CS 598 Machine Learning for Signal Processing

Probability, Statistics & Parameter Estimation

28 August 2015
Logistics

• Did everyone get the class email?
 • If not, send me your NetID so that I can add you to the mailing list

• Is there a waiting list to register for the class?
 • Sorry no, just keep trying to register

• Class recordings are available for registered students at:
 • https://recordings.engineering.illinois.edu:8443/ess/portal/section/242d0f51-7fa8-49d2-aa4c-b2b78701dc10
 • Remember attendance counts!
Today’s refresher

- Probability
- Statistics
- Parameter Estimation
Probability

- Probit
 - Measure of legal authority/nobility
 - Passed muster in the middle ages

- Probability
 - Measure of belief/likelihood
 - Passes muster today
Goals of probability

• Characterize stochastic processes
 • How do dice roll?
 • What am I more likely to say next?

• Indicate belief given evidence
 • The suspect was nearby and there are feathers on his clothes. Was he the chicken thief?
An example

- We start picking oranges, apples and bananas, from the two boxes below
 - Pick 40% from red box, 60% from green box
The random variables

- The box: $B = \{r, g\}$
- The fruit: $F = \{a, o, b\}$
 - What are their probabilities?
Box probabilities

- Obviously:
 - $P(B == g) = 6/10$
 - $P(B == r) = 4/10$
 - $P(\cdot) \in [0,1]$
Asking questions

- What is the probability of picking an apple?
- If we pick an orange, what is the probability that it came out of the green box?
Keeping track

- Keep track of N experiments in a table
- N is large, even infinite

\[
\begin{array}{|c|c|c|c|}
\hline
& \text{Apple} & \text{Banana} & \text{Orange} \\
\hline
\text{Green Box} & n_{ga} & n_{gb} & n_{go} \\
\hline
\text{Red Box} & n_{ra} & n_{rb} & n_{ro} \\
\hline
\text{Any box} & n_a & n_b & n_o \\
\hline
\end{array}
\]
Single variable probabilities

\[
P(B \equiv i) = \frac{n_i}{N} \\
P(F \equiv j) = \frac{n_j}{N}
\]

\[
B
\]

Green Box

- Apple: \(n_{ga} \)
- Banana: \(n_{gb} \)
- Orange: \(n_{go} \)
- Any fruit: \(n_g \)

Red Box

- Apple: \(n_{ra} \)
- Banana: \(n_{rb} \)
- Orange: \(n_{ro} \)
- Any fruit: \(n_r \)

Any box

- Apple: \(n_a \)
- Banana: \(n_b \)
- Orange: \(n_o \)
Joint probabilities

\[P(B = i, F = j) = \frac{n_{ij}}{N} \]

\[P(B = i, F = j) = P(F = j, B = i) \]

<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th>Banana</th>
<th>Orange</th>
<th>Any fruit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Box: B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{ga}</td>
<td>n_{gb}</td>
<td>n_{go}</td>
<td>(n_g)</td>
<td></td>
</tr>
<tr>
<td>Red Box: F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n_{ra}</td>
<td>n_{rb}</td>
<td>n_{ro}</td>
<td>(n_r)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>n_{a}</td>
<td>n_{b}</td>
<td>n_{o}</td>
<td>(n)</td>
</tr>
</tbody>
</table>
The sum rule

\[n_i / N = \left(n_{ia} + n_{ib} + n_{io} \right) / N \]

\[P(B == i) = \sum_{\forall j} P(B == i, F == j) \]

<table>
<thead>
<tr>
<th>Fruit</th>
<th>Green Box</th>
<th>Red Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>(n_{ga})</td>
<td>(n_{ra})</td>
</tr>
<tr>
<td>Banana</td>
<td>(n_{gb})</td>
<td>(n_{rb})</td>
</tr>
<tr>
<td>Orange</td>
<td>(n_{go})</td>
<td>(n_{ro})</td>
</tr>
<tr>
<td>Any fruit</td>
<td>(n_{g})</td>
<td>(n_{r})</td>
</tr>
<tr>
<td></td>
<td>(n_{a})</td>
<td>(n_{b})</td>
</tr>
</tbody>
</table>
Conditional probability

\[P(F == j \mid B == i) = \frac{n_{ij}}{n_i} \]

