Public-Key Cryptography

Public-Key Cryptography

Lecture 9

Public-Key Cryptography

Lecture 9
El Gamal Encryption

Public-Key Cryptography

Lecture 9
El Gamal Encryption
Public-Key Encryption from Trapdoor OWP

Public-Key Cryptography

Lecture 9
El Gamal Encryption
Public-Key Encryption from Trapdoor OWP
CCA Security

El Gamal Encryption

El Gamal Encryption

® Based on DH key-exchange

El Gamal Encryption

® Based on DH key-exchange

@ Alice, Bob generate a key
using DH key-exchange

El Gamal Encryption

Random vy
< Y=g’
@ Based on DH key-exchange Random X
X
ice, Bob e akef o AR :
@ Alice, Bob generate a key - o

using DH key-exchange

El Gamal Encryption

Random vy

< Y=g’
@ Based on DH key-exchange Random X 3

X=g* >

@ Alice, Bob generate a key
using DH key-exchange

K=YX K=XY

@ Then use it as a one-time pad

El Gamal Encryption

Random vy
< Y=g’
@ Based on DH key-exchange Random X
X
ice, Bob e akef o AR :
@ Alice, Bob generate a key - o

using DH key-exchange C=MK

@ Then use it as a one-time pad

El Gamal Encryption

® Based on DH key-exchange

@ Alice, Bob generate a key
using DH key-exchange

@ Then use it as a one-time pad

Random vy

<
Random x

X
X=g*
K=Y*

C
C=MK

Y=g’

K=XY

El Gamal Encryption

Random vy
< Y=g’
@ Based on DH key-exchange Random x
X
. W X:gx >
o All.ce, Bob generate a key - K=XY
using DH key-exchange i C 3
M=CK-!

@ Then use it as a one-time pad

El Gamal Encryption

Random vy
< Y=g’
@ Based on DH key-exchange Random X 3
ice, Bob K T ;
o All.ce, Bob generate a key Koy K=X
using DH key-exchange i C 3

@ Then use it as a one-time pad

@ Bobs "message” in the key-
exchange is his PK

El Gamal Encryption

Random vy
< Y=g’
@ Based on DH key-exchange Random X 3
ice, Bob K T ;
o All.ce, Bob generate a key Koy K=X
using DH key-exchange i C 3

@ Then use it as a one-time pad

@ Bobs "message” in the key-
exchange is his PK

o Alices message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

El Gamal Encryption

Random vy
< Y=g’
@ Based on DH key-exchange Random X
W X=g % >
@ Alice, Bob generate a key - o
using DH key-exchange ik % <
M=CK-!
@ Then use it as a one-time pad
@ Bob’s “message” in the key- KeyGen: PK=(G,g,Y), SK=(G,g.y)

exchange is his PK

o Alices message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

El Gamal Encryption

Random vy
< Y=g’
@ Based on DH key-exchange Random X
. W X=g 5 >
@ Alice, Bob generate a key B &
using DH key-exchange ik % <
M=CK-!
@ Then use it as a one-time pad
@ Bobs "message” in the key- KeyGen: PK=(G,qg,Y), SK=(G,g.y)
exchange is his PK Enci,qy)(M) = (X=g%, C=MYX)

o Alices message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

El Gamal Encryption

Random vy
< Y=g’
@ Based on DH key-exchange Random X
. W X=g 5 >
@ Alice, Bob generate a key B &
using DH key-exchange ik % <
M=CK-!
@ Then use it as a one-time pad
@ Bobs "message” in the key- KeyGen: PK=(G,qg,Y), SK=(G,g.y)
exchange is his PK Enci,qy)(M) = (X=g%, C=MYX)

Dec X,C) = CXY
@ Alices message in the key- @an(X,C)

exchange and the ciphertext of
the one-time pad together form
a single ciphertext

El Gamal Encryption

Random vy
< Y=g’
@ Based on DH key-exchange Random X
W X=g 5 >
@ Alice, Bob generate a key B &
using DH key-exchange ik % <
M=CK-!
@ Then use it as a one-time pad
@ Bobs "message” in the key- KeyGen: PK=(G,qg,Y), SK=(G,g.y)
exchange is his PK Enci,qy)(M) = (X=g%, C=MYX)

Dec X,C) = CXY
@ Alices message in the key- @an(X,C)

exchange and the ciphertext of @ KeyGen uses GroupGen to get (G,g)
the one-time pad together form
a single ciphertext

El Gamal Encryption

Random vy
< Y=g’
@ Based on DH key-exchange Random X
. W X=g 5 >
@ Alice, Bob generate a key B &
using DH key-exchange ik % <
M=CK-!
@ Then use it as a one-time pad
@ Bobs "message” in the key- KeyGen: PK=(G,qg,Y), SK=(G,g.y)
exchange is his PK Enci,qy)(M) = (X=g%, C=MYX)

Dec X,C) = CXY
@ Alices message in the key- @an(X,C)

exchange and the ciphertext of e KeyGen uses GroupGen to get (G,qg)

the one-time pad together form ¥ uniform from licl)
a single ciphertext

El Gamal Encryption

Random vy
< Y=g’
@ Based on DH key-exchange Random X
: w X=g . % A
@ Alice, Bob generate a key B &
using DH key-exchange ik % <
M=CK-!
@ Then use it as a one-time pad
@ Bobs "message” in the key- KeyGen: PK=(G,qg,Y), SK=(G,g.y)
exchange is his PK Enci,qy)(M) = (X=g%, C=MYX)

Dec X,C) = CXY
@ Alices message in the key- @an(X,C)

exchange and the ciphertext of e KeyGen uses GroupGen to get (G,qg)

the one-time pad together form © XY uniform from tGl]
® Message encoded info group element, and

a single ciphertext decoded

Security of El Gamal

@ E|l Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

Security of El Gamal

@ E|l Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

@ Construct a DDH adversary A* given an IND-CPA adversary A

Security of El Gamal

@ El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

@ Construct a DDH adversary A* given an IND-CPA adversary A

o A(G,g; g5,9”.g%) (where (G,g) < GroupGen, X,y random and
z=xy or random) plays the IND-CPA experiment with A:

Security of El Gamal

@ El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

@ Construct a DDH adversary A* given an IND-CPA adversary A

o A(G,g; g5,9”.g%) (where (G,g) < GroupGen, X,y random and
z=xy or random) plays the IND-CPA experiment with A:

@ But sets PK=(G,q,g") and Enc(Ms)=(g*,Msbg?)

