Zero-Knowledge Proofs

Lecture 18
Interactive Proofs
Interactive Proofs
Interactive Proofs

Prover wants to convince *verifier* that x has some property
Interactive Proofs

Prover wants to convince *verifier* that x has some property

i.e. x is in “language” L
Interactive Proofs

Prover wants to convince verifier that x has some property
i.e. x is in “language” L
Interactive Proofs

Prover wants to convince *verifier* that x has some property

i.e. x is in “language” L

$x \in L$ Prove to me!
Interactive Proofs

Prover wants to convince verifier that x has some property

i.e. x is in "language" L
Interactive Proofs

Prover wants to convince verifier that x has some property

i.e. x is in “language” L
Interactive Proofs

Prover wants to convince *verifier* that \(x \) has some property

i.e. \(x \) is in “language” \(L \)

All powerful prover, computationally bounded verifier (for now)
Interactive Proofs
Interactive Proofs

Completeness
Interactive Proofs

Completeness

* If x in L, honest Prover will convince honest Verifier
Interactive Proofs

Completeness

- If \(x \) in \(L \), honest Prover will convince honest Verifier

Soundness
Interactive Proofs

Completeness

- If \(x \) in \(L \), honest Prover will convince honest Verifier

Soundness

- If \(x \) not in \(L \), honest Verifier won’t accept any purported proof
Interactive Proofs

Completeness
- If x in L, honest Prover will convince honest Verifier

Soundness
- If x not in L, honest Verifier won’t accept any purported proof
Interactive Proofs

Completeness
- If x in L, honest Prover will convince honest Verifier

Soundness
- If x not in L, honest Verifier won’t accept any purported proof
Interactive Proofs

Completeness

If $x \in L$, honest Prover will convince honest Verifier

Soundness

If $x \not\in L$, honest Verifier won’t accept any purported proof
Interactive Proofs

Completeness

If $x \in L$, honest Prover will convince honest Verifier

Soundness

If $x \not\in L$, honest Verifier won’t accept any purported proof
Interactive Proofs

Completeness

If \(x \in L \), honest Prover will convince honest Verifier

Soundness

If \(x \notin L \), honest Verifier won’t accept any purported proof

\(x \in L \)

yeah right!

Reject!
An Example

Coke in bottle or can
An Example

Coke in bottle or can

Prover claims: coke in bottle and coke in can are different
An Example

Coke in bottle or can

Prover claims: coke in bottle and coke in can are different

IP protocol:
An Example

Coke in bottle or can
- Prover claims: coke in bottle and coke in can are different

IP protocol:

Pour into from can or bottle
An Example

Coke in bottle or can

Prover claims: coke in bottle and coke in can are different

IP protocol:

Pour into from can or bottle
An Example

Coke in bottle or can
- Prover claims: coke in bottle and coke in can are different

IP protocol:
- prover tells whether cup was filled from can or bottle

Pour into from can or bottle
An Example

Coke in bottle or can

- Prover claims: coke in bottle and coke in can are different

IP protocol:

- prover tells whether cup was filled from can or bottle
An Example

Coke in bottle or can
- Prover claims: coke in bottle and coke in can are different
- IP protocol:
 - prover tells whether cup was filled from can or bottle
 - repeat till verifier is convinced
An Example

Graph Non-Isomorphism

Prover claims: G_0 not isomorphic to G_1

IP protocol:

prover tells whether G^* is an isomorphism of G_0 or G_1

repeat till verifier is convinced

Set G^* to be $\pi(G_0)$ or $\pi(G_1)$ (π random)
An Example

Graph Non-Isomorphism

Prover claims: \(G_0 \) not isomorphic to \(G_1 \)

IP protocol:

- prover tells whether \(G^* \) is an isomorphism of \(G_0 \) or \(G_1 \)
- repeat till verifier is convinced

Isomorphism: Same graph can be represented as a matrix in different ways:

\[
\begin{bmatrix}
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1
\end{bmatrix}
\]

\(\pi(\text{random}) \)

Set \(G^* \) to be \(\pi(G_0) \) or \(\pi(G_1) \)
An Example

Graph Non-Isomorphism

- Prover claims: G_0 not isomorphic to G_1

IP protocol:
- prover tells whether G^* is an isomorphism of G_0 or G_1
- repeat till verifier is convinced

