Mix-Nets

Lecture 21
Some tools for electronic-voting (and other things)
Mix-Nets

Originally proposed by Chaum (1981) for anonymous communication
Mix-Nets

Originally proposed by Chaum (1981) for anonymous communication

Input: a vector of ciphertexts under a “threshold encryption scheme”
Mix-Nets

Originally proposed by Chaum (1981) for anonymous communication

Input: a vector of ciphertexts under a “threshold encryption scheme”

Mix-servers take turns to perform “verifiable shuffles”
Mix-Nets

Originally proposed by Chaum (1981) for anonymous communication

Input: a vector of ciphertexts under a “threshold encryption scheme”

Mix-servers take turns to perform “verifiable shuffles”

Final shuffled vector decrypted by decryption-servers
Mix-Nets

Originally proposed by Chaum (1981) for anonymous communication

Input: a vector of ciphertexts under a “threshold encryption scheme”

Mix-servers take turns to perform “verifiable shuffles”

Final shuffled vector decrypted by decryption-servers

(Omitted: Decryption mix-nets, which combine shuffling and decryption. Here: Re-encryption mix-nets)
Mix-Nets

Originally proposed by Chaum (1981) for anonymous communication

Input: a vector of ciphertexts under a “threshold encryption scheme”

Mix-servers take turns to perform “verifiable shuffles”

Final shuffled vector decrypted by decryption-servers

(Omitted: Decryption mix-nets, which combine shuffling and decryption. Here: Re-encryption mix-nets)

Ideal functionality: input a vector of private messages from senders, and a permutation from each mix server; output the messages permuted using the composed permutation
Mix-Nets

Originally proposed by Chaum (1981) for anonymous communication

Input: a vector of ciphertexts under a “threshold encryption scheme”

Mix-servers take turns to perform “verifiable shuffles”

Final shuffled vector decrypted by decryption-servers

(Omitted: Decryption mix-nets, which combine shuffling and decryption. Here: Re-encryption mix-nets)

Ideal functionality: input a vector of private messages from senders, and a permutation from each mix server; output the messages permuted using the composed permutation

Corruption model: Active adversary can corrupt a limited number of servers
Threshold Decryption
Threshold Decryption

Key pairs (SK_i, PK_i) generated by a set of servers (separate from sender/receiver). (Receiver may set up parameters.)
Threshold Decryption

- Key pairs \((SK_i, PK_i)\) generated by a set of servers (separate from sender/receiver). (Receiver may set up parameters.)

- Ciphertexts generated by honest player (not CCA security)
Threshold Decryption

- Key pairs \((SK_i, PK_i)\) generated by a set of servers (separate from sender/receiver). (Receiver may set up parameters.)
- Ciphertexts generated by honest player (not CCA security)
- Decryption by public discussion among servers and receiver (all the servers and the receiver see all the messages)
Threshold Decryption

- Key pairs \((SK_i, PK_i)\) generated by a set of servers (separate from sender/receiver). (Receiver may set up parameters.)
- Ciphertexts generated by honest player (not CCA security)
- Decryption by public discussion among servers and receiver (all the servers and the receiver see all the messages)
- Active adversary can corrupt a limited number of servers
Threshold Decryption

- Key pairs \((SK_i, PK_i)\) generated by a set of servers (separate from sender/receiver). (Receiver may set up parameters.)
- Ciphertexts generated by honest player (not CCA security)
- Decryption by public discussion among servers and receiver (all the servers and the receiver see all the messages)
- Active adversary can corrupt a limited number of servers
- Ideal: Same as for SIM-CPA, but with servers also getting the message (if the receiver decides to get it); if number of corrupted servers above threshold, adversary can block (but not substitute) output to others
Threshold Decryption
Threshold Decryption

E.g. Threshold El Gamal for threshold n out of n
Threshold Decryption

E.g. Threshold El Gamal for threshold n out of n

KeyGen: \((SK_i, PK_i) = (y_i, Y_i = g^{y_i})\) (group, g are system parameters)
Threshold Decryption

E.g. Threshold El Gamal for threshold n out of n

KeyGen: $(SK_i, PK_i) = (y_i, Y_i := g^{y_i})$ (group, g are system parameters)

Encryption: El Gamal, with PK (g, Y) where $Y = \prod_i g^{y_i}$
Threshold Decryption

E.g. Threshold El Gamal for threshold n out of n

KeyGen: $(SK_i,PK_i) = (y_i,Y_i:=g^{y_i})$ (group, g are system parameters)

Encryption: El Gamal, with PK (g,Y) where $Y = \Pi_i g^{y_i}$

Decryption: Given $(A,B) := (g^r,mY^r)$, i^{th} server outputs $A_i := (g^r)^{y_i}$ and proves (to the receiver) equality of discrete log for (g,Y_i) and (A,A_i). Receiver recovers m as $B/ \Pi_i A_i$
Threshold Decryption

- E.g. Threshold El Gamal for threshold n out of n

KeyGen: $(SK_i, PK_i) = (y_i, Y_i := g^{y_i})$ (group, g are system parameters)