Security of El Gamal

@ El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

@ Construct a DDH adversary A* given an IND-CPA adversary A

o A(G,g; g5,9”.g%) (where (G,g) < GroupGen, X,y random and
z=xy or random) plays the IND-CPA experiment with A:

@ But sets PK=(G,q,g") and Enc(Ms)=(g*,Msbg?)

@ Outputs 1 if experiment outputs 1 (i.e. if b=b’)

Security of El Gamal

@ El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

@ Construct a DDH adversary A* given an IND-CPA adversary A

o A(G,g; g5,9”.g%) (where (G,g) < GroupGen, X,y random and
z=xy or random) plays the IND-CPA experiment with A:

o But sets PK=(G,g,9”) and Enc(Ms)=(g*,Msg?)
@ Outputs 1 if experiment outputs 1 (i.e. if b=b’)

@ When z=random, A outputs 1 with probability = 1/2

Security of El Gamal

@ El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

@ Construct a DDH adversary A* given an IND-CPA adversary A

o A(G,g; g5,9”.g%) (where (G,g) < GroupGen, X,y random and
z=xy or random) plays the IND-CPA experiment with A:

o But sets PK=(G,g,9”) and Enc(Ms)=(g*,Msg?)
@ Outputs 1 if experiment outputs 1 (i.e. if b=b’)
@ When z=random, A outputs 1 with probability = 1/2

® When z=xy, exactly IND-CPA experiment: A* outputs 1 with
probability = 1/2 + advantage of A.

Abstracting El Gamal

Random vy
< Y=g’
Random x
X
X=g* >
K=YX K=XY
C
C=MK >
M=CK"!

KeyGen: PK=(G,q,Y), SK=(G,g,y)
Enc(G,g,Y)(N\) = (X=gx, C=MYX)
Dec(G,gy)(X,C) = CX

Abstracting El Gamal

Random vy
“— Y=g’
Random x
X
X=g* >
=V K=XY
(%
C=MK >
M=CK-!

KeyGen: PK=(G,q,Y), SK=(G,g,y)
EnC(G,g,Y)(N\) = (X=gx, C=N\Yx)
Dec(G,gy)(X.C) = CX

Abstracting El Gamal

@ Trapdoor PRG: Random y
< Y=g’
Random x
X
X=g* >
K=YX K=XY
C
C=MK »
M=CK"!

KeyGen: PK=(G,q,Y), SK=(G,g,y)
EnC(G,g,Y)(N\) = (X=gx, C=N\Yx)
Dec(G,gy)(X.C) = CX

Abstracting El Gamal

@ Trapdoor PRG:
o KeyGen: a pair (PK,SK)

Random vy
< Y=g’
Random x
X
X=g* »
K=YX K=XY
C
C=MK >
M=CK-!

KeyGen: PK=(G,q,Y), SK=(G,g,y)
EnC(G,g,Y)(N\) = (X=gx, C=N\Yx)
Dec(G,gy)(X.C) = CX

KeyGen: (PK,SK)

Abstracting El Gamal

@ Trapdoor PRG: Random vy

< Y=q’

@ KeyGen: a pair (PK,SK) Random x : o
@ Three functions: Ge«(.) (a PRG) & A

and Tek(.) (make trapdoor info) gt z K=X"

C=MK 3

and Rsk(.) (opening the trapdoor) iy

KeyGen: PK=(G,g,Y), SK=(G,g,y)
Enc(G,g,Y)(N\) = (X=gx, C=MY?*)
Dec(G,gy)(X.C) = CX

KeyGen: (PK,SK)

Abstracting El Gamal

@ Trapdoor PRG: Random vy

< Y=q’

@ KeyGen: a pair (PK,SK) Random x : o
@ Three functions: Ge«(.) (a PRG) & A

and Tek(.) (make trapdoor info) gt z K=X"

C=MK 3

and Rsk(.) (opening the trapdoor) iy

KeyGen: PK=(G,g,Y), SK=(G,g,y)
Enc(G,g,Y)(N\) = (X=gx, C=MY?*)
Dec(G,gy)(X.C) = CX

KeyGen: (PK,SK)
Encex(M) = (X=Tek(x), C=M.Gpk(x))

Abstracting El Gamal

@ Trapdoor PRG: Random vy

< Y=q’

@ KeyGen: a pair (PK,SK) Random x : o
@ Three functions: Ge«(.) (a PRG) & A

and Tek(.) (make trapdoor info) gt z K=X"

C=MK 3

and Rsk(.) (opening the trapdoor) iy

KeyGen: PK=(G,g,Y), SK=(G,g,y)
Enc(G,g,Y)(N\) = (X=gx, C=MY?*)
Dec(G,gy)(X.C) = CX

KeyGen: (PK,SK)
Encex(M) = (X=Tek(x), C=M.Gpk(x))
Decsk(X,C) = C/Rsk(Tpx(x))

Abstracting El Gamal

@ Trapdoor PRG: Random vy
Y=q’
@ KeyGen: a pair (PK,SK) Random(x : o

@ Three functions: Ge«(.) (a PRG) & A
and Tek(.) (make trapdoor info) gt z K=X"

C=MK 3

and Rsk(.) (opening the trapdoor) L

@ Gpk(x) is pseudorandom even

given Tex(x) and PK KeyGen: PK=(G,g,Y), SK=(G,g,y)

EnC(G,g,Y)(M) = (ngx, C=MY?*)
Dec(G,gy)(X.C) = CX

KeyGen: (PK,SK)
Encex(M) = (X=Tek(x), C=M.Gpk(x))
Decsk(X,C) = C/Rsk(Tpx(x))

Abstracting El Gamal

@ Trapdoor PRG: Random vy

< Y=q’

@ KeyGen: a pair (PK,SK) Random x : o
@ Three functions: Ge«(.) (a PRG) & A

and Tek(.) (make trapdoor info) gt z K=X"