Isomorphism: Same graph can be represented as a matrix in different ways:

\[
\begin{align*}
0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
\end{align*}
\]

e.g., $G_0 = 1 \ 0 \ 0 \ 1$ & $G_1 = 1 \ 0 \ 1 \ 1$
\[
\begin{align*}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
\end{align*}
\]

both are isomorphic to the graph represented by the drawing
An Example

Graph Non-Isomorphism

- Prover claims: G_0 not isomorphic to G_1
- IP protocol:
 - prover tells whether G^* is an isomorphism of G_0 or G_1
 - repeat till verifier is convinced

Isomorphism: Same graph can be represented as a matrix in different ways:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>G_1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

e.g., $G_0 = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ & $G_1 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \end{bmatrix}$

both are isomorphic to the graph represented by the drawing

Set G^* to be $\pi(G_0)$ or $\pi(G_1)$ (π random)
Proofs for NP languages

$x \in L$

Prove to me!
Proofs for NP languages

Proving membership in an NP language L

$x \in L$

Prove to me!
Prove to me!

Proving membership in an NP language L

$x \in L$ iff $\exists w \ R(x,w)=1$ (for R in P)

Proofs for NP languages
Proofs for NP languages

Proving membership in an NP language L

$x \in L$ iff $\exists w R(x,w) = 1$ (for R in P)

- e.g. Graph Isomorphism
Proving membership in an NP language \(L \)

\[x \in L \iff \exists w \ R(x, w) = 1 \text{ (for } R \text{ in } \mathbf{P}) \]

e.g. Graph Isomorphism

IP protocol:
Prove to me!

Proving membership in an **NP** language \(L \)

\[x \in L \text{ iff } \exists w \ R(x,w)=1 \text{ (for } R \text{ in } \mathbb{P}) \]

- e.g. Graph Isomorphism

IP protocol:

- prover sends \(w \) (non-interactive)
Prove to me!

Proving membership in an \(NP\) language \(L\)

\[x \in L \iff \exists w \ R(x,w)=1 \text{ (for } R \text{ in } P) \]

e.g. Graph Isomorphism

IP protocol:

prover sends \(w\) (non-interactive)
Proofs for NP languages

Proving membership in an NP language L

$x \in L$ iff $\exists w \: R(x,w)=1$ (for R in P)

e.g. Graph Isomorphism

IP protocol:

- prover sends w (non-interactive)

$x \in L$

Prove to me!

$R(x,w)=1$?

OK
Prove to me!

Proving membership in an **NP** language L

$x \in L$ iff $\exists w \ R(x,w)=1$ (for R in P)

e.g. Graph Isomorphism

IP protocol:

prover sends w (non-interactive)

NP is the class of languages which have non-interactive and deterministic proof-systems
Proving membership in an \(\textbf{NP} \) language \(L \)

\[x \in L \iff \exists w \ R(x,w)=1 \text{ (for } R \text{ in } \textbf{P}) \]

e.g. Graph Isomorphism

IP protocol:

- prover sends \(w \) (non-interactive)

What if prover doesn’t want to reveal \(w \)?

NP is the class of languages which have non-interactive and deterministic proof-systems
Zero-Knowledge Proofs

Verifier should not gain *any* knowledge from the honest prover.
Zero-Knowledge Proofs

Verifier should not gain *any* knowledge from the honest prover except whether \(x \) is in \(L \).
Zero-Knowledge Proofs

Verifier should not gain any knowledge from the honest prover except whether x is in L
Zero-Knowledge Proofs

Verifier should not gain *any* knowledge from the honest prover except whether x is in L.
Zero-Knowledge Proofs

Verifier should not gain \textit{any} knowledge from the honest prover except whether x is in L

$x \in L$

Prove to me!
Zero-Knowledge Proofs

Verifier should not gain *any* knowledge from the honest prover except whether x is in L.

$x \in L$

Prove to me!

w
Zero-Knowledge Proofs

Verifier should not gain *any* knowledge from the honest prover except whether x is in L.
Zero-Knowledge Proofs

Verifier should not gain \textit{any} knowledge from the honest prover except whether x is in L.
Zero-Knowledge Proofs

Verifier should not gain *any* knowledge from the honest prover except whether x is in L

How to formalize this?