Encryption: El Gamal, with PK (g, Y) where $Y = \prod_i g^{y_i}$

Decryption: Given $(A, B) := (g^r, mY^r)$, i^{th} server outputs $A_i := (g^r)^{y_i}$ and proves (to the receiver) equality of discrete log for (g, Y_i) and (A, A_i). Receiver recovers m as $B / \prod_i A_i$

- Proof using an Honest-Verifier ZK proof
Threshold Decryption

- E.g. Threshold El Gamal for threshold n out of n

KeyGen: \((SK_i, PK_i) = (y_i, Y_i := g^{y_i})\) (group, g are system parameters)

Encryption: El Gamal, with PK \((g, Y)\) where \(Y = \prod_i g^{y_i}\)

Decryption: Given \((A, B) := (g^r, mY^r)\), \(i^{th}\) server outputs \(A_i := (g^r)^{y_i}\) and proves (to the receiver) equality of discrete log for \((g, Y_i)\) and \((A, A_i)\). Receiver recovers \(m\) as \(B/\prod_i A_i\)

- Proof using an Honest-Verifier ZK proof

- Using a special purpose proof (Chaum-Pederson), rather than ZK for general NP statements
Honest-Verifier ZK Proofs
Honest-Verifier ZK Proofs

ZK Proof of knowledge of discrete log of $A=g^r$
Honest-Verifier ZK Proofs

- ZK Proof of knowledge of discrete log of $A = g^r$
- This can be used to prove knowledge of the message in an ElGamal encryption $(A, B) = (g^r, m Y^r)$
Honest-Verifier ZK Proofs

ZK Proof of knowledge of \textit{discrete log} of $A = g^r$

This can be used to prove knowledge of the message in an El Gamal encryption $(A, B) = (g^r, m Y^r)$

$P \rightarrow V$: $U := g^u$; $V \rightarrow P$: v ; $P \rightarrow V$: $w := rv + u$;

V checks: $g^w = A^v U$
Honest-Verifier ZK Proofs

ZK Proof of knowledge of discrete log of $A = g^r$

This can be used to prove knowledge of the message in an El Gamal encryption $(A, B) = (g^r, m Y^r)$

$P \rightarrow V$: $U := g^u$; $V \rightarrow P$: v; $P \rightarrow V$: $w := rv + u$; V checks: $g^w = A^v U$

Proof of Knowledge:
Honest-Verifier ZK Proofs

- **ZK Proof of knowledge of discrete log of** $A = g^r$

- This can be used to prove knowledge of the message in an El Gamal encryption $(A, B) = (g^r, m Y^r)$

- $P \rightarrow V$: $U := g^u$; $V \rightarrow P$: v; $P \rightarrow V$: $w := rv + u$;

 V checks: $g^w = A^v U$

- **Proof of Knowledge:**
 - Firstly, $g^w = A^v U \Rightarrow w = rv + u$, where $U = g^u$
Honest-Verifier ZK Proofs

- ZK Proof of knowledge of discrete log of $A = g^r$

 This can be used to prove knowledge of the message in an El Gamal encryption $(A, B) = (g^r, m Y^r)$

 - $P \rightarrow V$: $U := g^u$; $V \rightarrow P$: v; $P \rightarrow V$: $w := rv + u$; V checks: $g^w = A^v U$

 Proof of Knowledge:
 - Firstly, $g^w = A^v U \Rightarrow w = rv + u$, where $U = g^u$
 - If after sending U, P could respond to two different values of v: $w_1 = rv_1 + u$ and $w_2 = rv_2 + u$, then can solve for r
Honest-Verifier ZK Proofs

- **ZK Proof of knowledge of discrete log of** $A = g^r$

- This can be used to prove knowledge of the message in an El Gamal encryption $(A, B) = (g^r, m Y^r)$

- $P \rightarrow V$: $U := g^u$; $V \rightarrow P$: v; $P \rightarrow V$: $w := rv + u$; V checks: $g^w = A^v U$

- **Proof of Knowledge:**
 - Firstly, $g^w = A^v U \Rightarrow w = rv + u$, where $U = g^u$
 - If after sending U, P could respond to two different values of v: $w_1 = rv_1 + u$ and $w_2 = rv_2 + u$, then can solve for r
 - **HVZK:** simulation picks w, v first and sets $U = g^w/A^v$
HVZK and Special Soundness
HVZK and Special Soundness

HVZK: Simulation for honest (passively corrupt) verifier
HVZK and Special Soundness

HVZK: Simulation for honest (passively corrupt) verifier

- e.g. in PoK of discrete log, simulator picks \((v, w)\) first and computes \(U\) (without knowing \(u\)). Relies on verifier to pick \(v\) independent of \(U\).
HVZK and Special Soundness

HVZK: Simulation for honest (passively corrupt) verifier

- e.g. in PoK of discrete log, simulator picks \((v,w)\) first and computes \(U\) (without knowing \(u\)). Relies on verifier to pick \(v\) independent of \(U\).