<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th>Banana</th>
<th>Orange</th>
<th>Any fruit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Box</td>
<td>(n_{ga})</td>
<td>(n_{gb})</td>
<td>(n_{go})</td>
<td>(n_g)</td>
</tr>
<tr>
<td>Red Box</td>
<td>(n_{ra})</td>
<td>(n_{rb})</td>
<td>(n_{ro})</td>
<td>(n_r)</td>
</tr>
<tr>
<td></td>
<td>(n_a)</td>
<td>(n_b)</td>
<td>(n_o)</td>
<td></td>
</tr>
</tbody>
</table>
The product rule

\[P(B = i, F = j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{n_i} \frac{n_i}{N} = P(F = j | B = i) P(B = i) \]

\[F \]

<table>
<thead>
<tr>
<th></th>
<th>Apple</th>
<th>Banana</th>
<th>Orange</th>
<th>Any fruit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green Box</td>
<td>(n_{ga})</td>
<td>(n_{gb})</td>
<td>(n_{go})</td>
<td>(n_g)</td>
</tr>
<tr>
<td>Red Box</td>
<td>(n_{ra})</td>
<td>(n_{rb})</td>
<td>(n_{ro})</td>
<td>(n_r)</td>
</tr>
<tr>
<td></td>
<td>(n_a)</td>
<td>(n_b)</td>
<td>(n_o)</td>
<td></td>
</tr>
</tbody>
</table>
The two basic rules

- **Sum Rule:**

\[P(X) = \sum_{Y} P(X,Y) \]

- **Product Rule:**

\[P(X,Y) = P(Y \mid X)P(X) \]
Bayes theorem

- From product rule & joint symmetry

\[
P(Y | X) = \frac{P(X | Y)P(Y)}{P(X)}
\]

\(P(Y | X) \) \(\text{Posterior} \)
\(P(X | Y)P(Y) \) \(\text{Likelihood} \)
\(P(X) \) \(\text{Prior} \)
\(\text{Normalizing constant} \)

- Will answer most of your questions!
Independence

- If:

\[P(B = i, F = j) = P(B = i)P(F = j) \]

- Then \(B \) and \(F \) are independent

- Also means, via the product rule, that:

\[P(F | B) = P(F) \]

- If both boxes had the same fraction of fruits, then we would have independence
Back to the fruit

- What’s the probability of picking a banana?
 - Sum rule: \(P(b) = P(b, r) + P(b, g) \)
Back to the fruit

• What’s the probability of the red box given that I picked an apple?
 • Bayes rule: $P(r \mid a) = \frac{P(a \mid r)P(r)}{P(a)}$
Schools of thought

• Frequentists
 • Probabilities are interpretations of frequencies of occurrence in experiments
 • There can only be one solution!

• Bayesians
 • Probabilities are a degree of belief, not a result of a counting experiment
 • What’s the distribution of the parameter? The priors?
Why belief?

• “Will a meteor hit earth?”
 • Frequentist: Let us wait until N is large ...

• Using a Bayesian treatment we can find a likelihood given the evidence, not the data
 • But that requires models, priors, assumptions, ... More later
A practical application

Statistics in the Real World: The Search for the USS Scorpion

http://www.youtube.com/watch?v=U9-G-noZrwc
Getting lost? Don’t worry

• Probability is super tricky
 • Even seasoned professionals get it wrong!
 • E.g. the Monty Hall problem

http://marilynvossavant.com/game-show-problem/
Quick answer

<table>
<thead>
<tr>
<th>Pick door 1 and switch</th>
<th>Door 1</th>
<th>Door 2</th>
<th>Door 3</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st case</td>
<td>Car</td>
<td>Goat</td>
<td>Goat</td>
<td>Switch & lose</td>
</tr>
<tr>
<td>2nd case</td>
<td>Goat</td>
<td>Car</td>
<td>Goat</td>
<td>Switch & win</td>
</tr>
<tr>
<td>3rd case</td>
<td>Goat</td>
<td>Goat</td>
<td>Car</td>
<td>Switch & win</td>
</tr>
<tr>
<td>4th case</td>
<td>Car</td>
<td>Goat</td>
<td>Goat</td>
<td>Switch & win</td>
</tr>
<tr>
<td>5th case</td>
<td>Goat</td>
<td>Car</td>
<td>Goat</td>
<td>Switch & lose</td>
</tr>
<tr>
<td>6th case</td>
<td>Goat</td>
<td>Goat</td>
<td>Car</td>
<td>Switch & lose</td>
</tr>
</tbody>
</table>