$\exists \in L$

Prove to me! wonder what $f(w)$ is...

w
Zero-Knowledge Proofs

Verifier should not gain *any* knowledge from the honest prover except whether x is in L

How to formalize this?

Simulation!
An Example

Graph Isomorphism
An Example

Graph Isomorphism

(G_0, G_1) in L iff there exists an isomorphism σ such that $\sigma(G_0) = G_1$
An Example

Graph Isomorphism

\((G_0, G_1) \text{ in } L \text{ iff there exists an isomorphism } \sigma \text{ such that } \sigma(G_0) = G_1\)

IP protocol: send \(\sigma\)
An Example

Graph Isomorphism

(G_0, G_1) in L iff there exists an isomorphism σ such that $\sigma(G_0) = G_1$

IP protocol: send σ

ZK protocol?
An Example

Graph Isomorphism

(G_0, G_1) in L iff there exists an isomorphism σ such that $\sigma(G_0) = G_1$

IP protocol: send σ

ZK protocol?
An Example

Graph Isomorphism

(G_0, G_1) in L iff there exists an isomorphism σ such that $\sigma(G_0) = G_1$

IP protocol: send σ

ZK protocol?
An Example

Graph Isomorphism

- \((G_0, G_1)\) in \(L\) iff there exists an isomorphism \(\sigma\) such that \(\sigma(G_0) = G_1\)

- IP protocol: send \(\sigma\)

- ZK protocol?
An Example

Graph Isomorphism

- \((G_0, G_1) \text{ in L iff there exists an isomorphism } \sigma \text{ such that } \sigma(G_0) = G_1\)

- IP protocol: send \(\sigma\)

- ZK protocol?
An Example

Graph Isomorphism

(G_0,G_1) in L iff there exists an isomorphism \(\sigma \) such that \(\sigma(G_0) = G_1 \)

IP protocol: send \(\sigma \)

ZK protocol?

\[G^* := \pi(G_1) \] (random \(\pi \))

if \(b = 1 \), \(\pi^* := \pi \)
if \(b = 0 \), \(\pi^* := \pi \circ \sigma \)

random bit \(b \)
An Example

Graph Isomorphism

\((G_0, G_1)\) in \(L\) iff there exists an isomorphism \(\sigma\) such that \(\sigma(G_0) = G_1\)

IP protocol: send \(\sigma\)

ZK protocol?

\[G^* := \pi(G_1) \]

(random \(\pi\))

if \(b=1\), \(\pi^* := \pi\)

if \(b=0\), \(\pi^* := \pi \circ \sigma\)
An Example

Graph Isomorphism

\((G_0, G_1)\) in L iff there exists an isomorphism \(\sigma\) such that \(\sigma(G_0) = G_1\)

IP protocol: send \(\sigma\)

ZK protocol?
An Example

\[\pi^* := \pi(G_1) \quad \text{(random } \pi) \]

if \(b = 1 \), \(\pi^* := \pi \)

if \(b = 0 \), \(\pi^* := \pi \circ \sigma \)

G* := π*(G_b)?

random b

\(G^* \)

\(\pi^* \)
An Example

Why is this convincing?

\[G^* := \pi(G_1) \] (random \(\pi \))

if \(b=1 \), \(\pi^* := \pi \)
if \(b=0 \), \(\pi^* := \pi \circ \sigma \)

\[G^* = \pi^*(G_b) \]?
An Example

Why is this convincing?

If prover can answer both b’s for the same G* then G₀~G₁

G* := π(G₁)
(random π)

if b=1, π* := π
if b=0, π* := π₀σ

G* = π*(Gᵢ)?
An Example

Why is this convincing?

- If prover can answer both b’s for the same G^* then $G_0 \sim G_1$
- Otherwise, testing on a random b will leave prover stuck w.p. 1/2
An Example

Why is this convincing?

- If prover can answer both b’s for the same G* then G₀~G₁
- Otherwise, testing on a random b will leave prover stuck w.p. 1/2

Why ZK?