Special soundness: given \((U,v,w)\) and \((U,v',w')\) s.t. \(v \neq v'\) and both accepted by verifier, can derive a witness (in stand-alone setting).
HVZK and Special Soundness

HVZK: Simulation for honest (passively corrupt) verifier

- e.g. in PoK of discrete log, simulator picks \((v,w)\) first and computes \(U\) (without knowing \(u\)). Relies on verifier to pick \(v\) independent of \(U\).

Special soundness: given \((U,v,w)\) and \((U,v',w')\) s.t. \(v \neq v'\) and both accepted by verifier, can derive a witness (in stand-alone setting)

- e.g. solve \(r\) from \(w=rv+u\) and \(w'=rv'+u\) (given \(v,w,v',w'\))
HVZK and Special Soundness

HVZK: Simulation for honest (passively corrupt) verifier

- e.g. in PoK of discrete log, simulator picks \((v, w)\) first and computes \(U\) (without knowing \(u\)). Relies on verifier to pick \(v\) independent of \(U\).

Special soundness: given \((U, v, w)\) and \((U, v', w')\) s.t. \(v \neq v'\) and both accepted by verifier, can derive a witness (in stand-alone setting)

- e.g. solve \(r\) from \(w = rv + u\) and \(w' = rv' + u\) (given \(v, w, v', w'\))

Implies soundness: for each \(U\) s.t. prover has significant probability of being able to convince, can extract \(r\) from the prover with comparable probability (using “rewinding”)

HVZK and Special Soundness

HVZK: Simulation for honest (passively corrupt) verifier

- e.g. in PoK of discrete log, simulator picks \((v,w)\) first and computes \(U\) (without knowing \(u\)). Relies on verifier to pick \(v\) independent of \(U\).

Special soundness: given \((U,v,w)\) and \((U,v',w')\) s.t. \(v \neq v'\) and both accepted by verifier, can derive a witness (in stand-alone setting)

- e.g. solve \(r\) from \(w = rv + u\) and \(w' = rv' + u\) (given \(v,w,v',w'\))

Implies soundness: for each \(U\) s.t. prover has significant probability of being able to convince, can extract \(r\) from the prover with comparable probability (using “rewinding”)

Can amplify soundness using parallel repetition: still 3 rounds
Honest-Verifier ZK Proofs
Honest-Verifier ZK Proofs

ZK PoK to prove equality of discrete logs for \(((g,Y),(C,D))\), i.e., \(Y = g^r\) and \(D = C^r\) [Chaum-Pederson]
Honest-Verifier ZK Proofs

- ZK PoK to prove equality of discrete logs for $((g,Y),(C,D))$, i.e., $Y = g^r$ and $D = C^r$ [Chaum-Pederson]

- Can be used to prove equality of two El Gamal encryptions $(A,B) \& (A',B')$ w.r.t public-key (g,Y): set $(C,D) := (A/A', B/B')$
Honest-Verifier ZK Proofs

ZK PoK to prove **equality of discrete logs** for \(((g,Y),(C,D))\), i.e., \(Y = g^r\) and \(D = C^r\) [Chaum-Pederson]

- Can be used to prove equality of two El Gamal encryptions \((A,B) \& (A',B')\) w.r.t public-key \((g,Y)\): set \((C,D) := (A/A',B/B')\)

- \(P \rightarrow V\): \((U,M) := (g^u,C^u)\); \(V \rightarrow P\): \(v\); \(P \rightarrow V\): \(w := rv+u\);
 - **V checks**: \(g^w = Y^vU\) and \(C^w = D^vM\)
Honest-Verifier ZK Proofs

ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)), i.e., \(Y = g^r \) and \(D = C^r \) [Chaum-Pederson]

Can be used to prove equality of two El Gamal encryptions \((A,B) & (A',B')\) w.r.t public-key \((g,Y)\): set \((C,D) := (A/A',B/B')\)

\[P \rightarrow V: (U,M) := (g^u,C^u); \quad V \rightarrow P: v; \quad P \rightarrow V: w := rv+u; \]

\(V \) checks: \(g^w = Y^vU \) and \(C^w = D^vM \)

Proof of Knowledge:
Honest-Verifier ZK Proofs

ZK PoK to prove equality of discrete logs for \((g,Y),(C,D))\), i.e., \(Y = g^r\) and \(D = C^r\) [Chaum-Pederson]

Can be used to prove equality of two El Gamal encryptions \((A,B) \& (A',B')\) w.r.t public-key \((g,Y)\): set \((C,D) := (A/A',B/B')\)

\[P \rightarrow V: (U,M) := (g^u,C^u); \quad V \rightarrow P: v; \quad P \rightarrow V: w := rv+u; \]

\(V\) checks: \(g^w = Y^vU\) and \(C^w = D^vM\)

