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Security of El Gamal
El Gamal IND-CPA secure if DDH holds (for the collection of 
groups used)

Construct a DDH adversary A* given an IND-CPA adversary A

A*(G,g; gx,gy,gz)  (where (G,g) ← GroupGen, x,y random and      
z=xy or random) plays the IND-CPA experiment with A:

But sets PK=(G,g,gy) and Enc(Mb)=(gx,Mbgz)

Outputs 1 if experiment outputs 1 (i.e. if b=b’)

When z=random, A* outputs 1 with probability = 1/2

When z=xy, exactly IND-CPA experiment: A* outputs 1 with 
probability = 1/2 + advantage of A.
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Trapdoor PRG from 
Generic Assumption?

PRG constructed from OWP (or OWF)

Allows us to instantiate the 
construction with several 
candidates

Is there a similar construction for 
TPRG from OWP?

Trapdoor property seems 
fundamentally different: generic 
OWP does not suffice

Will start with “Trapdoor OWP”

T
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G
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(KeyGen,f,f’) (all PPT) is a trapdoor one-
way permutation (TOWP) if


For all (PK,SK) ←KeyGen


fPK a permutation


f’SK is the inverse of fPK


For all PPT adversary, probability of 
success in the TOWP experiment is 
negligible

(PK,SK)←KeyGen

x←{0,1}k


b’ = BPK(x)?

fPK(x),PK

b’

Yes/No

Trapdoor OWP

Hardcore predicate: 


BPK s.t. (PK,fPK(x),BPK(x)) ≈ (PK,fPK(x),r)
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GPK(x) := BPK(x).   TPK(x) := fPK(x).         
RsK(y) :=  GPK(f’SK(y))

(SK assumed to contain PK)

More generally, last permutation 
output serves as TPK

Trapdoor PRG from 
Trapdoor OWP
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Candidate TOWPs
From some (candidate) OWP collections, with index as public-key

Recall candidate OWF collections

Rabin OWF: fRabin(x; N) = x2 mod N, where N = PQ, and P, Q 
are k-bit primes (and x uniform from {0...N})

Fact: fRabin(.; N) is a permutation among quadratic residues, 
when P, Q are ≡ 3 (mod 4)
Fact: Can invert fRabin(.; N) given factorization of N

RSA function: fRSA(x; N,e) = xe mod N where N=PQ, P,Q k-bit 
primes, e s.t. gcd(e,φ(N)) = 1 (and x uniform from {0...N})

Fact: fRSA(.; N,e) is a permutation

Fact: While picking (N,e), can also pick d s.t. xed = x
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CPA-secure PKE

DH Key-exchange, El Gamal and DDH assumption

Trapdoor PRG

Abstracts what DDH gives for El Gamal

With a secret-key, trapdoor information can also yield the 
pseudorandom string

Can be used to get IND-CPA secure PKE scheme

Trapdoor OWP

With a secret-key, invert the OWP

Can be used to construct Trapdoor PRG

Next: CCA secure PKE
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CCA Secure PKE

In SKE, to get CCA security, we used a MAC

Bob would accept only messages from Alice

But in PKE, Bob wants to receive messages from Eve 
as well

Only if it is indeed Eve’s own message: she should 
know her own message!
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A subtle      
e-mail attack

Chosen Ciphertext Attack

I look around 
     for your eyes shining
I seek you 
    in everything...

Eve  → Bob: Enc(m*)

Suppose Enc SIM-CPA secure

Suppose encrypts a character at a 
time (still secure)

Hey Eve,

What’s this that you

sent me? 

>
>
>
>

...gnihtyreve ni
uoy kees I
gninihs seye ruoy rof
dnuora kool I

Alice → Bob: Enc(m)

Eve: Reverse m* to find m!
Bob → Eve: “what’s this: m*?”

Eve:   Hack(Enc(m)) = Enc(m*) 

I look around 
     for your eyes shining
I seek you 
    in everything... !

(where m* = Reverse of m)
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Malleability: Eve can “malleate” a ciphertext (without having to 
decrypt it) to produce a new ciphertext that would decrypt to 
a “related” message 

E.g.: Malleability of El Gamal

Recall: Enc(G,g,Y)(m) = (gx,M.Yx)

Given (X,C) change it to (X,TC): will decrypt to TM

Or change (X,C) to (Xa,Ca): will decrypt to Ma

If chosen-ciphertext attack possible

i.e., Eve can get a ciphertext of her choice decrypted

Then Eve can exploit malleability to learn something “related 
to” Alice’s messages

More subtly, the 1 bit - valid or invalid - 
may leak information on message or SK
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I look around 
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Malleability

PK/
Enc

SK/
Dec

Env

Send Recv

Env
REAL

IDEAL

Replay 
FilterIf     can    

cause Bob to 
output a 
message 

then    can send 
such a message 
to Bob by itself

 Hence message 
not a result of 

malleating
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e.g. Include a “NIZK proof of knowledge” of the plaintext

Much more efficient from specific number theoretic/algebraic 
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Even more efficient in the “Random Oracle Model”

Significant efficiency gain using “Hybrid Encryption”
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Hybrid Encryption
PKE is far less efficient compared to SKE (CCA- or CPA-secure)

SKE using Block Ciphers (e.g. AES) and MAC is very fast

El Gamal uses exponentiations (CCA-secure versions even more)

Hybrid encryption: Use (CCA secure) PKE to transfer a key (or key 
generation material) for the (CCA secure) SKE. Use SKE with this 
key for sending data

Hopefully the combination remains CCA secure

PKE used to encrypt only a (short) key for the SKE

Relatively low overhead on top of the (fast) SKE encryption
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Hybrid Encryption
Hybrid Encryption: KEM/DEM paradigm

Key Encapsulation Method: a public-key scheme to transfer a 
key

Data Encapsulation Method: a shared-key scheme (using the 
key transferred using KEM)

For what KEM/DEM is a hybrid encryption scheme CCA secure?

Works if KEM is a SIM-CCA secure PKE scheme and DEM is a  
SIM-CCA secure SKE scheme

Easy to prove using “composition” properties of the SIM 
definition

Less security sufficient: KEM used to transfer a random key; 
DEM uses a new key every time.
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Next: Constructions for CCA secure PKE