C=MK 3

and Rsk(.) (opening the trapdoor) iy

@ Gpk(x) is pseudorandom even
given Tpx(x) and PK

o (PK,Tpx(x),Gek(x)) = (PK,Tpx(x),r)

KeyGen: PK=(G,g,Y), SK=(G,g,y)
Enc(G,g,Y)(N\) = (X=gx, C=MY?*)
Dec(G,gy)(X.C) = CX

KeyGen: (PK,SK)
Encex(M) = (X=Tek(x), C=M.Gpk(x))
Decsk(X,C) = C/Rsk(Tpx(x))

Abstracting El Gamal

@ Trapdoor PRG: Random vy
Y=q’
@ KeyGen: a pair (PK,SK) Random(x : o

@ Three functions: Ge«(.) (a PRG) & A
and Tek(.) (make trapdoor info) gt z K=X"

C=MK 3

and Rsk(.) (opening the trapdoor) L

@ Gpk(x) is pseudorandom even
given Tpx(x) and PK

o (PK,Tpx(x),Gek(x)) = (PK,Tpx(x),r)

o Tex(x) hides Gpk(x). SK opens it.
KeyGen: (PK,SK)
Encex(M) = (X=Tek(x), C=M.Gpk(x))
DQCSK(X,C) = C/RSK(TPK(X))

KeyGen: PK=(G,g,Y), SK=(G,g,y)
EnC(G,g,Y)(M) - (ngx, C=MY?*)
Dec(G,gy)(X.C) = CX

Abstracting El Gamal

@ Trapdoor PRG: Random vy

Y=g’

@ KeyGen: a pair (PK,SK) Random(x : o
@ Three functions: Ge«(.) (a PRG) & A

and Tek(.) (make trapdoor info) gt z K=X"

C=MK 3

and Rsk(.) (opening the trapdoor) iy

@ Gpk(x) is pseudorandom even
given Tpx(x) and PK

o (PK,Tek(x),Gek(x)) = (PK,Tek(x),r)
o Tex(x) hides Gpk(x). SK opens it.

o RelToc(x)) G KeyGen: (PK,SK)
Ence(M) = (X=Tpk(x), C=M.Gpk(x))

Decsk(X,C) = C/Rsk(Tek(x))

KeyGen: PK=(G,g,Y), SK=(G,g,y)
Enc(G,g,Y)(N\) = (X=gx, C=MY?*)
Dec(G,gy)(X.C) = CX

Abstracting El Gamal

@ Trapdoor PRG: Random vy
@ KeyGen: a pair (PK,SK) Random(x ® i
@ Three functions: Ge«(.) (a PRG) & A
and Tek(.) (make trapdoor info) K=Y~ 2 K=X
and Rsk(.) (opening the trapdoor) o 3 i

@ Gpk(x) is pseudorandom even
given Tpx(x) and PK

o (PK,Tpk(x),Gek(x)) = (PK,Tex(x),r)
o Tex(x) hides Gpk(x). SK opens it.
o Rec(Tox(x)) = Gex(x) et A5

Encek(M) = (X=T , C=M.G
@ Enough for an IND-CPA secure PKE o) pr() pr(x))
scheme Decsk(X,C) = C/Rsk(Tpx(x))

KeyGen: PK=(G,g,Y), SK=(G,g,y)
Enc(G,g,Y)(N\) = (X=gx, C=MY?*)
Dec(G,gy)(X.C) = CX

Abstracting El Gamal

@ Trapdoor PRG: v Random y
@ KeyGen: a pair (PK,SK) Random(x : =g’

@ Three functions: Gpk(.) (a PRG) &= ”
and Tek(.) (make trapdoor info) K=Y~ 2 K=X"
and Rsk(.) (opening the trapdoor) o 3 i

@ Gpk(x) is pseudorandom even

given Tex(x) and PK KeyGen: PK=(G,g,Y), SK=(G,g,y)

EnC(G,g,Y)(M) = (ngx, C=MY?*)

o (pK,TPK(X),GPK(X)) ~ (pKITpK(x)lr) DeC(G,g,y)(X,C) - CX~Y

@ Tek(x) hides Gpk(x). SK opens it.
o RelToc(x)) G KeyGen: (PK,SK)

E M) = (X=T , C=M.G
@ Enough for an IND-CPA secure PKE o) pr() pr(x))
scheme (e.g., Security of El Gamal) Decsk(X,C) = C/Rsk(Te(x))

Trapdoor PRG from

Generic Assumption?
7N\

KeyGen

B

(PK, Tek(x),Gp(x)) = (PK,Tpk(x),r)

Trapdoor PRG from
Generic Assumption?

KeyGen

PKI/ \I SK
T e

X 2 s R
G

B

(PK, Tek(x),Gek(x)) = (PK,Tpk(x),r)

® PRG constructed from OWP (or OWF)

Trapdoor PRG from
Generic Assumption?

KeyGen

® PRG constructed from OWP (or OWF)

PK SK
@ Allows us to instantiate the
e gty v R
T

construction with several “
candidates
B

(PK, Tek(x),Gek(x)) = (PK,Tpk(x),r)

Trapdoor PRG from
Generic Assumption?

7N\
KeyGen

® PRG constructed from OWP (or OWF)

PK SK
@ Allows us to instantiate the
e gty v R
T

construction with several “
candidates

® Is there a similar construction for lz lz
TPROGTONS e (PK, Tox(x),Gpe(x)) = (PK, Tox(x).1)

Trapdoor PRG from
Generic Assumpfioﬁ

KeyGen

® PRG constructed from OWP (or OWF)

PK SK
@ Allows us to instantiate the
e gty v R
—

construction with several “
candidates

Z y4
® Is there a similar construction for l l

B e (PK, Tex(x),Gox(x) = (PK,Tox(x),1)
@ Trapdoor property seems

fundamentally different: generic
OWP does not suffice

Trapdoor PRG from
Generic Assumpfioﬁ

KeyGen

® PRG constructed from OWP (or OWF)