Proof of Knowledge:

\[g^w = Y^vU, \quad C^w = D^vM \quad \Rightarrow \quad w = rv+u = r'v+u' \]

where \(U=g^u, M=g^{u'}\) and \(Y=g^r, D=C^{r'}\)
Honest-Verifier ZK Proofs

ZK PoK to prove equality of discrete logs for \((g,Y),(C,D))\), i.e., \(Y = g^r\) and \(D = C^r\) [Chaum-Pederson]

Can be used to prove equality of two El Gamal encryptions \((A,B) \& (A',B')\) w.r.t public-key \((g,Y)\): set \((C,D) := (A/A',B/B')\)

\[P \rightarrow V: (U,M) := (g^u,C^u); V \rightarrow P: v; P \rightarrow V: w := rv + u; \]
V checks: \(g^w = Y^vU\) and \(C^w = D^vM\)

Proof of Knowledge:

\(g^w = Y^vU, C^w = D^vM \Rightarrow w = rv + u = r'v + u'\)
where \(U=g^u, M=g^{u'}\) and \(Y=g^r, D=C^{r'}\)

If after sending \((U,M)\) P could respond to two different values of \(v\): \(rv_1 + u = r'v_1 + u'\) and \(rv_2 + u = r'v_2 + u'\), then \(r = r'\)
Honest-Verifier ZK Proofs

ZK PoK to prove equality of discrete logs for \((g,Y),(C,D)\), i.e., \(Y = g^r\) and \(D = C^r\) [Chaum-Pederson]

Can be used to prove equality of two El Gamal encryptions \((A,B)\) & \((A',B')\) w.r.t public-key \((g,Y)\): set \((C,D) := (A/A',B/B')\)

\[P \rightarrow V: (U,M) := (g^u,C^u); \quad V \rightarrow P: v; \quad P \rightarrow V: w := rv+u; \]

\(V\) checks: \(g^w = Y^vU\) and \(C^w = D^vM\)

Proof of Knowledge:

\(g^w = Y^vU, C^w = D^vM \Rightarrow w = rv+u = r'v+u'\)

where \(U=g^u, M=g^{u'}\) and \(Y=g^r, D=C^{r'}\)

If after sending \((U,M)\) \(P\) could respond to two different values of \(v\): \(rv_1 + u = r'v_1 + u'\) and \(rv_2 + u = r'v_2 + u'\), then \(r=r'\)

HVZK: simulation picks \(w, v\) first and sets \(U=g^w/A^v, M=C^w/D^v\)
Fiat-Shamir Heuristic
Fiat-Shamir Heuristic

- Limitation: Honest-Verifier ZK does not guarantee ZK when verifier is actively corrupt
Fiat–Shamir Heuristic

- Limitation: Honest-Verifier ZK does not guarantee ZK when verifier is actively corrupt

- Can be fixed by implementing the verifier using MPC
Fiat-Shamir Heuristic

- Limitation: Honest-Verifier ZK does not guarantee ZK when verifier is actively corrupt.
 - Can be fixed by implementing the verifier using MPC.
 - If verifier is a public-coin protocol -- i.e., only picks random elements publicly -- then MPC only to generate random coins.
Fiat-Shamir Heuristic

- Limitation: Honest-Verifier ZK does not guarantee ZK when verifier is actively corrupt

- Can be fixed by implementing the verifier using MPC

 - If verifier is a public-coin protocol -- i.e., only picks random elements publicly -- then MPC only to generate random coins

- Fiat-Shamir Heuristic: random coins from verifier defined as $R(\text{trans})$, where R is a random oracle and trans is the transcript of the proof so far
Fiat-Shamir Heuristic

- Limitation: Honest-Verifier ZK does not guarantee ZK when verifier is actively corrupt
 - Can be fixed by implementing the verifier using MPC
 - If verifier is a public-coin protocol -- i.e., only picks random elements publicly -- then MPC only to generate random coins
 - Fiat-Shamir Heuristic: random coins from verifier defined as $R(\text{trans})$, where R is a random oracle and trans is the transcript of the proof so far
 - Removes need for interaction!
(Not so) ideal functionality: takes as input encrypted messages from a sender, and a permutation and randomness from a mixer; outputs rerandomized encryptions of permuted messages to a receiver. (Mixer gets encryptions, then picks its inputs.)
Verifiable Shuffle

(Not so) ideal functionality: takes as input encrypted messages from a sender, and a permutation and randomness from a mixer; outputs rerandomized encryptions of permuted messages to a receiver. (Mixer gets encryptions, then picks its inputs.)

Will settle for stand-alone security, and restrict to active corruption of mixer and passive corruption of sender/receiver
Verifiable Shuffle

(Not so) ideal functionality: takes as input encrypted messages from a sender, and a permutation and randomness from a mixer; outputs rerandomized encryptions of permuted messages to a receiver. (Mixer gets encryptions, then picks its inputs.)

Will settle for stand-alone security, and restrict to active corruption of mixer and passive corruption of sender/receiver.

Security against active corruption will be enforced separately (say using the Fiat-Shamir heuristic for receivers; audits/physical means for senders in voting).
Verifiable Shuffle

(Not so) ideal functionality: takes as input encrypted messages from a sender, and a permutation and randomness from a mixer; outputs rerandomized encryptions of permuted messages to a receiver. (Mixer gets encryptions, then picks its inputs.)

