Introduction & Linear Algebra Basics
What do I need to know?

- I won’t assume you know machine learning or signal processing
 - You are here to learn, not to know!

- Be comfortable with the basics
 - Some linear algebra, some probability
 - If you are rusty that’s ok, you are here to learn
What is this?

- Is it a signals class?
- Is it a machine learning class?
Signal Processing

• The study of capturing, processing and manipulating “signals”

• What is a signal?
Signals (as far as this class goes)

• “Structured” collections of measurements that convey information

Images

Sounds

Brains!!

Stocks
Machine Learning

• The study of discovering and extracting information from “data”

• For data we will use signals
Why bother?

- Traditional signal processing doesn’t really care about its input’s content
- Traditional machine learning is not signals-friendly
MLSP

- MLSP combines both disciplines to perform learning on signals data
- Many examples of MLSP in the real-world
Face recognition

• Found in cameras and photo software
Speech recognition

so lastly i want to see it to show you innovation in natural input as well and
Surveillance

- Detection of specified objects / activity

Gunshot detection

Pedestrian detection
Bio-signals

- Interpreting our body’s data
Many other applications

- Machine condition monitoring
- Biometrics
- Music Information Retrieval
- Robotics
- Gesture-based UIs
- Network Traffic Analysis
- Financial data mining
- ...
About this course

• Heavy on practical applications
 • Please bring your own domain problem in class!

• Won’t go excruciatingly deep on theory
 • We’ll skip convergence proofs, etc.
 • Many more courses here that cover all that

• Our objective is real-world experience
Syllabus: the basics

• Covering the basics:
 • Part 1: Linear Algebra and Probability
 • Part 2: Signals Theory
 • Part 3: Representations and Features
Syllabus: machine learning review

• Elements of machine learning
 • Part 4: Unsupervised learning basics
 • Part 5: Detection and classification
 • Part 6: Time-series and dynamical models
Syllabus: The fun stuff

- Applications and theory:
 - ICA, MIMO models, Arrays, Sensor Fusion
 - Matrix Factorizations, Bag Models
 - Manifolds and Embedding
 - Graphical Models
 - Compressive Sensing and Sparsity
 - Computer Vision, Speech Recognition
 - Music/Audio Informatics
 - Bio/Brain-signals
 - ...
Your part

• Problem sets: ~40% of the grade
 • One every two weeks, will be mostly machine problems

• Final Project: ~50% of the grade
 • Mid-semester: Proposal due
 • Last 1-2 weeks: Presentations and/or posters

• Remaining 10% of grade
 • Show your face in class, ask questions, make sure I know who you are!
The final project is “conference style”

- Teams of 2-3 students (no more than 3, no less than 2)
 - Make friends now!

- Mid-term: Abstract submission
 - Short abstract describing the problem you want to solve and how you plan to

- Week ~13: Paper Submission
 - 4-6 page paper
 - Peer reviewed by all of you
 - All papers accepted!
Web stuff

• We have a course page:
 • http://courses.engr.illinois.edu/cs598ps
 • Will have lectures, problem sets, data, links, etc.

• We have a piazza.com page
 • Look for CS 598 PS / CS 598 PSO
 • Use for discussions, finding project-mates, etc.
Who am I?

- Instructor: Paris Smaragdis (CS & ECE)
 - paris@illinois.edu
 - Office: Siebel Center 3231
 - Send me email of you want to meet

- Interested in machine perception, computational audition

- Past chair of the IEEE MLSP Technical Committee

- Plenty of commercialized experience on the subject
Who is the TA?

- Minje Kim (CS)
 - minje@illinois.edu

- Office hours at Siebel 0207
 - Mondays 10:00-11:00
 - Online students:
 - Wednesdays 14:30-15:30
Who are you?

- Name, department, advisor, domain interests?
Final administrative note

• This class is oversubscribed
 • If you don’t think you will stay until the end please consider dropping the course so that waitlist students can register

• If you are not formally registered yet, send me your UID
 • We need this for the email list for various announcements
Linear algebra refresher

• Linear algebra is the math tool du jour
 • Compact notation
 • Convenient set operations
 • Used in all modern texts
 • Interfaces well with MATLAB, numpy, R, etc.