Pick door 1 and stay

<table>
<thead>
<tr>
<th>Door 1</th>
<th>Door 2</th>
<th>Door 3</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car</td>
<td>Goat</td>
<td>Goat</td>
<td>Switch & win</td>
</tr>
<tr>
<td>Goat</td>
<td>Car</td>
<td>Goat</td>
<td>Switch & win</td>
</tr>
<tr>
<td>Goat</td>
<td>Goat</td>
<td>Car</td>
<td>Switch & lose</td>
</tr>
<tr>
<td>Goat</td>
<td>Goat</td>
<td>Car</td>
<td>Switch & lose</td>
</tr>
</tbody>
</table>
Continuous distributions

- What if we have infinite colors of boxes, and infinite types of fruit?
Same(ish) rules (harder proofs)

- **Sum rule:** \(P(x) = \int P(x, y) dy \)

- **Product rule:** \(P(x, y) = P(y | x)P(x) \)

- **Bayes rule:** \(P(x | y) = \frac{P(y | x)P(x)}{P(y)} \)
Some properties

- Integration to unity

\[\int_{-\infty}^{\infty} P(x) = 1 \]

 - You’ll be amazed how many get this wrong!

- Probabilities are real and non-negative

\[P(x) \in \mathbb{R} \quad P(x) \geq 0 \]

 - Well, they don’t have to be. More on that later ...
Useful operations

• **Expectation:** \(\mathbb{E}(f(x)) = \int P(x)f(x)\,dx \)

• **Conditional expectation:** \(\mathbb{E}_x(f(x) \mid y) = \int P(x \mid y)f(x)\,dx \)

• **Variance:** \(\text{var}(f(x)) = \mathbb{E}\left[\left(f(x) - \mathbb{E}[f(x)]\right)^2\right] = \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2 \)

• **Covariance:** \(\text{cov}[x, y] = \mathbb{E}_{x,y}(xy) - \mathbb{E}(x)\mathbb{E}(y) \)
Popular distributions

- We’ll be seeing a lot of:
 - The Gaussian
 - Used pretty much everywhere
 - The Laplacian
 - Used for sparse models
 - The Dirichlet
 - Used for compositional models
 - The Exponential Family
 - Very useful properties!
The Gaussian

- Also known as the Normal distribution or the bell curve

\[\mathcal{N}(\mathbf{x}; \mu, \Sigma) = \frac{1}{\sqrt{2\pi^D |\Sigma|}} e^{-\frac{1}{2}(\mathbf{x} - \mu)^\top \Sigma^{-1}(\mathbf{x} - \mu)} \]

\(\mathbf{x} \in \mathbb{R}^D \)

One-dimensional Gaussians

Two-dimensional Gaussians
Why the Gaussian?

- Makes the Euclidean distance a distribution

\[\mathcal{N}(x; \mu, \sigma) = \frac{1}{(2\pi\sigma^2)^{1/2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

- If you assume squared Euclidean errors, then you are using a Gaussian
The Gaussian parameters

\[\mathcal{N}(x; \mu, \Sigma) = \frac{1}{\sqrt{2\pi^D |\Sigma|}} e^{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)} \quad x \in \mathbb{R}^D \]

- The mean: \(E(x) = \mu \)
- The covariance: \(\text{cov}(x) = \Sigma \)
- The mode: \(\text{mode}(x) = \mu \)
Special case

Fig 1.0 The Extended Bell Curve.

– by Tang Yau Hoong
The Laplacian

- Sharper than the Gaussian
- Uses absolute distance, not Euclidean

\[P(x; \mu, b) = \frac{1}{2b} e^{-\frac{|x-\mu|}{b}} \]

- Mean: \(\mu \)
- Variance: \(2b^2 \)
- Mode: \(\mu \)
Beta/Dirichlet distributions

- Defined on a simplex
 - $x_1 + x_2 + x_3 + ... = 1$

 $$P(x; a) = \frac{\prod \Gamma(a_i)}{\Gamma(\sum a_i)} \prod x_i^{a_i-1}$$

- For 1D the Dirichlet is the Beta

- Mean: $E[x_i] = a_i / a_0$

- Variance: $\text{cov}[x_i, x_j] = -a_i a_j / a_0^2(a_0 + 1)$

- Mode: $x_i = (a_i - 1) / (a_0 - K)$
The exponential family

- Any distribution that can be written as:
 \[P(x; \eta) = h(x) g(\eta) e^{\eta^\top u(x)} \]

