
Public-Key Cryptography

Public-Key Cryptography
Lecture 9

Public-Key Cryptography
Lecture 9

El Gamal Encryption

Public-Key Cryptography
Lecture 9

El Gamal Encryption
Public-Key Encryption from Trapdoor OWP

Public-Key Cryptography
Lecture 9

El Gamal Encryption
Public-Key Encryption from Trapdoor OWP

CCA Security

El Gamal Encryption

El Gamal Encryption

Based on DH key-exchange

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-
exchange is his PK

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-
exchange is his PK

Alice’s message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-
exchange is his PK

Alice’s message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-
exchange is his PK

Alice’s message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-
exchange is his PK

Alice’s message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-
exchange is his PK

Alice’s message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

• KeyGen uses GroupGen to get (G,g)

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-
exchange is his PK

Alice’s message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

• KeyGen uses GroupGen to get (G,g)
• x, y uniform from [|G|]

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-
exchange is his PK

Alice’s message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

• KeyGen uses GroupGen to get (G,g)
• x, y uniform from [|G|]
• Message encoded into group element, and
decoded

Security of El Gamal

Security of El Gamal
El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

Security of El Gamal
El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

Construct a DDH adversary A* given an IND-CPA adversary A

Security of El Gamal
El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

Construct a DDH adversary A* given an IND-CPA adversary A

A*(G,g; gx,gy,gz) (where (G,g) ← GroupGen, x,y random and
z=xy or random) plays the IND-CPA experiment with A:

Security of El Gamal
El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

Construct a DDH adversary A* given an IND-CPA adversary A

A*(G,g; gx,gy,gz) (where (G,g) ← GroupGen, x,y random and
z=xy or random) plays the IND-CPA experiment with A:

But sets PK=(G,g,gy) and Enc(Mb)=(gx,Mbgz)

Security of El Gamal
El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

Construct a DDH adversary A* given an IND-CPA adversary A

A*(G,g; gx,gy,gz) (where (G,g) ← GroupGen, x,y random and
z=xy or random) plays the IND-CPA experiment with A:

But sets PK=(G,g,gy) and Enc(Mb)=(gx,Mbgz)

Outputs 1 if experiment outputs 1 (i.e. if b=b’)

Security of El Gamal
El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

Construct a DDH adversary A* given an IND-CPA adversary A

A*(G,g; gx,gy,gz) (where (G,g) ← GroupGen, x,y random and
z=xy or random) plays the IND-CPA experiment with A:

But sets PK=(G,g,gy) and Enc(Mb)=(gx,Mbgz)

Outputs 1 if experiment outputs 1 (i.e. if b=b’)

When z=random, A* outputs 1 with probability = 1/2

Security of El Gamal
El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

Construct a DDH adversary A* given an IND-CPA adversary A

A*(G,g; gx,gy,gz) (where (G,g) ← GroupGen, x,y random and
z=xy or random) plays the IND-CPA experiment with A:

But sets PK=(G,g,gy) and Enc(Mb)=(gx,Mbgz)

Outputs 1 if experiment outputs 1 (i.e. if b=b’)

When z=random, A* outputs 1 with probability = 1/2

When z=xy, exactly IND-CPA experiment: A* outputs 1 with
probability = 1/2 + advantage of A.

Abstracting El Gamal

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

Abstracting El Gamal

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

Abstracting El Gamal
Trapdoor PRG:

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

Abstracting El Gamal
Trapdoor PRG:

KeyGen: a pair (PK,SK)

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

 KeyGen: (PK,SK)

Abstracting El Gamal
Trapdoor PRG:

KeyGen: a pair (PK,SK)

Three functions: GPK(.) (a PRG)
and TPK(.) (make trapdoor info)
and RSK(.) (opening the trapdoor) C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

 KeyGen: (PK,SK)

Abstracting El Gamal
Trapdoor PRG:

KeyGen: a pair (PK,SK)

