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@ Based on DH key-exchange Random X
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@ Alice, Bob generate a key B &
using DH key-exchange ik % <
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@ Then use it as a one-time pad
@ Bobs "message” in the key- KeyGen: PK=(G,qg,Y), SK=(G,g.y)
exchange is his PK Enci,qy)(M) = (X=g%, C=MYX)

Dec X,C) = CXY
@ Alices message in the key- @an(X,C)

exchange and the ciphertext of e KeyGen uses GroupGen to get (G,qg)

the one-time pad together form © XY uniform from tGl]
® Message encoded info group element, and

a single ciphertext decoded
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@ El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

@ Construct a DDH adversary A* given an IND-CPA adversary A

o A(G,g; g5,9”.g%) (where (G,g) < GroupGen, X,y random and
z=xy or random) plays the IND-CPA experiment with A:

o But sets PK=(G,g,9”) and Enc(Ms)=(g*,Msg?)
@ Outputs 1 if experiment outputs 1 (i.e. if b=b’)
@ When z=random, A outputs 1 with probability = 1/2

® When z=xy, exactly IND-CPA experiment: A* outputs 1 with
probability = 1/2 + advantage of A.
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given Tpx(x) and PK

o (PK,Tpk(x),Gek(x)) = (PK,Tex(x),r)
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@ Trapdoor PRG: v Random y
@ KeyGen: a pair (PK,SK) Random(x : =g’

@ Three functions: Gpk(.) (a PRG) &= ”
and Tek(.) (make trapdoor info) K=Y~ 2 K=X"
and Rsk(.) (opening the trapdoor) o 3 i

@ Gpk(x) is pseudorandom even

given Tex(x) and PK KeyGen: PK=(G,g,Y), SK=(G,g,y)

EnC(G,g,Y)(M) = (ngx, C=MY?*)

o (pK,TPK(X),GPK(X)) ~ (pKITpK(x)lr) DeC(G,g,y)(X,C) - CX~Y

@ Tek(x) hides Gpk(x). SK opens it.
o RelToc(x)) G KeyGen: (PK,SK)

E M) = (X=T , C=M.G
@ Enough for an IND-CPA secure PKE o) pr() pr(x))
scheme (e.g., Security of El Gamal) Decsk(X,C) = C/Rsk(Te(x))
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KeyGen

® PRG constructed from OWP (or OWF)

PK SK
@ Allows us to instantiate the
e gty v R
—

construction with several

candidates
Z y4
® Is there a similar construction for l l

B e (PK, Tex(x),Gox(x) = (PK,Tox(x),1)
@ Trapdoor property seems

fundamentally different: generic
OWP does not suffice

@ Will start with “Trapdoor OWP”
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Trapdoor OWP

o (KeyGen,f,f’) (all PPT) is a trapdoor one- ‘
way permutation (TOWP) if FPK(X)?/
@ For all (PK,SK) <—KeyGen lb'
o f fati E D
pk @ permutation PR, e
o f'sk is the inverse of fpx x<—10,1}*
b’ = BpK(X)?
@ For all PPT adversary, probability of i 9
success in the TOWP experiment is lYes/No

negligible
@ Hardcore predicate:

@ Bpk s.t. (PK,fpr(x),Bek(x)) = (PK,fpk(x),r)
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—) fex f—f Tox(x)

Gpk(x)
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Trapdoor PRG from
Trapdoor OWP

® Same construction as PRG from OWP : :

@ One bit TPRG X
@ KeyGen same as TOWPs KeyGen l P lz
o Gpk(x) := BPK(X); Tek(x) := fpx(x). (PK, Tex(x),Gek(x)) = (PK,Tex(x),r)
Rek(Y) 1= Gek(f'sk(y)) (PK, Fox(x),Bo(X)) = (PK,Fox(x),T)

@ (SK assumed to contain PK)

X X f f f Tox(x)
@ More generally, last permutation [ BE:_I’ Bz:_l’ g BEE_I’ i

output serves as Tpk 1 1 v
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@ Recall candidate OWF collections

@ Rabin OWF: frabin(X; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {O...N})