• We will use a lot of it!!
Scalars, Vectors, Matrices, Tensors

Scalars

\[\mathbf{x} \]

Vectors

\[\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix} \]

Matrix

\[\mathbf{X} = \begin{bmatrix} x_1 & \cdots & x_N \\ x_{1,1} & x_{N,1} \\ \vdots & \vdots & \vdots \\ x_{1,M} & x_{N,M} \end{bmatrix} \]

Tensor

\[\mathbf{X} = \{\mathbf{X}_1, \ldots, \mathbf{X}_K\} = \begin{bmatrix} \mathbf{x}_{1,1,1} & \mathbf{x}_{N,1,1} \\ \vdots & \vdots \\ \mathbf{x}_{1,M,1} & \mathbf{x}_{N,M,1} \\ \vdots & \vdots \\ \mathbf{x}_{1,K,M} & \mathbf{x}_{N,K,M} \end{bmatrix} \]
How will we see these?

- 1D signals (e.g. sounds) will be vectors

\[x^T = \begin{bmatrix} x(0) & \cdots & x(T) \end{bmatrix} = \begin{bmatrix} \end{bmatrix} \]

- 2D signals (e.g. images) will be matrices

\[X = \begin{bmatrix} x_{1,1} & x_{N,1} \\ \vdots & \ddots & \vdots \\ x_{1,M} & x_{N,M} \end{bmatrix} = \begin{bmatrix} \end{bmatrix} \]

- 3D data will be videos, etc ...
Element-wise operations

- Addition/subtraction

\[a \pm b = c \rightarrow a_i \pm b_i = c_i \]

- Multiplication (Hadamard product)

\[a \odot b = c \rightarrow a_i \cdot b_i = c_i \]

- Other times denoted as \(a \circ b \) or \(a \cdot * b \)

- No named operator for element-wise division
 - Just use Hadamard with inverted elements
Transpose

- Transpose
 - Change rows to columns (and vice versa)

\[
x = \begin{bmatrix}
 x_1 \\
 \vdots \\
 x_N
\end{bmatrix}, \quad x^\top = \begin{bmatrix}
 x_1 & \cdots & x_N
\end{bmatrix}
\]

\[
x = \begin{bmatrix}
 x_1 & x_3 \\
 x_2 & x_4
\end{bmatrix}, \quad x^\top = \begin{bmatrix}
 x_1 & x_2 \\
 x_3 & x_4
\end{bmatrix}
\]

- Hermitian (conjugate transpose)
 - Notated as \(X^H\)
 - MATLAB note: \(x'\) is Hermitian transpose, \(x.\)'. is transpose
Visualizing transposition

- Mostly pointless for 1D signals

\[x = \begin{bmatrix} \text{1D signal} \end{bmatrix}, \quad x^\top = \begin{bmatrix} \text{1D signal} \end{bmatrix} \]

- Swap dimensions for 2D signals

\[x = \begin{bmatrix} \text{2D image} \end{bmatrix}, \quad x^\top = \begin{bmatrix} \text{2D image} \end{bmatrix} \]
Reshaping operators

• The vec operator
 • Unrolls elements column-wise
 • Useful for getting rid of matrices/tensors

\[
\text{vec}(\mathbf{x}) = \text{vec} \begin{bmatrix} x_1 & x_3 \\ x_2 & x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}
\]

• The vec-transpose
 • For \((p)\) of an \(m \times n\) matrix make each column a \(p \times (m/p)\) matrix
 • Useful for inverting vec and getting rid of tensors \(\mathbf{X} = \text{vec}(\mathbf{X})^{(M)}, \mathbf{X} \in \mathbb{R}^{M \times N}\)

\[
\mathbf{x}^{(2)} = \begin{bmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \\ x_{31} & x_{32} \\ x_{41} & x_{42} \\ x_{51} & x_{52} \\ x_{61} & x_{62} \end{bmatrix} = \begin{bmatrix} x_{11} & x_{31} & x_{51} \\ x_{21} & x_{41} & x_{61} \\ x_{12} & x_{32} & x_{52} \\ x_{22} & x_{42} & x_{62} \end{bmatrix}
\]
Trace and diag

- **Matrix trace**
 - Sum of diagonal elements
 \[
 \text{tr}(X) = \text{tr} \begin{bmatrix}
 x_{11} & \cdots & x_{1N} \\
 \vdots & \ddots & \vdots \\
 x_{N1} & \cdots & x_{NN}
 \end{bmatrix} = \sum_i x_{ii}
 \]