- G* := \pi(G₁)
- (random \pi)
- if b=1, \pi* := \pi
- if b=0, \pi* := \pi_0\sigma
- G* = \pi*(G_b)?

\[\pi* \]
An Example

Why is this convincing?

- If prover can answer both b’s for the same G* then G₀~G₁
- Otherwise, testing on a random b will leave prover stuck w.p. 1/2

Why ZK?

- Verifier’s view: random b and π* s.t. G* = π*(Gᵦ)
 - if b=1, π* := π
 - if b=0, π* := π₀σ

\[G* := \pi(G_1) \]
(random \(\pi \))
An Example

Why is this convincing?

- If prover can answer both b’s for the same G* then G₀~G₁
- Otherwise, testing on a random b will leave prover stuck w.p. 1/2

Why ZK?

- Verifier’s view: random b and π* s.t. G* = π*(G₁)
- Which he could have generated by himself (whether G₀~G₁ or not)
Zero-Knowledge Proofs
Zero-Knowledge Proofs

Interactive Proof
Zero-Knowledge Proofs

- Interactive Proof
- Complete and Sound
Zero-Knowledge Proofs

- Interactive Proof
 - Complete and Sound
- ZK Property:
Zero-Knowledge Proofs

- Interactive Proof
- Complete and Sound

ZK Property:
Zero-Knowledge Proofs

- Interactive Proof
 - Complete and Sound

ZK Property:
Zero-Knowledge Proofs

- Interactive Proof
- Complete and Sound

ZK Property:
Zero-Knowledge Proofs

- Interactive Proof
- Complete and Sound

ZK Property:
Zero-Knowledge Proofs

Interactive Proof
- Complete and Sound

ZK Property:
- Verifier’s view could have been “simulated”

Ah, got it!
42
Zero-Knowledge Proofs

Interactive Proof
- Complete and Sound

ZK Property:
- Verifier’s view could have been “simulated”
Zero-Knowledge Proofs

Interactive Proof

- Complete and Sound

ZK Property:

- Verifier’s view could have been “simulated”
Zero-Knowledge Proofs

Interactive Proof

- Complete and Sound

ZK Property:

- Verifier’s view could have been “simulated”

Ah, got it!

42
Zero-Knowledge Proofs

Interactive Proof

- Complete and Sound

ZK Property:

- Verifier’s view could have been “simulated”
Zero-Knowledge Proofs

Interactive Proof

Complete and Sound

ZK Property:

Verifier’s view could have been “simulated”

For every adversarial strategy, there exists a simulation strategy.
ZK Property (in other pics)

Secure (and correct) if:

\[\forall x, w \exists s.t. \forall \text{output of is distributed identically in REAL and IDEAL} \]
ZK Property (in other pics)

Secure (and correct) if:

∀ \exists s.t. output of is distributed identically in REAL and IDEAL
ZK Property (in other pics)

Secure (and correct) if:
\[
\forall s.t. \forall \text{output of } R \text{ is distributed identically in REAL and IDEAL}
\]
ZK Property (in other pics)

Classical definition uses simulation only for corrupt receiver;

Secure (and correct) if:

∀ \exists \ s.t. ∀ output of is distributed identically in REAL and IDEAL
ZK Property (in other pics)

Classical definition uses simulation only for corrupt receiver; and uses only standalone security: Environment gets only a transcript at the end.

Secure (and correct) if:

\[
\forall x, w \quad \exists s.t. \quad \forall \text{output of is distributed identically in REAL and IDEAL}
\]
Secure (and correct) if:

\[\forall x, w \text{ s.t. } \forall \text{ output of is distributed identically in REAL and IDEAL} \]
SIM ZK

- SIM-ZK would require simulation also when prover is corrupt

Secure (and correct) if:

\[\forall x, w \quad \exists s.t. \quad \forall \text{output of} \quad \text{is distributed identically in REAL and IDEAL} \]
SIM ZK

- SIM-ZK would require simulation also when prover is corrupt
- Then simulator is a witness extractor

Secure (and correct) if:

∀ ∃ s.t.
output of is distributed identically in REAL and IDEAL
SIM ZK

- SIM-ZK would require simulation also when prover is corrupt
- Then simulator is a witness extractor
- Adding this (in standalone setting) makes it a **Proof of Knowledge**