® Fact: fravin(.; N) is a permutation among quadratic residues,
when P, Q are = 3 (mod 4)
@ Fact: Can invert frabin(.; N) given factorization of N
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® CPA-secure PKE
® DH Key-exchange, El Gamal and DDH assumption
@ Trapdoor PRG

@ Abstracts what DDH gives for El Gamal

@ With a secret-key, trapdoor information can also yield the
pseudorandom string

® Can be used to get IND-CPA secure PKE scheme
® Trapdoor OWP

@ With a secret-key, invert the OWP

@ Can be used to construct Trapdoor PRG
@ Next: CCA secure PKE
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CCA Secure PKE

@ In SKE, fo get CCA security, we used a MAC
@ Bob would accept only messages from Alice

@ But in PKE, Bob wants to receive messages from Eve
as well

@ Only if it is indeed Eve's own message: she should
know her own message!
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® Suppose Enc SIM-C

@ Suppose encrypts a C
time (still secure)

Alice = Bob: Enc(m)

Eve: Hack(Enc(m)) = Enc(m?*)
(where m* = Reverse of m)

Eve — Bob: Enc(m*)

Bob — Eve: “what’s this: m*?”

| look around
for your eyes shining

| seek you

in everything...

PA secure
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A subtle
e-mail attack
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Chosen Ciphertext Attack

@ Suppose Enc SIM-CPA secure

® Suppose encrypts a character at a
time (still secure) [

subtle
e-mail attack

|
R Hey Eve, &
V¥ A \ What's this that you | |
8/ sent me?

N

> ...gnihtyreve ni

> uoy kees |

> gninihs seye ruoy rof
> dnuora kool |

look around
for your eyes shining
| seek you

in everything...

Alice = Bob: Enc(m)

Eve: Hack(Enc(m)) = Enc(m?*)
(where m* = Reverse of m)

Eve — Bob: Enc(m*)

Bob — Eve: “what’s this: m*?”

Eve: Reverse m* tofind m!

| look around
for your eyes shining

| seek you

in everything...
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@ Or change (X,C) to (X4,C%: will decrypt to M
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@ Possible from

@ e.g. Enhanced T-OWRP, Lossy T-OWF, Correlation-secure T-OWF,
Adaptive T-OWF/relation, ...

® e.g. Using a CPA secure PKE to create two ciphertexts and
a "Non-Interactive Zero Knowledge proof” of consistency

@ e.g. Include a "NIZK proof of knowledge” of the plaintext

® Much more efficient from specific

@ Even more efficient in the "Random Oracle Model”

'/

@ Significant efficiency gain using "
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@ PKE is far less efficient compared to SKE (CCA- or CPA-secure)
@ SKE using Block Ciphers (e.g. AES) and MAC is very fast
@ El Gamal uses exponentiations (CCA-secure versions even more)

o : Use (CCA secure) PKE to transfer a key (or key
generation material) for the (CCA secure) SKE. Use SKE with this
key for sending data

@ Hopefully the combination remains CCA secure

@ PKE used to encrypt only a (short) key for the SKE
@ Relatively low overhead on top of the (fast) SKE encryption
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@ Key Encapsulation Method: a public-key scheme to transfer a
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@ Data Encapsulation Method: a shared-key scheme (using the
key transferred using KEM)

o For what KEM/DEM is a hybrid encryption scheme CCA secure?
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Hybrid Encryption

Key Encapsulation Method: a public-key scheme to fransfer a
Key

Data Encapsulation Method: a shared-key scheme (using the
key transferred using KEM)

Works if KEM is a SIM-CCA secure PKE scheme and DEM is a
SIM-CCA secure SKE scheme

@ Easy to prove using “composition” properties of the SIM
definition

Less security sufficient: KEM used to transfer a random key;
DEM uses a new Key every time.
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Today

@ CPA secure PKE: Constructions
@ El Gamal Encryption
@ TPRG and TOWP
@ CCA secure PKE
@ Motivating problem: Malleability
@ Hybrid Encryption: KEM/DEM

@ Given a basic (CCA secure) PKE, improves efficiency
by combining with (CCA secure) SKE

@ Next: Constructions for CCA secure PKE