- **The diag operator**
 \[
 \text{diag}(x) = \text{diag} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 & 0 \\ 0 & x_2 \end{bmatrix}
 \]
 \[
 \text{diag}^{-1} \begin{bmatrix} x_1 & a \\ b & x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
 \]
The dot product

- **Dot product**
 - Shorthand for multiply and accumulate

 $$\mathbf{x}^\top \cdot \mathbf{y} = \sum_i x_i \cdot y_i = |\mathbf{x}| \cdot |\mathbf{y}| \cos \theta$$

- **Geometry**
 - For unit vectors:

 $$\theta = \arccos (\mathbf{x}^\top \cdot \mathbf{y})$$

 - Great tool for checking out similarity
Matrix-vector product

• Generalizing the dot product

\[
\begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3 \\
\end{bmatrix} \cdot y = \begin{bmatrix}
 x_1 \cdot y \\
 x_2 \cdot y \\
 x_3 \cdot y \\
\end{bmatrix} = \begin{bmatrix}
 \sum x_{1,i} \cdot y_i \\
 \sum x_{2,i} \cdot y_i \\
 \sum x_{3,i} \cdot y_i \\
\end{bmatrix}
\]

• \(x \) must have as many columns as \(y \) has elements
 • Non-commutative!

• Useful for computing multiple dot products
 • Pack all vectors that you want to multiply in a matrix
Matrix-matrix product

• Between two matrices:

\[
X \cdot Y = \begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
\end{bmatrix} \cdot \begin{bmatrix}
y_1 & y_2 & y_3 \\
\end{bmatrix} = \begin{bmatrix}
x_1 \cdot y_1 & x_1 \cdot y_2 & x_1 \cdot y_3 \\
x_2 \cdot y_1 & x_2 \cdot y_2 & x_2 \cdot y_3 \\
x_3 \cdot y_1 & x_3 \cdot y_2 & x_3 \cdot y_3 \\
\end{bmatrix}
\]

• \(X\) must have as many columns as \(Y\) has rows
 • \((M \times N) = (M \times K) \cdot (K \times N)\)
 • Remember it doesn’t commute!

• All linear operations can be represented as a matrix product
 • We’ll be seeing that a lot!
Matrix products

- Output rows == left matrix rows
- Output columns == right matrix columns
Visualizing the matrix product
Visualizing the matrix product

\[\text{Image} = \text{Matrix} \times \text{Image} \]
Visualizing the matrix product

\[
\begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
=
\begin{bmatrix}
0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5 \\
0.5 & 0.5 & 0.5
\end{bmatrix}
\]
Visualizing the matrix product

\[\begin{align*}
\text{matrix} & \quad \text{vector} \quad \text{vector} \\
\times & \quad = \quad = \quad =
\end{align*} \]
Visualizing the matrix product
Norms

- 2-norm:
 \[\|x\| = \sqrt{\sum x_i^2}\]

- \(p\)-norms:
 \[\|x\| = \left(\sum |x_i|^p\right)^{1/p}\]

- Frobenius norm:
 \[\|X\|_F = \sqrt{\text{tr}(X^\top \cdot X)} = \sqrt{\text{tr}\left(\begin{bmatrix} x_1 & x_2 \\ x_1 & x_2 \end{bmatrix}\right)} = \sqrt{\text{tr}\left(\begin{bmatrix} x_1 \cdot x_1 & x_1 \cdot x_2 \\ x_2 \cdot x_1 & x_2 \cdot x_2 \end{bmatrix}\right)}\]
Kronecker product

- A bit more complex
 - Replicate and multiply right matrix with each scalar of left matrix

\[
\begin{bmatrix}
 x_{11} & x_{12} \\
 x_{21} & x_{22}
\end{bmatrix}
\otimes Y =
\begin{bmatrix}
 x_{11} \cdot Y & x_{12} \cdot Y \\
 x_{21} \cdot Y & x_{22} \cdot Y
\end{bmatrix}
\]

- Useful result:
 \[
 \text{vec}(X \cdot Y \cdot Z) = (Z^\top \otimes X) \text{vec}(Y)
 \]
Visualizing Kronecker

\[
\begin{bmatrix}
1 & 3 \\
2 & 0 \\
\end{bmatrix} \times \ = \ ?
\]
Visualizing Kronecker

\[
\begin{bmatrix}
1 & 3 \\
2 & 0
\end{bmatrix} \times =
\]

\[
\begin{bmatrix}
\begin{bmatrix}
\end{bmatrix}
\end{bmatrix}
\]
Dealing with tensors