- \(\eta \) contains the natural parameters
- \(u(x) \) is some function of \(x \)
- \(g(\eta) \) is just for normalization
Gaussian example

\[P(x; \eta) = h(x) g(\eta) e^{\eta^\top u(x)} \]

\[u(x) = \begin{bmatrix} x \\ x^2 \end{bmatrix}, \quad h(x) = (2\pi)^{-1/2} \]

\[\eta = \begin{bmatrix} \mu / \sigma^2 \\ -1 / 2\sigma^2 \end{bmatrix}, \quad g(\eta) = (-2\eta_2)^{1/2} e^{\eta_1^2 / 4\eta_2} \]

\[P(x; h) = \frac{1}{(2\pi\sigma^2)^{1/2}} e^{-\frac{1}{2\sigma^2} x^2 + \frac{\mu}{\sigma^2} x - \frac{1}{2\sigma^2} \mu^2} = \frac{1}{(2\pi\sigma^2)^{1/2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]
Why this mess???

- Allow us to see a broader picture

- Exponential distributions have convenient properties
 - Sufficiency
 - You won’t need more parameters for more data
 - Conjugate priors
 - Make life easy when we perform parameter estimation (more later)
Information theory

• Entropy

\[H(x) = -\int P(x) \log P(x) \, dx \quad \text{or} \quad -\sum_x P(x) \log P(x) \]

\[H(x, y) = -\int \int P(x, y) \log P(x, y) \, dx \, dy \quad \text{or} \quad -\sum_x \sum_y P(x, y) \log P(x, y) \]

• A measure of information in a distribution

A fair die, \(H = 1.79 \)
There is a lot of uncertainty therefore more information

A heavily biased die, \(H = 0 \)
no message to convey
Information theory

- Mutual information
 - Measures amount of shared information
 \[I(x, y) = H(x) + H(y) - H(x, y) \]
 - If 0 then \(x, y \) are independent

- Kullback-Leibler divergence
 - A pseudo-distance for distributions
 \[D(p \mid q) = \sum p_i \log \frac{p_i}{q_i} \quad \text{or} \quad \int p(x) \log \frac{p(x)}{q(x)} \, dx \]
 \[D(P(x, y) \mid \mid P(x)P(y)) = I(x, y) \]
 - If 0 then \(p \) and \(q \) are the same
Entropy types

- \(H(X) \)
- \(H(Y) \)
- \(H(X|Y) \)
- \(I(X;Y) \)
- \(H(Y|X) \)
- \(H(X,Y) \)
Parameter estimation

• So what do we do with distributions?
 • We like to explain data with them

• To do so we need parameter estimation
 • Find the distribution parameters that result in explaining the observed data best
 • Various ways to go about it
Parameter estimation

• Given some independent samples:

\[X = \{x_1, x_2, \ldots, x_N \} \]

• and a model:

\[P(X; \theta) \]

• Find the parameters \(\theta \)
Maximum likelihood

• The overall likelihood is:

\[P(X; \theta) = P(x_1, x_2, \ldots, x_N; \theta) = \prod_i P(x_i; \theta) \]

• We want to find:

\[\theta_{ML} = \arg \max_{\theta} \prod_i P(x_i; \theta) \]

• We can use straightforward solving
Maximum likelihood

- Set the derivative to zero:

\[
\frac{\partial \prod_i P(x_i; \theta)}{\partial \theta} = 0
\]

- Go to the log domain to remove product:

\[
\frac{\partial \log \prod_i P(x_i; \theta)}{\partial \theta} = \sum_i \frac{\partial \log P(x_i; \theta)}{\partial \theta} = \sum_i \frac{1}{P(x_i; \theta)} \frac{\partial P(x_i; \theta)}{\partial \theta} = 0
\]

- Substitute your \(P \) and solve
Example

• Mean of Gaussian distributed data
 • Define the model:
 \[P(\mathbf{x}; \mu, \sigma^2) = \prod_{i=1}^{N} \mathcal{N}(\mathbf{x}; \mu, \sigma^2) \]
 • Form log-likelihood:
 \[\log P(\mathbf{x}; \mu, \sigma^2) = -\frac{1}{2\sigma^2} \sum_{i=1}^{N} (x_n - \mu)^2 - \frac{N}{2} \log \sigma^2 - \frac{N}{2} \log 2\pi \]
 • Set derivative to zero and solve:
 \[\frac{\partial \log P(\mathbf{x}; \mu, \sigma^2)}{\partial \mu} = -\frac{1}{2\sigma^2} \sum_{i=1}^{N} \frac{\partial (x_n - \mu)^2}{\partial \mu} = 0 \Rightarrow \mu = \frac{1}{N} \sum_{i=1}^{N} x_i \]
Wait a minute!