PK SK
@ Allows us to instantiate the
e gty v R
—

construction with several

candidates
Z y4
® Is there a similar construction for l l

B e (PK, Tex(x),Gox(x) = (PK,Tox(x),1)
@ Trapdoor property seems

fundamentally different: generic
OWP does not suffice

@ Will start with “Trapdoor OWP”

Trapdoor OWP

o (KeyGen,f,f’) (all PPT) is a trapdoor one-
way permutation (TOWP) if

Trapdoor OWP

o (KeyGen,f,f’) (all PPT) is a trapdoor one-
way permutation (TOWP) if

@ For all (PK,SK) <—KeyGen

Trapdoor OWP

o (KeyGen,f,f’) (all PPT) is a trapdoor one-
way permutation (TOWP) if

@ For all (PK,SK) <—KeyGen

o fpk a permutation

Trapdoor OWP

o (KeyGen,f,f’) (all PPT) is a trapdoor one-
way permutation (TOWP) if

@ For all (PK,SK) <KeyGen
o fpk a permutation

@ f'sk is the inverse of fpx

Trapdoor OWP

o (KeyGen,f,f’) (all PPT) is a trapdoor one-
way permutation (TOWP) if

@ For all (PK,SK) <—KeyGen
o fpk a permutation
o f'sk is the inverse of fp«

@ For all PPT adversary, probability of
success in the TOWP experiment is
negligible

Trapdoor OWP

o (KeyGen,f,f’) (all PPT) is a trapdoor one- ‘
way permutation (TOWP) if FPK(X)?/
@ For all (PK,SK) <KeyGen lx'
; tati 3 P
o fpk a permutation P,
o f'sk is the inverse of fpx ><${0,1;"
X' = X
@ For all PPT adversary, probability of i 9

success in the TOWP experiment is lYes/No
negligible

Trapdoor OWP

o (KeyGen,f,f’) (all PPT) is a trapdoor one- ‘
way permutation (TOWP) if FPK(X)?/
@ For all (PK,SK) <—KeyGen lb'
o f fati E D
pk @ permutation PR, e
o f'sk is the inverse of fpx x<—10,1}*
b’ = BpK(X)?
@ For all PPT adversary, probability of i 9
success in the TOWP experiment is lYes/No

negligible
@ Hardcore predicate:

@ Bpk s.t. (PK,fpr(x),Bek(x)) = (PK,fpk(x),r)

Trapdoor PRG from
Trapdoor OWP

KeyGen

B

(PK, Tek(x),Gek(x)) = (PK,Tek(x),r)

Trapdoor PRG from
Trapdoor OWP S

KeyGen

PKI/ \I SK
® Same construction as PRG from OWP
T —_

X R
G

(PK, Tek(x),Gek(x)) = (PK,Tek(x),r)

Trapdoor PRG from
Trapdoor OWP S

KeyGen

PKI/ \I SK
® Same construction as PRG from OWP
@ One bit TPRG x o R

(PK, Tek(x),Gek(x)) = (PK,Tek(x),r)

Trapdoor PRG from
Trapdoor OWP

® Same construction as PRG from OWP : :

@ One bit TPRG
o KeyGen same as TOWPs KeyGen

X

lz lz

(PK, Tek(x),Gek(x)) = (PK,Tek(x),r)

Trapdoor PRG from
Trapdoor OWP

® Same construction as PRG from OWP : :

@ One bit TPRG X
o KeyGen same as TOWPs KeyGen l 2 lz
@ Gpk(x) := Bek(x). Tex(x) := fex(x). (PK, Tek(x),Gek(x)) = (PK,Tex(x),r)

Rsk(y) := Gpk(F'sk(y))

—) fex f—f Tox(x)

Gpk(x)

Trapdoor PRG from
Trapdoor OWP

® Same construction as PRG from OWP : :

@ One bit TPRG X
® KeyGen same as TOWPSs KeyGen l P lz
o Gpk(x) := BPK(X); Tek(x) := fpx(x). (PK, Tex(x),Gek(x)) = (PK,Tex(x),r)
Rek(Y) 1= Gek(f'sk(y)) (PK, Fox(x),Bo(X)) = (PK,Fox(x),T)

—> Fox = Toc(x)

Bpx ‘l

Gpk(x)

Trapdoor PRG from
Trapdoor OWP

® Same construction as PRG from OWP : :

@ One bit TPRG X
® KeyGen same as TOWPSs KeyGen l P lz
o Gpk(x) := BPK(X); Tek(x) := fpx(x). (PK, Tex(x),Gek(x)) = (PK,Tex(x),r)
Rek(Y) 1= Gek(f'sk(y)) (PK, Fox(x),Bo(X)) = (PK,Fox(x),T)

@ (SK assumed to contain PK)

—) frx »| Tex(x)

Bpx -l

Gpk(x)

Trapdoor PRG from
Trapdoor OWP

® Same construction as PRG from OWP : :

@ One bit TPRG X
@ KeyGen same as TOWPs KeyGen l P lz
o Gpk(x) := BPK(X); Tek(x) := fpx(x). (PK, Tex(x),Gek(x)) = (PK,Tex(x),r)
Rek(Y) 1= Gek(f'sk(y)) (PK, Fox(x),Bo(X)) = (PK,Fox(x),T)

@ (SK assumed to contain PK)

- X f Tox(x)
@ More generally, last permutation - o _l’ -

output serves as Tpk

Gpk(x)

Trapdoor PRG from
Trapdoor OWP

® Same construction as PRG from OWP : :

@ One bit TPRG X
@ KeyGen same as TOWPs KeyGen l P lz
o Gpk(x) := BPK(X); Tek(x) := fpx(x). (PK, Tex(x),Gek(x)) = (PK,Tex(x),r)
Rek(Y) 1= Gek(f'sk(y)) (PK, Fox(x),Bo(X)) = (PK,Fox(x),T)

@ (SK assumed to contain PK)

X X f f f Tox(x)
@ More generally, last permutation [BE:_I’ Bz:_l’ g BEE_I’ i

output serves as Tpk 1 1 v

Candidate TOWPs

@ From some (candidate) OWP collections, with index as public-key

Candidate TOWPs

@ From some (candidate) OWP collections, with index as public-key

@ Recall candidate OWF collections

Candidate TOWPs

@ From some (candidate) OWP collections, with index as public-key
@ Recall candidate OWF collections

