auditory and visual elements.
• We should be able to discover that automatically.
What does the data look like?

57,600 pixel dimensions

257 audio dimensions

Time

0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
5.5

x 10^4

56
Audio/Visual PCA components

Audio component 1

Audio component 2

Audio component 3

Audio component 4

Audio component 5

Audio component 6

Video component 1

Video component 2

Video component 3

Video component 4

Video component 5

Video component 6

Weights

Time

Audio/Visual PCA components
Audio/Visual ICA components

Audio component 1
Audio component 2
Audio component 3
Audio component 4
Audio component 5
Audio component 6

Video component 1
Video component 2
Video component 3
Video component 4
Video component 5
Video component 6

Weights

Time

Audio/Visual ICA components – FALL 2015

Machine Learning for Signal Processing
Audio/Visual NMF components

Audio component 1
Audio component 2
Audio component 3
Audio component 4
Audio component 5
Audio component 6

Video component 1
Video component 2
Video component 3
Video component 4
Video component 5
Video component 6

Weights

Time

C1
C2
C3
C4
C5
C6
Audio/Visual NMF components

Audio component 1

Video component 1

Audio component 2

Video component 2

Audio component 3

Video component 3

Audio component 4

Video component 4

Audio component 5

Video component 5

Weights

Time

C1
C2
C3
C4
C5
PCA, ICA or NMF?

- Depends on what you want to do
 - PCA does a fantastic job in dimensionality reduction
 - ICA provides a clean output
 - And is perceptually more relevant
 - NMF provides interpretable outputs
 - But only for non-negative data
- As usual there is no right answer
 - When in doubt try them all!
Recap

- **Independent Component Analysis**
 - Obtains maximal independence
 - Does not reduce dimensionality

- **Non-Negative Matrix Factorization**
 - Best for analysis of non-negative data
 - pixels, energies, count data, etc ...
 - No particular statistical property though
Next lecture

• Last on features for a while

• Non-linear methods
 • What do do when your data looks really strange

• Manifolds and embedding
 • Finding latent structure in high dimensions
Reading

- Textbook sections 6.5-6.6
- Independent Component Analysis (optional)
- Natural stimuli statistics (optional)
- Non-negative Matrix Factorization (optional)