• Using Kronecker products and the vec operator we can perform multilinear transforms
• Tensor example with RGB images:
Mixing the colors

- Define color, horizontal and vertical mixing

\[
\left(C^T \otimes H^T \otimes V^T \right) \cdot \text{vec}(X)
\]

- Example: color mixing

\[
\left(\text{diag}\begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \otimes I \otimes I \right) \text{vec}(X) =
\]

- Caution: Dimensions will quickly get out of hand this way
Special matrices

- **Symmetric:**
 \[X = X^\top \implies x_{ij} = x_{ji} \]

- **Positive definite**
 - Is so if: \(y^\top \cdot X \cdot y > 0, \ \forall \ y \)
 - Also symmetric

- **Orthonormal:**
 \[X^\top \cdot X = X \cdot X^\top = I \]
Matrix inverse

• “Undoes” a matrix multiplication
 • Only for square matrices
 • Not all matrices are invertible
 • must be a full-rank matrix

\[X^{-1} \cdot X = I \]
\[X^{-1} \cdot X \cdot Y = Y \]
\[Y \cdot X \cdot X^{-1} = Y \]

• Remember, in matrix multiplication order matters

\[X \cdot Y \cdot X^{-1} \neq Y \]
Matrix pseudoinverse

- Also known as Moore-Penrose (or MP) pseudoinverse
 - For an $m \times n$ matrix X, pseudoinverse is $n \times m$ matrix X^+

 \[
 X \cdot X^+ \cdot X = X \\
 X^+ \cdot X \cdot X^+ = X^+ \\
 (X \cdot X^+)^T = X \cdot X^+ \\
 (X^+ \cdot X)^T = X^+ \cdot X
 \]
 - We’ll be seeing this operation a lot, it’s essentially least squares

 $$A \cdot x = y \rightarrow x = A^+ \cdot y$$
Eigenanalysis

- Eigenvectors and eigenvalues
 - For an $n \times n$ matrix X
 \[
 X \cdot V = V \cdot L
 \]
 \[
 V = \begin{bmatrix} v_1 & \cdots & v_N \end{bmatrix}
 \]
 \[
 L = \text{diag} \begin{bmatrix} \lambda_1 & \cdots & \lambda_N \end{bmatrix}
 \]
 - V is $m \times n$ and contains the eigenvectors v_i
 - It will be an orthogonal matrix for positive (semi-)definite matrix inputs
 - L is $n \times n$ contains the eigenvalues λ_i
Low rank approximations

• Use smaller matrices to describe a large matrix

\[X \approx A \cdot B \]

• With \(X \) being \(m \times n \), \(A \) being \(m \times r \), \(B \) being \(r \times n \), and \(r < m \)
The Singular Value Decomposition (SVD)

- Similar decomposition to eigenanalysis
 - For a matrix X
 \[X = U \cdot S \cdot V^\top \]
 \[U^\top \cdot U = I \]
 \[V^\top \cdot V = I \]
 \[S = \text{diag}(\sigma_i) \]
- U, V are orthonormal
 - Contain the left and right singular vectors of X
- S is diagonal
 - Contains on its diagonal the singular values σ_i
Visualizing the SVD

- Comes in two versions, full and economy
 - The only difference is the size of the matrices
 - The numerical approximation is the same
 - By truncating the columns of S we can make a low-rank approx.
Recap

• What’s this class about?
 • Signals, learning, fun, etc ...

• Linear algebra basics
 • Algebraic operations, norms, decompositions, form manipulations
Finale

• Skim through this material for now
 • We’ll be seeing it in context soon
 • e.g., what are the eigenvectors of image matrices?

• Reading material
 • Old and new algebra useful for statistics
 • The Matrix Cookbook
 • http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274
Questions?

• Slides will be online soon after all lectures at:
 • http://courses.engr.illinois.edu/cs598ps/
Next lecture

• Review of:
 • Probability theory
 • Bayes theorem, probability rules, Bayes nets
 • Basic distributions, transformations of RV’s
 • Statistics
 • Basic measures, independence, information
 • Parameter estimation intro
 • Maximum likelihood, MAP, Bayesian, EM intro