@ Rabin OWF: frabin(X; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {O...N})

Candidate TOWPs

@ From some (candidate) OWP collections, with index as public-key
@ Recall candidate OWF collections

@ Rabin OWF: frabin(X; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {O...N})

® Fact: fravin(.; N) is a permutation among quadratic residues,
when P, Q are = 3 (mod 4)

Candidate TOWPs

@ From some (candidate) OWP collections, with index as public-key
@ Recall candidate OWF collections

@ Rabin OWF: frabin(X; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {O...N})

® Fact: fravin(.; N) is a permutation among quadratic residues,
when P, Q are = 3 (mod 4)
@ Fact: Can invert frabin(.; N) given factorization of N

Candidate TOWPs

@ From some (candidate) OWP collections, with index as public-key
@ Recall candidate OWF collections

@ Rabin OWF: frabin(X; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {O...N})

® Fact: fravin(.; N) is a permutation among quadratic residues,
when P, Q are = 3 (mod 4)
@ Fact: Can invert frabin(.; N) given factorization of N

® RSA function: frsa(x; N,e) = x¢ mod N where N=PQ, PQ k-bit
primes, e s.t. gcd(e,©(N)) = 1 (and x uniform from {0...N})

Candidate TOWPs

@ From some (candidate) OWP collections, with index as public-key

@ Recall candidate OWF collections

@ Rabin OWF: frabin(X; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {O...N})

® Fact: fravin(.; N) is a permutation among quadratic residues,
when P, Q are = 3 (mod 4)

@ Fact: Can invert frabin(.; N) given factorization of N

® RSA function: frsa(x; N,e) = x¢ mod N where N=PQ, PQ k-bit
primes, e s.t. gcd(e,©(N)) = 1 (and x uniform from {0...N})

@ Fact: frsa(.; N,e) is a permutation

Candidate TOWPs

@ From some (candidate) OWP collections, with index as public-key

@ Recall candidate OWF collections

@ Rabin OWF: frabin(X; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {O...N})

® Fact: fravin(.; N) is a permutation among quadratic residues,
when P, Q are = 3 (mod 4)

@ Fact: Can invert frabin(.; N) given factorization of N

® RSA function: frsa(x; N,e) = x¢ mod N where N=PQ, PQ k-bit
primes, e s.t. gcd(e,©(N)) = 1 (and x uniform from {0...N})

@ Fact: frsa(.; N,e) is a permutation

@ Fact: While picking (N,e), can also pick d s.t. x®d = x

Candidate TOWPs

@ From some (candidate) OWP collections, with index as public-key

@ Recall candidate OWF collections

@ Rabin OWF: frabin(X; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {O...N})

® Fact: fravin(.; N) is a permutation among quadratic residues,
when P, Q are = 3 (mod 4)

@ Fact: Can invert frabin(.; N) given factorization of N

® RSA function: frsa(x; N,e) = x¢ mod N where N=PQ, PQ k-bit
primes, e s.t. gcd(e,©(N)) = 1 (and x uniform from {0...N})

@ Fact: frsa(.; N,e) is a permutation

@ Fact: While picking (N,e), can also pick d s.t. x®d = x

Recap

® CPA-secure PKE
® DH Key-exchange, El Gamal and DDH assumption
@ Trapdoor PRG

Recap

® CPA-secure PKE
® DH Key-exchange, El Gamal and DDH assumption
@ Trapdoor PRG

@ Abstracts what DDH gives for El Gamal

Recap

® CPA-secure PKE
® DH Key-exchange, El Gamal and DDH assumption
@ Trapdoor PRG

@ Abstracts what DDH gives for El Gamal

@ With a secret-key, trapdoor information can also yield the
pseudorandom string

Recap

® CPA-secure PKE
® DH Key-exchange, El Gamal and DDH assumption
@ Trapdoor PRG

@ Abstracts what DDH gives for El Gamal

@ With a secret-key, trapdoor information can also yield the
pseudorandom string

® Can be used to get IND-CPA secure PKE scheme

o

Recap

CPA-secure PKE

DH Key-exchange, El Gamal and DDH assumption
Trapdoor PRG

@ Abstracts what DDH gives for El Gamal

@ With a secret-key, trapdoor information can also yield the
pseudorandom string

® Can be used to get IND-CPA secure PKE scheme
Trapdoor OWP

o

Recap

CPA-secure PKE

DH Key-exchange, El Gamal and DDH assumption
Trapdoor PRG

@ Abstracts what DDH gives for El Gamal

@ With a secret-key, trapdoor information can also yield the
pseudorandom string

® Can be used to get IND-CPA secure PKE scheme
Trapdoor OWP
@ With a secret-key, invert the OWP

o

Recap

CPA-secure PKE

DH Key-exchange, El Gamal and DDH assumption
Trapdoor PRG

@ Abstracts what DDH gives for El Gamal

@ With a secret-key, trapdoor information can also yield the
pseudorandom string

® Can be used to get IND-CPA secure PKE scheme
Trapdoor OWP

@ With a secret-key, invert the OWP

@ Can be used to construct Trapdoor PRG

Recap

® CPA-secure PKE
® DH Key-exchange, El Gamal and DDH assumption
@ Trapdoor PRG

@ Abstracts what DDH gives for El Gamal

@ With a secret-key, trapdoor information can also yield the
pseudorandom string

® Can be used to get IND-CPA secure PKE scheme
® Trapdoor OWP

@ With a secret-key, invert the OWP

@ Can be used to construct Trapdoor PRG
@ Next: CCA secure PKE

CCA Secure PKE

@ In SKE, fo get CCA security, we used a MAC

CCA Secure PKE

@ In SKE, fo get CCA security, we used a MAC

@ Bob would accept only messages from Alice

CCA Secure PKE

@ In SKE, fo get CCA security, we used a MAC
@ Bob would accept only messages from Alice

@ But in PKE, Bob wants to receive messages from Eve
as well

CCA Secure PKE

@ In SKE, fo get CCA security, we used a MAC
@ Bob would accept only messages from Alice

@ But in PKE, Bob wants to receive messages from Eve
as well

@ Only if it is indeed Eve's own message: she should
know her own message!