Will settle for stand-alone security, and restrict to active corruption of mixer and passive corruption of sender/receiver.

Security against active corruption will be enforced separately (say using the Fiat-Shamir heuristic for receivers; audits/physical means for senders in voting).

We shall consider El Gamal encryption.
Verifiable Shuffle

(Not so) ideal functionality: takes as input encrypted messages from a sender, and a permutation and randomness from a mixer; outputs rerandomized encryptions of permuted messages to a receiver. (Mixer gets encryptions, then picks its inputs.)

Will settle for stand-alone security, and restrict to active corruption of mixer and passive corruption of sender/receiver.

Security against active corruption will be enforced separately (say using the Fiat-Shamir heuristic for receivers; audits/physical means for senders in voting).

We shall consider El Gamal encryption.

Mixer will be given encrypted messages and it will perform the permutation and re-encryptions.
Verifiable Shuffle for 2 inputs
Verifiable Shuffle for 2 inputs

On input \((C_1, C_2)\), produce \((D_1, D_2)\) by shuffling and rerandomizing.
Verifiable Shuffle for 2 inputs

- On input \((C_1, C_2)\), produce \((D_1, D_2)\) by shuffling and rerandomizing
- HVZK proofs that \([(C_1 \rightarrow D_1) \text{ or } (C_1 \rightarrow D_2)]\) and \([(C_2 \rightarrow D_1) \text{ or } (C_2 \rightarrow D_2)]\)
Verifiable Shuffle for 2 inputs

- On input \((C_1, C_2)\), produce \((D_1, D_2)\) by shuffling and rerandomizing
- HVZK proofs that \([((C_1 \rightarrow D_1) \text{ or } (C_1 \rightarrow D_2)) \text{ and } ((C_2 \rightarrow D_1) \text{ or } (C_2 \rightarrow D_2))]\)
- To prove \([\text{stmt}_1 \text{ or stmt}_2]\), given an HVZK/SS proof system for a single statement (here: equality of El Gamal encryptions)
Verifiable Shuffle for 2 inputs

- On input \((C_1, C_2)\), produce \((D_1, D_2)\) by shuffling and rerandomizing
- HVZK proofs that \([(C_1 \rightarrow D_1) \text{ or } (C_1 \rightarrow D_2)]\) and \([(C_2 \rightarrow D_1) \text{ or } (C_2 \rightarrow D_2)]\)
- To prove \([\text{stmt}_1 \text{ or } \text{stmt}_2]\), given an HVZK/SS proof system for a single statement (here: equality of El Gamal encryptions)
- Denote the messages in the original system by \((U, v, w)\)
Verifiable Shuffle for 2 inputs

- On input \((C_1, C_2)\), produce \((D_1, D_2)\) by shuffling and rerandomizing
- HVZK proofs that \([(C_1 \rightarrow D_1) \text{ or } (C_1 \rightarrow D_2)]\) and \([(C_2 \rightarrow D_1) \text{ or } (C_2 \rightarrow D_2)]\)

To prove \([\text{stmt}_1 \text{ or stmt}_2]\), given an HVZK/SS proof system for a single statement (here: equality of El Gamal encryptions)

- Denote the messages in the original system by \((U,v,w)\)
- \(P\): Run simulator to get \((U_{3-i}, v_{3-i}, w_{3-i})\) when \(\text{stmt}_i\) true
- \(P \rightarrow V:\ (U_1, U_2); \ V \rightarrow P:\ v; \ P \rightarrow V:\ (v_1, v_2, w_1, w_2)\) where \(v_i = v - v_{3-i}\)
- **Verifier checks:** \(v_1 + v_2 = v\) and verifies \((U_1, v_1, w_1)\) and \((U_2, v_2, w_2)\)
Verifiable Shuffle for 2 inputs

On input \((C_1, C_2)\), produce \((D_1, D_2)\) by shuffling and rerandomizing HVZK proofs that \([(C_1 \rightarrow D_1) \text{ or } (C_1 \rightarrow D_2)] \text{ and } [(C_2 \rightarrow D_1) \text{ or } (C_2 \rightarrow D_2)]\)

To prove \([\text{stmt}_1 \text{ or } \text{stmt}_2]\), given an HVZK/SS proof system for a single statement (here: equality of El Gamal encryptions)

Denote the messages in the original system by \((U,v,w)\)

\(P:\) Run simulator to get \((U_{3-i}, v_{3-i}, w_{3-i})\) when \(\text{stmt}_i\) true

\(P \rightarrow V:\) \((U_1, U_2)\); \(V \rightarrow P:\) \(v\); \(P \rightarrow V:\) \((v_1, v_2, w_1, w_2)\) where \(v_i = v - v_{3-i}\)

Verifier checks: \(v_1 + v_2 = v\) and verifies \((U_1, v_1, w_1)\) and \((U_2, v_2, w_2)\)