Secure (and correct) if:

\[\forall \exists s.t. \forall \text{output of is distributed identically in REAL and IDEAL} \]
Results
Results

IP and ZK defined \[\text{[GMR'85]}\]
Results

- IP and ZK defined [GMR’85]
- ZK for all NP languages [GMW’86]
Results

- IP and ZK defined [GMR’85]
- ZK for all NP languages [GMW’86]
 - Assuming one-way functions exist
Results

- IP and ZK defined [GMR’85]
- ZK for all NP languages [GMW’86]
- Assuming one-way functions exist
- ZK for all of IP [BGGHKMR’88]
Results

- IP and ZK defined \[\text{[GMR'85]}\]
- ZK for all NP languages \[\text{[GMW'86]}\]
 - Assuming one-way functions exist
- ZK for all of IP \[\text{[BGGHKMR'88]}\]
 - Everything that can be proven can be proven in zero-knowledge! (Assuming OWF)
Results

- IP and ZK defined [GMR’85]
- ZK for all NP languages [GMW’86]
 Assuming one-way functions exist
- ZK for all of IP [BGGHKMR’88]
 Everything that can be proven can be proven in zero-knowledge! (Assuming OWF)
- Variants (for NP)
Results

- IP and ZK defined [GMR’85]

- ZK for all NP languages [GMW’86]
 - Assuming one-way functions exist

- ZK for all of IP [BGGHKMR’88]
 - Everything that can be proven can be proven in zero-knowledge! (Assuming OWF)

- Variants (for NP)
 - ZKPoK, Statistical ZK Arguments, O(1)-round ZK, ...
A ZK Proof for Graph Colorability
A ZK Proof for Graph Colorability
A ZK Proof for Graph Colorability

Uses a commitment protocol as a subroutine
A ZK Proof for Graph Colorability

Uses a commitment protocol as a subroutine
A ZK Proof for Graph Colorability

- Uses a commitment protocol as a subroutine
A ZK Proof for Graph Colorability

Uses a commitment protocol as a subroutine

- Pick random edge
- Use random colors
- G, coloring
- Committed
- Edge
- Pick random edge
A ZK Proof for Graph Colorability

Uses a commitment protocol as a subroutine
A ZK Proof for Graph Colorability

Uses a commitment protocol as a subroutine
A ZK Proof for Graph Colorability

Uses a commitment protocol as a subroutine

Use random colors

pick random edge

reveal edge

committed

g, coloring

edge

distinct colors?

OK
A ZK Proof for Graph Colorability

- Uses a commitment protocol as a subroutine
- At least $\frac{1}{m}$ probability of catching a wrong proof
A ZK Proof for Graph Colorability

- Uses a commitment protocol as a subroutine
- At least $1/m$ probability of catching a wrong proof
- Soundness amplification: Repeat say mk times (with independent color permutations)

Diagram:
- Pick a random edge
- Use random colors
- G, coloring
- Reveal edge
- Edge
- Committed
- Distinct colors?
- OK
A Commitment Protocol
A Commitment Protocol

Using a OWP f and a hardcore predicate for it B
A Commitment Protocol

- Using a OWP f and a hardcore predicate for it B
- Satisfies only classical (IND) security, in terms of hiding and binding
A Commitment Protocol

- Using a OWP f and a hardcore predicate for it B
- Satisfies only classical (IND) security, in terms of hiding and binding
A Commitment Protocol

- Using a OWP f and a hardcore predicate for it B
- Satisfies only classical (IND) security, in terms of hiding and binding

random x
A Commitment Protocol

Using a OWP f and a hardcore predicate for it B

Satisfies only classical (IND) security, in terms of hiding and binding
Using a OWP f and a hardcore predicate for it B

Satisfies only classical (IND) security, in terms of hiding and binding
A Commitment Protocol

Using a OWP f and a hardcore predicate for it B

Satisfies only classical (IND) security, in terms of hiding and binding
Using a OWP f and a hardcore predicate for it B

Satisfies only classical (IND) security, in terms of hiding and binding
A Commitment Protocol

Using a OWP f and a hardcore predicate for it B

Satisfies only classical (IND) security, in terms of hiding and binding.
A Commitment Protocol