Chosen Ciphertext Attack

Chosen Ciphertext Attack

® Suppose Enc SIM-CPA secure

Chosen Ciphertext Attack

® Suppose Enc SIM-CPA secure

subtle |
e-mail attack

Chosen Ciphertext Attack

® Suppose Enc SIM-CPA secure

subtle |
e-mail attack

Chosen Ciphertext Attack

@ Suppose Enc SIM-CPA secure

A subtle
e-mail attack

Chosen Ciphertext Attack

@ Suppose Enc SIM-CPA secure

A subtle
e-mail attack

Alice = Bob: Enc(m)

Chosen Ciphertext Attack

@ Suppose Enc SIM-CPA secure

A subtle
e-mail attack

Alice = Bob: Enc(m)

| look around
for your eyes shining

| seek you

in everything...

Chosen Ciphertext Attack

@ Suppose Enc SIM-CPA secure

A subtle
e-mail attack

Alice = Bob: Enc(m)

| look around
for your eyes shining

| seek you

in everything...

Chosen Ciphertext Attack

@ Suppose Enc SIM-CPA secure

A subtle
e-mail attack

Alice = Bob: Enc(m)
Eve: Hack(Enc(m)) = Enc(m*)

| look around _
for your eyes shining
| seek you

Chosen Ciphertext Attack

@ Suppose Enc SIM-CPA secure

A subtle
e-mail attack
Alice = Bob: Enc(m)

Eve: Hack(Enc(m)) = Enc(m*)
(where m* = Reverse of m)

| look around _
for your eyes shining

| seek you

in everything...

Chosen Ciphertext Attack

® Suppose Enc SIM-C

@ Suppose encrypts a C
time (still secure)
Alice = Bob: Enc(m)

Eve: Hack(Enc(m)) = Enc(m*)
(where m* = Reverse of m)

| look around
for your eyes shining

| seek you

in everything...

PA secure

naracter at a

A subtle
e-mail attack

Chosen Ciphertext Attack

@ Suppose Enc SIM-CPA secure

A subtle
e-mail attack

@ Suppose encrypts a character at a
time (still secure)

Alice = Bob: Enc(m)

Eve: Hack(Enc(m)) = Enc(m?*)
(where m* = Reverse of m)

Eve — Bob: Enc(m*)

| look around
for your eyes shining

| seek you

in everything...

Chosen Ciphertext Attack

@ Suppose Enc SIM-CPA secure

A subtle
e-mail attack

@ Suppose encrypts a character at a
time (still secure)

Alice = Bob: Enc(m)

Eve: Hack(Enc(m)) = Enc(m?*)
(where m* = Reverse of m)

Eve — Bob: Enc(m*)

...gnihtyreve ni
uoy kees |
- gninihs seye ruoy rof
dnuora kool |

| look around _
for your eyes shining

| seek you

in everything...

Chosen Ciphertext Attack

® Suppose Enc SIM-C

@ Suppose encrypts a C
time (still secure)

Alice = Bob: Enc(m)

Eve: Hack(Enc(m)) = Enc(m?*)
(where m* = Reverse of m)

Eve — Bob: Enc(m*)

Bob — Eve: “what’s this: m*?”

| look around
for your eyes shining

| seek you

in everything...

PA secure

naracter at a

z £ \ What’s this that you
8/ sent me?

A subtle
e-mail attack

Hey Eve, K}

N

> ...gnihtyreve ni
> uoy kees |
> gninihs seye ruoy rof

= dnuora kool |
,”\' iy .

Chosen Ciphertext Attack

@ Suppose Enc SIM-CPA secure

® Suppose encrypts a character at a
time (still secure) [

subtle
e-mail attack

|
R Hey Eve, &
V¥ A \ What's this that you | |
8/ sent me?

N

> ...gnihtyreve ni

> uoy kees |

> gninihs seye ruoy rof
> dnuora kool |

look around
for your eyes shining
| seek you

in everything...

Alice = Bob: Enc(m)

Eve: Hack(Enc(m)) = Enc(m?*)
(where m* = Reverse of m)

Eve — Bob: Enc(m*)

Bob — Eve: “what’s this: m*?”

Eve: Reverse m* tofind m!

| look around
for your eyes shining

| seek you

in everything...

Malleability

@ Malleability: Eve can "malleate” a ciphertext (without having to
decrypt it) to produce a new ciphertext that would decrypt to
a "related” message

Malleability

@ Malleability: Eve can "malleate” a ciphertext (without having to
decrypt it) to produce a new ciphertext that would decrypt to
a "related” message

@ E.g.: Malleability of El Gamal

Malleability

@ Malleability: Eve can "malleate” a ciphertext (without having to
decrypt it) to produce a new ciphertext that would decrypt to
a "related” message

@ E.g.: Malleability of El Gamal
@ Recall: Enc(G,g,Y)(m) = (gx,M.Yx)

Malleability

@ Malleability: Eve can "malleate” a ciphertext (without having to
decrypt it) to produce a new ciphertext that would decrypt to
a "related” message

@ E.g.: Malleability of El Gamal
@ Recall: Enc(G,g,Y)(m) = (gx,M.Yx)
@ Given (X,C) change it to (X, TC): will decrypt to TM

Malleability

@ Malleability: Eve can "malleate” a ciphertext (without having to
decrypt it) to produce a new ciphertext that would decrypt to
a "related” message

@ E.g.: Malleability of El Gamal
@ Recall: Encigy)(m) = (gX,M.YX)
@ Given (X,C) change it to (X, TC): will decrypt to TM
@ Or change (X,C) to (X4,C%: will decrypt to M

Malleability

@ Malleability: Eve can "malleate” a ciphertext (without having to
decrypt it) to produce a new ciphertext that would decrypt to
a "related” message

@ E.g.: Malleability of El Gamal
@ Recall: Encigy)(m) = (gX,M.YX)
@ Given (X,C) change it to (X, TC): will decrypt to TM
@ Or change (X,C) to (X4,C%: will decrypt to M