Special soundness: given answers for \(v \neq v'\) either \(v_1 \neq v_1'\) or \(v_2 \neq v_2'\). By special soundness, extract witness for \(\text{stmt}_1\) or \(\text{stmt}_2\)
From 2 inputs to many
From 2 inputs to many

- Using a sorting network
From 2 inputs to many

- Using a sorting network

- A circuit with “comparison gates” such that for inputs in any order the output is sorted
From 2 inputs to many

- Using a sorting network
- A circuit with “comparison gates” such that for inputs in any order the output is sorted
From 2 inputs to many

- Using a sorting network

- A circuit with "comparison gates" such that for inputs in any order the output is sorted

- Simple $O(n \log^2 n)$ size networks known

(Bitonic sort: from Wikipedia)
From 2 inputs to many

- Using a sorting network
 - A circuit with “comparison gates” such that for inputs in any order the output is sorted
 - Simple $O(n \log^2 n)$ size networks known
 - Fix a sorting network, and use a 2x2 verifiable shuffle at each comparison gate

(Bitonic sort: from Wikipedia)
From 2 inputs to many

- Using a sorting network
 - A circuit with “comparison gates” such that for inputs in any order the output is sorted
 - Simple $O(n \log^2 n)$ size networks known
- Fix a sorting network, and use a 2x2 verifiable shuffle at each comparison gate
 - Permutations at the comparison gates chosen so as to implement the overall permutation

(Bitonic sort: from Wikipedia)
From 2 inputs to many

- Using a sorting network
 - A circuit with “comparison gates” such that for inputs in any order the output is sorted
 - Simple $O(n \log^2 n)$ size networks known
- Fix a sorting network, and use a 2x2 verifiable shuffle at each comparison gate
 - Permutations at the comparison gates chosen so as to implement the overall permutation
- 3 rounds: Parallel composition of HVZK proofs

(Bitonic sort: from Wikipedia)
Alternate Verifiable-Shuffles
Alternate Verifiable-Shuffles

More efficient (w.r.t. communication/computation) protocols known:
Alternate Verifiable-Shuffles

More efficient (w.r.t. communication/computation) protocols known:

- 3 rounds, using "permutation matrices"
Alternate Verifiable-Shuffles

More efficient (w.r.t. communication/computation) protocols known:

- 3 rounds, using “permutation matrices”
 - With linear communication
Alternate Verifiable-Shuffles

More efficient (w.r.t. communication/computation) protocols known:

- 3 rounds, using "permutation matrices"
 - With linear communication
- 7 rounds, using homomorphic commitments
Alternate Verifiable-Shuffles

More efficient (w.r.t. communication/computation) protocols known:

- 3 rounds, using “permutation matrices”
 - With linear communication
- 7 rounds, using homomorphic commitments
 - Possible with sub-linear communication for the proof
Homomorphic Commitment
Homomorphic Commitment

A commitment scheme over a group
Homomorphic Commitment

- A commitment scheme over a group
- \(\text{com}(x;r) = c \), where \(x, r, c \) are from their respective groups
Homomorphic Commitment

A commitment scheme over a group

\[\text{com}(x;r) = c, \text{ where } x, r, c \text{ are from their respective groups} \]

Hiding and binding
Homomorphic Commitment

- A commitment scheme over a group
 \[\text{com}(x;r) = c, \text{ where } x, r, c \text{ are from their respective groups} \]
- Hiding and binding
- Homomorphism: \[\text{com}(x;r) \ast \text{com}(x';r') = \text{com}(x+x';r+r') \]
Homomorphic Commitment

- A commitment scheme over a group
 - \(\text{com}(x; r) = c \), where \(x, r, c \) are from their respective groups
- Hiding and binding
- Homomorphism: \(\text{com}(x; r) \ast \text{com}(x'; r') = \text{com}(x+x'; r+r') \)
 - (Operations in respective groups)
Commitment from CRHF
Commitment from CRHF

Plan: A simple commitment scheme from CRHF
Commitment from CRHF

Plan: A simple commitment scheme from CRHF

Let H be a CRHF s.t. $H_K(x,r)$ is uniformly random for a random r, for any x and any K.
Commitment from CRHF

Plan: A simple commitment scheme from CRHF

Let \(H \) be a CRHF s.t. \(H_K(x,r) \) is uniformly random for a random \(r \), for any \(x \) and any \(K \)

Commitment: Receiver sends a random key \(K \) for \(H \), and sender sends \(\text{Com}_K(x;r) := H_K(x,r) \)
Commitment from CRHF

Plan: A simple commitment scheme from CRHF

Let H be a CRHF s.t. $H_K(x,r)$ is uniformly random for a random r, for any x and any K

Commitment: Receiver sends a random key K for H, and sender sends $\text{Com}_K(x;r) := H_K(x,r)$

Perfectly hiding, when r chosen at random (by the committer)
Commitment from CRHF

Plan: A simple commitment scheme from CRHF

Let H be a CRHF s.t. $H_K(x,r)$ is uniformly random for a random r, for any x and any K