Using a OWP f and a hardcore predicate for it B

Satisfies only classical (IND) security, in terms of hiding and binding
Using a OWP f and a hardcore predicate for it B

Satisfies only classical (IND) security, in terms of hiding and binding

A Commitment Protocol

$random_x$

$f(x), b \oplus B(x)$

b, reveal

x, b

$b, \text{consistent?}$

committed
A Commitment Protocol

Using a OWF f and a hardcore predicate for it B
Satisfies only classical (IND) security, in terms of hiding and binding
Perfectly binding because f is a permutation
Using a OWP f and a hardcore predicate for it B

Satisfies only classical (IND) security, in terms of hiding and binding

Perfectly binding because f is a permutation

Hiding because $B(x)$ is pseudorandom given $f(x)$
ZK Proofs: What for?
ZK Proofs: What for?

Authentication
ZK Proofs: What for?

Authentication

- Using ZK Proof of Knowledge
ZK Proofs: What for?

- Authentication
- Using ZK Proof of Knowledge
- Canonical use: As a tool in larger protocols
ZK Proofs: What for?

- Authentication
 - Using ZK Proof of Knowledge
- Canonical use: As a tool in larger protocols
- To enforce “honest behavior” in protocols
ZK Proofs: What for?

- Authentication
 - Using ZK Proof of Knowledge

Canonical use: As a tool in larger protocols

- To enforce “honest behavior” in protocols
- At each step prove in ZK it was done as prescribed
ZK Proofs: What for?

- Authentication
- Using ZK Proof of Knowledge

Canonical use: As a tool in larger protocols
- To enforce “honest behavior” in protocols
- At each step prove in ZK it was done as prescribed
ZK Proofs: What for?

Authentication

Using ZK Proof of Knowledge

Canonical use: As a tool in larger protocols

To enforce “honest behavior” in protocols

At each step prove in ZK it was done as prescribed

x_1 is what you should have sent me now
ZK Proofs: What for?

- Authentication
- Using ZK Proof of Knowledge

Canonical use: As a tool in larger protocols

To enforce “honest behavior” in protocols

At each step prove in ZK it was done as prescribed

Prove to me x_1 is what you should have sent me now
ZK Proofs: What for?

- Authentication
 - Using ZK Proof of Knowledge

Canonical use: As a tool in larger protocols

- To enforce “honest behavior” in protocols

- At each step prove in ZK it was done as prescribed

Prove to me x_1 is what you should have sent me now

OK
ZK Proofs: What for?

Authentication
- Using ZK Proof of Knowledge

Canonical use: As a tool in larger protocols
- To enforce “honest behavior” in protocols
- At each step prove in ZK it was done as prescribed

Prove to me x_1 is what you should have sent me now
OK
ZK Proofs: What for?

Authentication

Using ZK Proof of Knowledge

Canonical use: As a tool in larger protocols

To enforce “honest behavior” in protocols

At each step prove in ZK it was done as prescribed
ZK Proofs: What for?

- Authentication
 - Using ZK Proof of Knowledge

Canonical use: As a tool in larger protocols
- To enforce “honest behavior” in protocols
- At each step prove in ZK it was done as prescribed

Prove to me x_1 is what you should have sent me now
Prove y_1 is what...
ZK Proofs: What for?

Authentication

Using ZK Proof of Knowledge

Canonical use: As a tool in larger protocols

To enforce “honest behavior” in protocols

At each step prove in ZK it was done as prescribed

Prove to me x_1 is what you should have sent me now

Prove y_1 is what...

OK

OK
ZK Proofs: What for?

Authentication
- Using ZK Proof of Knowledge

Canonical use: As a tool in larger protocols
- To enforce “honest behavior” in protocols
- At each step prove in ZK it was done as prescribed

Prove x_1 is what you should have sent me now
Prove y_1 is what...
Prove to me x_1 is what you should have sent me now
OK
OK
OK

y_1 x_1 x_2
ZK Proofs: What for?

Authentication
- Using ZK Proof of Knowledge

Canonical use: As a tool in larger protocols
- To enforce “honest behavior” in protocols
- At each step prove in ZK it was done as prescribed

Prove y_1 is what...

Prove to me x_1 is what you should have sent me now

OK

Prove x_2 is what...

OK

Prove y_1 is what...