@ If chosen-ciphertext attack possible

Malleability

@ Malleability: Eve can "malleate” a ciphertext (without having to
decrypt it) to produce a new ciphertext that would decrypt to
a "related” message

@ E.g.: Malleability of El Gamal
@ Recall: Encigy)(m) = (gX,M.YX)
@ Given (X,C) change it to (X, TC): will decrypt to TM
@ Or change (X,C) to (X4,C%: will decrypt to M

@ If chosen-ciphertext attack possible

@ i.e., Eve can get a ciphertext of her choice decrypted

Malleability

@ Malleability: Eve can "malleate” a ciphertext (without having to
decrypt it) to produce a new ciphertext that would decrypt to
a "related” message

@ E.g.: Malleability of El Gamal
@ Recall: Encigy)(m) = (gX,M.YX)
@ Given (X,C) change it to (X, TC): will decrypt to TM
@ Or change (X,C) to (X4,C%: will decrypt to M
@ If chosen-ciphertext attack possible
@ i.e., Eve can get a ciphertext of her choice decrypted

@ Then Eve can exploit malleability to learn something “related
to” Alices messages

Malleability

@ Malleability: Eve can "malleate” a ciphertext (without having to
decrypt it) to produce a new ciphertext that would decrypt to

W\ nw
a related” message jMore subtly, the 1 bit - valid or invalid -

e K i i
3 E.g.: Malleablll’ry of El Gamal may leak information on message or SK

@ Recall: Encigy)(m) = (gX,M.YX)
@ Given (X,C) change it to (X, TC): will decrypt to TM
@ Or change (X,C) to (X4,C%: will decrypt to M
@ If chosen-ciphertext attack possible
@ i.e., Eve can get a ciphertext of her choice decrypted

@ Then Eve can exploit malleability to learn something “related
to” Alices messages

Chosen Ciphertext Attack

@ SIM-CCA: does capture this attack

| look around
for your eyes shining
| seek you
in everything...

Hey Eve, K\
\ What’s this that you 3
sent me?

N

...gnihtyreve ni
uoy kees |

gninihs seye ruoy rof
dnuora kool |

| look around
for your eyes shining

| seek you

in everything...

| look around
for your eyes shining

|1 seek you
in everything...

Hey Eve,

What'’s this that you
sent me?

...gnihtyreve ni
uoy kees |

gninihs seye ruoy rof
dnuora kool |

| look around
for your eyes shining

|1 seek you
in everything...

Hey Eve,

What'’s this that you
sent me?

...gnihtyreve ni
uoy kees |

gninihs seye ruoy rof
dnuora kool |

| look around
for your eyes shining

|1 seek you
in everything...

Hey Eve,

What'’s this that you
sent me?

...gnihtyreve ni
uoy kees |

gninihs seye ruoy rof
dnuora kool |

| look around
for your eyes shining

| seek you

in everything...

OUnN!

Hey Eve, \

What'’s this that you
sent me?

...gnihtyreve ni
uoy kees |

gninihs seye ruoy rof
dnuora kool |

| look around
for your eyes shining
| seek you
in everything...

——

T~
e

Hey Eve, \

What'’s this that you
sent me?

...gnihtyreve ni
uoy kees |

gninihs seye ruoy rof
dnuora kool |

| look around
for your eyes shining

| seek you

in everything...

3 jele

Hey Eve, \

What'’s this that you
sent me?

...gnihtyreve ni
uoy kees |

gninihs seye ruoy rof
dnuora kool |

| look around
for your eyes shining
| seek you
in everything...

——

Hey Eve, \

What'’s this that you
sent me?

...gnihtyreve ni
uoy kees |

gninihs seye ruoy rof
dnuora kool |

SIM-CCA Security (PKE)

o o W

/ 4
Secure (and ‘
corrﬂec’r) if: ‘
\
\? 3 x? s.t. ud
I ‘o I
output of @
is distributed
identically in REAL
IDEAL REAL and IDEAL

Replay
Filter

SIM-CCA Security and
Malleability

SIM-CCA Security and
Malleability

SIM-CCA Security and
Malleability

o O W v
#A Enc Dec
Replay
Filter

/ 1f & can v
1 cause Bob t
output a ‘
message ‘
\ hen x can send \
such d” message
I to Bob by itself 1
REAL
IDEAL “ !

SIM-CCA Security and
Malleability

Replay
Filter

If é can
cause Bob t

v
output a ‘
message ‘
hen x can send \
such d” message 1

to Bob by itself

Hence message
not a result of REAL
malleating

Constructing CCA Secure PKE

Constructing CCA Secure PKE

@ Possible from

Constructing CCA Secure PKE

@ Possible from

@ e.g. Enhanced T-OWRP, Lossy T-OWF, Correlation-secure T-OWF,
Adaptive T-OWF/relation, ...

Constructing CCA Secure PKE

@ Possible from

@ e.g. Enhanced T-OWRP, Lossy T-OWF, Correlation-secure T-OWF,
Adaptive T-OWF/relation, ...

® e.g. Using a CPA secure PKE to create two ciphertexts and
a "Non-Interactive Zero Knowledge proof” of consistency

Constructing CCA Secure PKE

@ Possible from

@ e.g. Enhanced T-OWRP, Lossy T-OWF, Correlation-secure T-OWF,
Adaptive T-OWF/relation, ...

® e.g. Using a CPA secure PKE to create two ciphertexts and
a "Non-Interactive Zero Knowledge proof” of consistency

@ e.g. Include a "NIZK proof of knowledge” of the plaintext

Constructing CCA Secure PKE

@ Possible from

@ e.g. Enhanced T-OWRP, Lossy T-OWF, Correlation-secure T-OWF,
Adaptive T-OWF/relation, ...

® e.g. Using a CPA secure PKE to create two ciphertexts and
a "Non-Interactive Zero Knowledge proof” of consistency

@ e.g. Include a "NIZK proof of knowledge” of the plaintext

® Much more efficient from specific

Constructing CCA Secure PKE

@ Possible from

@ e.g. Enhanced T-OWRP, Lossy T-OWF, Correlation-secure T-OWF,
Adaptive T-OWF/relation, ...