Commitment: Receiver sends a random key K for H, and sender sends $\text{Com}_K(x;r) := H_K(x,r)$

Perfectly hiding, when r chosen at random (by the committer)

Reveal: send (x,r)
Commitment from CRHF

- Plan: A simple commitment scheme from CRHF

- Let H be a CRHF s.t. $H_K(x,r)$ is uniformly random for a random r, for any x and any K

- Commitment: Receiver sends a random key K for H, and sender sends $\text{Com}_K(x;r) := H_K(x,r)$

 - Perfectly hiding, when r chosen at random (by the committer)

- Reveal: send (x,r)

 - Binding, because of collision resistance when K picked at random (by the receiver)
Pedersen Commitment
Pedersen Commitment

Recall CRHF $H_{g,h}(x,r) = g^x h^r$ (collision resistant under Discrete Log Assumption)
Pedersen Commitment

Recall CRHF $H_{g,h}(x,r) = g^x h^r$ (collision resistant under Discrete Log Assumption)

Binding by collision-resistance: receiver picks (g,h)
Pedersen Commitment

Recall CRHF $H_{g,h}(x,r) = g^x h^r$ (collision resistant under **Discrete Log Assumption**)

- **Binding** by collision-resistance: receiver picks (g,h)
- **Perfectly Hiding** in a prime order group
Pedersen Commitment

Recall CRHF $H_{g,h}(x,r) = g^x h^r$ (collision resistant under Discrete Log Assumption)

- Binding by collision-resistance: receiver picks (g,h)
- Perfectly Hiding in a prime order group
 - If group is prime order, then all h are generators
Recall CRHF $H_{g,h}(x,r) = g^x h^r$ (collision resistant under Discrete Log Assumption)

- **Binding** by collision-resistance: receiver picks (g,h)
- **Perfectly Hiding** in a prime order group
 - If group is prime order, then all h are generators
 - Then for all x, $H_{g,h}(x,r)$ is random if r random
Pedersen Commitment

Recall CRHF $H_{g,h}(x,r) = g^x h^r$ (collision resistant under Discrete Log Assumption)

- Binding by collision-resistance: receiver picks (g,h)
- Perfectly Hiding in a prime order group
 - If group is prime order, then all h are generators
 - Then for all x, $H_{g,h}(x,r)$ is random if r random
- Homomorphism: $\text{Com}_{g,h}(x;r) \ast \text{Com}_{g,h}(x';r') = \text{Com}_{g,h}(x+x';r+r')$
Pedersen Commitment

Recall CRHF $H_{g,h}(x,r) = g^x h^r$ (collision resistant under **Discrete Log Assumption**)

- **Binding** by collision-resistance: receiver picks (g,h)
- **Perfectly Hiding** in a prime order group
 - If group is prime order, then all h are generators
 - Then for all x, $H_{g,h}(x,r)$ is random if r random

Homomorphism: $\text{Com}_{g,h}(x;r) \times \text{Com}_{g,h}(x';r') = \text{Com}_{g,h}(x+x';r+r')$

HVZK PoK of (x,r): Send $\text{Com}_{g,h}(u_1;u_2)$, and on challenge v, send $(xv+u_1)$ and $(rv+u_2)$
Pedersen Commitment

Recall CRHF $H_{g,h}(x,r) = g^x h^r$ (collision resistant under Discrete Log Assumption)

- Binding by collision-resistance: receiver picks (g,h)
- Perfectly Hiding in a prime order group
 - If group is prime order, then all h are generators
 - Then for all x, $H_{g,h}(x,r)$ is random if r random
- Homomorphism: $\text{Com}_{g,h}(x;r) \ast \text{Com}_{g,h}(x';r') = \text{Com}_{g,h}(x+x';r+r')$
- HVZK PoK of (x,r): Send $\text{Com}_{g,h}(u_1;u_2)$, and on challenge v, send $(xv+u_1)$ and $(rv+u_2)$
- Vector commitment: $H_{g_1,\ldots,g_n,h}(x_1,\ldots,x_n,r) = g_1^{x_1} \cdots g_n^{x_n} h^r$
Using Homomorphic Commitments
Using Homomorphic Commitments

Sub-problem: given a plaintext vector \((m_1, ..., m_n)\), verifiably commit to a permutation of it (using a vector commitment)
Using Homomorphic Commitments

Sub-problem: given a plaintext vector \((m_1, \ldots, m_n)\), verifiably commit to a permutation of it (using a vector commitment)

Idea: \((z_1, \ldots, z_n)\) is a permutation of \((m_1, \ldots, m_n)\) iff the polynomials \(f(X) := \prod_i (X-m_i)\) and \(h(X) := \prod_i (X-z_i)\) are the same
Using Homomorphic Commitments

Sub-problem: given a plaintext vector \((m_1, \ldots, m_n)\), verifiably commit to a permutation of it (using a vector commitment)