• All that to prove the obvious?

• Yes, it is tedious
 • In many cases the answer will be obvious
 • But keep in mind that looks might be deceiving!

• In other cases the answer will not be easy
 • Requiring numerical/approximate optimization
A couple of ML properties

- The ML estimate is (usually) asymptotically Gaussian distributed and:

\[
\lim_{N \to \infty} E[\theta_{ML}] = \theta_{true} \quad \text{and} \quad \lim_{N \to \infty} E\left[\left\| \theta_{ML} - \theta_{true} \right\|^2 \right] = 0
\]
Maximum a posteriori (MAP)

- Sometimes we have a prior belief
 - E.g. we believe the answer should be close to a value
 - Maximum likelihood doesn’t incorporate that
 - MAP does

- Same setup as before but in addition to $P(x;\theta)$ we also have a $P(\theta)$
MAP estimation

- We use Bayes’ theorem and we now maximize:

\[P(\theta | x) = \frac{P(\theta)P(x | \theta)}{P(x)} \]

- The denominator is constant so we only have to maximize the numerator:

\[\theta_{MAP} = \arg \max_{\theta} P(\theta)P(x | \theta) \]

- Same story as before ...
MAP estimation example

- Estimate the mean, but use a prior:

\[
P(x; \mu, \sigma^2) = \prod_{i=1}^{N} \mathcal{N}(x; \mu, \sigma^2), \quad P(\mu; \mu_0, \sigma^2_\mu) = \mathcal{N}(\mu, \mu_0, \sigma^2_\mu)
\]

- Take log, differentiate, solve:

\[
\frac{\partial}{\partial \mu} \log \prod_{i=1}^{N} P(x_i | \mu) P(\mu) = 0
\]

\[
\sum_{i=1}^{N} \frac{1}{\sigma^2} (x_i - \mu) - \frac{1}{\sigma^2_\mu} (\mu - \mu_0) = 0
\]

\[
\Rightarrow \mu_{MAP} = \frac{\mu_0 + \frac{\sigma^2}{\sigma^2_\mu} \sum_{i=1}^{N} x_i}{\frac{\sigma^2}{\sigma^2_\mu} + 1}
\]
MAP vs. ML

- If $P(\theta)$ is uniform then MAP $==$ ML
- Otherwise they will most likely not coincide
Bayesian inference

- Bayesian inference doesn’t care about the optimal value, it cares about it’s distribution.
Example estimation

- Same setup as in the MAP case:

\[P(x; \mu, \sigma^2) = \prod_{i=1}^{N} N(x; \mu, \sigma^2), \quad P(\mu; \mu_0, \sigma^2_\mu) = N(\mu, \mu_0, \sigma^2_\mu) \]

- We now find the distribution of the mean:

\[P(\mu | X) = \frac{P(X | \mu)P(\mu)}{P(X)} = \ldots = N(\mu, \mu_N, \sigma^2_N) \]

\[\mu_N = \frac{N\sigma^2_0 \mathbb{E}[x] + \sigma^2 \mu_0}{N\sigma^2_0 + \sigma^2}, \quad \sigma^2_N = \frac{\sigma^2 \sigma^2_0}{N\sigma^2_0 + \sigma^2} \]

- Which is also Gaussian!
Obtaining the estimate

- For different values of N we obtain a different distribution of the parameter we estimate.
 - The bigger the N the more sharp the distribution.
And that was a clean case

- Often the distributions don’t work out
- We resort to numerical solutions
 - Usually sampling (Monte Carlo, etc.)
Other methods

• Maximum entropy estimation
 • Choose model that maximizes entropy
 • Least committal approach

• Expectation-Maximization
 • Useful for mixture models
 • We’ll cover in detail later
Recap

- **Probability**
 - sum/product/Bayes rules

- **Distributions**
 - Gaussian, Laplacian, Dirichlet

- **Information theory**
 - Entropy, Mutual Info, KL divergence

- **Parameter estimation**
 - ML, MAP, Bayesian
Too much information?

• You are not supposed to master all this
 • We will be encountering these ideas later
 • This lecture should serve as a reference
Some more reading

- Get textbook from class page
 - UIUC network access only

- Probability basics
 - Appendix 1 of textbook

- Parameter estimation
 - Section 2.5 of textbook
Next week

• Signals refresher
 • “All of DSP in a lecture”