® e.g. Using a CPA secure PKE to create two ciphertexts and
a "Non-Interactive Zero Knowledge proof” of consistency

@ e.g. Include a "NIZK proof of knowledge” of the plaintext

® Much more efficient from specific

@ Even more efficient in the "Random Oracle Model”

Constructing CCA Secure PKE

@ Possible from

@ e.g. Enhanced T-OWRP, Lossy T-OWF, Correlation-secure T-OWF,
Adaptive T-OWF/relation, ...

® e.g. Using a CPA secure PKE to create two ciphertexts and
a "Non-Interactive Zero Knowledge proof” of consistency

@ e.g. Include a "NIZK proof of knowledge” of the plaintext

® Much more efficient from specific

@ Even more efficient in the "Random Oracle Model”

'/

@ Significant efficiency gain using "

Hybrid Encryption

@ PKE is far less efficient compared to SKE (CCA- or CPA-secure)

Hybrid Encryption

@ PKE is far less efficient compared to SKE (CCA- or CPA-secure)

@ SKE using Block Ciphers (e.g. AES) and MAC is very fast

Hybrid Encryption

@ PKE is far less efficient compared to SKE (CCA- or CPA-secure)
@ SKE using Block Ciphers (e.g. AES) and MAC is very fast

@ El Gamal uses exponentiations (CCA-secure versions even more)

Hybrid Encryption

@ PKE is far less efficient compared to SKE (CCA- or CPA-secure)
@ SKE using Block Ciphers (e.g. AES) and MAC is very fast
@ El Gamal uses exponentiations (CCA-secure versions even more)

o : Use (CCA secure) PKE to transfer a key (or key
generation material) for the (CCA secure) SKE. Use SKE with this
key for sending data

Hybrid Encryption

@ PKE is far less efficient compared to SKE (CCA- or CPA-secure)
@ SKE using Block Ciphers (e.g. AES) and MAC is very fast
@ El Gamal uses exponentiations (CCA-secure versions even more)

o : Use (CCA secure) PKE to transfer a key (or key
generation material) for the (CCA secure) SKE. Use SKE with this
key for sending data

@ Hopefully the combination remains CCA secure

Hybrid Encryption

@ PKE is far less efficient compared to SKE (CCA- or CPA-secure)
@ SKE using Block Ciphers (e.g. AES) and MAC is very fast
@ El Gamal uses exponentiations (CCA-secure versions even more)

o : Use (CCA secure) PKE to transfer a key (or key
generation material) for the (CCA secure) SKE. Use SKE with this
key for sending data

@ Hopefully the combination remains CCA secure

@ PKE used to encrypt only a (short) key for the SKE

Hybrid Encryption

@ PKE is far less efficient compared to SKE (CCA- or CPA-secure)
@ SKE using Block Ciphers (e.g. AES) and MAC is very fast
@ El Gamal uses exponentiations (CCA-secure versions even more)

o : Use (CCA secure) PKE to transfer a key (or key
generation material) for the (CCA secure) SKE. Use SKE with this
key for sending data

@ Hopefully the combination remains CCA secure

@ PKE used to encrypt only a (short) key for the SKE
@ Relatively low overhead on top of the (fast) SKE encryption

Hybrid Encryption

@ Key Encapsulation Method: a public-key scheme to transfer a
Key

Hybrid Encryption

@ Key Encapsulation Method: a public-key scheme to transfer a
Key

Hybrid Encryption

@ Key Encapsulation Method: a public-key scheme to transfer a
Key

@ Data Encapsulation Method: a shared-key scheme (using the
key transferred using KEM)

Hybrid Encryption

o Hybrid Encryption: KEM/DEM paradigm

@ Key Encapsulation Method: a public-key scheme to transfer a
Key

@ Data Encapsulation Method: a shared-key scheme (using the
key transferred using KEM)

o For what KEM/DEM is a hybrid encryption scheme CCA secure?

Hybrid Encryption

@ Key Encapsulation Method: a public-key scheme to transfer a
Key

@ Data Encapsulation Method: a shared-key scheme (using the
key transferred using KEM)

® Works if KEM is a SIM-CCA secure PKE scheme and DEM is a
SIM-CCA secure SKE scheme

Hybrid Encryption

@ Key Encapsulation Method: a public-key scheme to transfer a
Key

@ Data Encapsulation Method: a shared-key scheme (using the
key transferred using KEM)

® Works if KEM is a SIM-CCA secure PKE scheme and DEM is a
SIM-CCA secure SKE scheme

@ Easy to prove using “composition” properties of the SIM
definition

Hybrid Encryption

Key Encapsulation Method: a public-key scheme to fransfer a
Key

Data Encapsulation Method: a shared-key scheme (using the
key transferred using KEM)

Works if KEM is a SIM-CCA secure PKE scheme and DEM is a
SIM-CCA secure SKE scheme

@ Easy to prove using “composition” properties of the SIM
definition

Less security sufficient: KEM used to transfer a random key;
DEM uses a new Key every time.

Today

® CPA secure PKE: Constructions
@ El Gamal Encryption
@ TPRG and TOWP

® CCA secure PKE

Today

@ CPA secure PKE: Constructions
@ El Gamal Encryption
@ TPRG and TOWP

@ CCA secure PKE

@ Motivating problem: Malleability

Today

@ CPA secure PKE: Constructions
@ El Gamal Encryption
@ TPRG and TOWP
@ CCA secure PKE
@ Motivating problem: Malleability

@ Hybrid Encryption: KEM/DEM

Today

@ CPA secure PKE: Constructions
@ El Gamal Encryption
@ TPRG and TOWP
@ CCA secure PKE
@ Motivating problem: Malleability
@ Hybrid Encryption: KEM/DEM

@ Given a basic (CCA secure) PKE, improves efficiency
by combining with (CCA secure) SKE

Today

@ CPA secure PKE: Constructions
@ El Gamal Encryption
@ TPRG and TOWP
@ CCA secure PKE
@ Motivating problem: Malleability
@ Hybrid Encryption: KEM/DEM

@ Given a basic (CCA secure) PKE, improves efficiency
by combining with (CCA secure) SKE

@ Next: Constructions for CCA secure PKE