Idea: \((z_1, \ldots, z_n)\) is a permutation of \((m_1, \ldots, m_n)\) iff the polynomials
\[f(X) := \prod_i (X-m_i) \text{ and } h(X) := \prod_i (X-z_i) \]
are the same

Probabilistically verified by assigning a random value \(x\) to \(X\)
Using Homomorphic Commitments

- Sub-problem: given a plaintext vector \((m_1, \ldots, m_n)\), verifiably commit to a permutation of it (using a vector commitment)

- Idea: \((z_1, \ldots, z_n)\) is a permutation of \((m_1, \ldots, m_n)\) iff the polynomials \(f(X) := \prod_i (X-m_i)\) and \(h(X) := \prod_i (X-z_i)\) are the same

 Probabilistically verified by assigning a random value \(x\) to \(X\)

 If the field is large (super-polynomial), soundness error is negligible: if not identically 0, \(f(X)-h(X)\) has at most \(n\) roots
Using Homomorphic Commitments

Sub-problem: given a plaintext vector \((m_1,...,m_n)\), verifiably commit to a permutation of it (using a vector commitment).

Idea: \((z_1,...,z_n)\) is a permutation of \((m_1,...,m_n)\) iff the polynomials
\[
f(X) := \prod_i (X-m_i) \quad \text{and} \quad h(X) := \prod_i (X-z_i)
\]
are the same. Probabilistically verified by assigning a random value \(x\) to \(X\).

If the field is large (super-polynomial), soundness error is negligible: if not identically 0, \(f(X)-h(X)\) has at most \(n\) roots.

Use homomorphic commitments to carry out the polynomial evaluation and check equality (details omitted).
Using Homomorphic Commitments

Sub-problem: given a plaintext vector \((m_1, ..., m_n)\), verifiably commit to a permutation of it (using a vector commitment)
Using Homomorphic Commitments

Sub-problem: given a plaintext vector \((m_1, ..., m_n)\), verifiably commit to a permutation of it (using a vector commitment)

For shuffling ciphertexts:
Using Homomorphic Commitments

Sub-problem: given a plaintext vector \((m_1,\ldots,m_n)\), verifiably commit to a permutation of it (using a vector commitment)

For shuffling ciphertexts:

Suppose verifier knew the permutation. Then task reduces to proving equality of messages in ciphertext pairs
Using Homomorphic Commitments

Sub-problem: given a plaintext vector \((m_1, \ldots, m_n)\), verifiably commit to a permutation of it (using a vector commitment)

For shuffling ciphertexts:

- Suppose verifier knew the permutation. Then task reduces to proving equality of messages in ciphertext pairs
- Can’t reveal the permutation: instead commit to a permutation of \((1, 2, \ldots, n)\)
Using Homomorphic Commitments

- Sub-problem: given a plaintext vector \((m_1, \ldots, m_n)\), verifiably commit to a permutation of it (using a vector commitment).

- For shuffling ciphertexts:
 - Suppose verifier knew the permutation. Then task reduces to proving equality of messages in ciphertext pairs.
 - Can’t reveal the permutation: instead commit to a permutation of \((1, 2, \ldots, n)\).
 - Use the sub-protocol to do this verifiably.
Using Homomorphic Commitments

- Sub-problem: given a plaintext vector \((m_1, \ldots, m_n)\), verifiably commit to a permutation of it (using a vector commitment)

- For shuffling ciphertexts:
 - Suppose verifier knew the permutation. Then task reduces to proving equality of messages in ciphertext pairs
 - Can’t reveal the permutation: instead commit to a permutation of \((1,2,\ldots,n)\)
 - Use the sub-protocol to do this verifiably
 - Use homomorphic properties of the commitments to carry out equality proofs w.r.t committed permutation (omitted)
Today
Today

Mix-Nets
Today

- Mix-Nets
- Verifiable shuffles for El Gamal encryption
Today

- Mix-Nets
- Verifiable shuffles for El Gamal encryption
- Also known for Paillier encryption
Today

- Mix-Nets
- Verifiable shuffles for El Gamal encryption
 - Also known for Paillier encryption
- Useful in the “back-end” of voting schemes
Today

- Mix-Nets
- Verifiable shuffles for El Gamal encryption
 - Also known for Paillier encryption
- Useful in the “back-end” of voting schemes
- In principle, general MPC would work
Today

- Mix-Nets
- Verifiable shuffles for El Gamal encryption
 - Also known for Paillier encryption
- Useful in the “back-end” of voting schemes
 - In principle, general MPC would work
- Special constructions with better efficiency
Today

- Mix-Nets
- Verifiable shuffles for El Gamal encryption
 - Also known for Paillier encryption
 - Useful in the “back-end” of voting schemes
 - In principle, general MPC would work
 - Special constructions with better efficiency

Next: Voting
Today

- Mix-Nets
- Verifiable shuffles for El Gamal encryption
 - Also known for Paillier encryption
- Useful in the “back-end” of voting schemes
 - In principle, general MPC would work
 - Special constructions with better efficiency
- Next: Voting
 - Several subtleties (especially in the “front-end”)