Three functions: GPK(.) (a PRG)
and TPK(.) (make trapdoor info)
and RSK(.) (opening the trapdoor) C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

 KeyGen: (PK,SK)

 EncPK(M) = (X=TPK(x), C=M.GPK(x))

Abstracting El Gamal
Trapdoor PRG:

KeyGen: a pair (PK,SK)

Three functions: GPK(.) (a PRG)
and TPK(.) (make trapdoor info)
and RSK(.) (opening the trapdoor) C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

 KeyGen: (PK,SK)

 EncPK(M) = (X=TPK(x), C=M.GPK(x))

 DecSK(X,C) = C/RSK(TPK(x))

Abstracting El Gamal
Trapdoor PRG:

KeyGen: a pair (PK,SK)

Three functions: GPK(.) (a PRG)
and TPK(.) (make trapdoor info)
and RSK(.) (opening the trapdoor)

GPK(x) is pseudorandom even
given TPK(x) and PK

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

 KeyGen: (PK,SK)

 EncPK(M) = (X=TPK(x), C=M.GPK(x))

 DecSK(X,C) = C/RSK(TPK(x))

Abstracting El Gamal
Trapdoor PRG:

KeyGen: a pair (PK,SK)

Three functions: GPK(.) (a PRG)
and TPK(.) (make trapdoor info)
and RSK(.) (opening the trapdoor)

GPK(x) is pseudorandom even
given TPK(x) and PK

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

 KeyGen: (PK,SK)

 EncPK(M) = (X=TPK(x), C=M.GPK(x))

 DecSK(X,C) = C/RSK(TPK(x))

Abstracting El Gamal
Trapdoor PRG:

KeyGen: a pair (PK,SK)

Three functions: GPK(.) (a PRG)
and TPK(.) (make trapdoor info)
and RSK(.) (opening the trapdoor)

GPK(x) is pseudorandom even
given TPK(x) and PK

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

TPK(x) hides GPK(x). SK opens it.

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

 KeyGen: (PK,SK)

 EncPK(M) = (X=TPK(x), C=M.GPK(x))

 DecSK(X,C) = C/RSK(TPK(x))

Abstracting El Gamal
Trapdoor PRG:

KeyGen: a pair (PK,SK)

Three functions: GPK(.) (a PRG)
and TPK(.) (make trapdoor info)
and RSK(.) (opening the trapdoor)

GPK(x) is pseudorandom even
given TPK(x) and PK

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

TPK(x) hides GPK(x). SK opens it.

RSK(TPK(x)) = GPK(x)

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

 KeyGen: (PK,SK)

 EncPK(M) = (X=TPK(x), C=M.GPK(x))

 DecSK(X,C) = C/RSK(TPK(x))

Abstracting El Gamal
Trapdoor PRG:

KeyGen: a pair (PK,SK)

Three functions: GPK(.) (a PRG)
and TPK(.) (make trapdoor info)
and RSK(.) (opening the trapdoor)

GPK(x) is pseudorandom even
given TPK(x) and PK

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

TPK(x) hides GPK(x). SK opens it.

RSK(TPK(x)) = GPK(x)

Enough for an IND-CPA secure PKE
scheme

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

 KeyGen: (PK,SK)

 EncPK(M) = (X=TPK(x), C=M.GPK(x))

 DecSK(X,C) = C/RSK(TPK(x))

Abstracting El Gamal
Trapdoor PRG:

KeyGen: a pair (PK,SK)

Three functions: GPK(.) (a PRG)
and TPK(.) (make trapdoor info)
and RSK(.) (opening the trapdoor)

GPK(x) is pseudorandom even
given TPK(x) and PK

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

TPK(x) hides GPK(x). SK opens it.

RSK(TPK(x)) = GPK(x)

Enough for an IND-CPA secure PKE
scheme

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

 KeyGen: (PK,SK)

 EncPK(M) = (X=TPK(x), C=M.GPK(x))

 DecSK(X,C) = C/RSK(TPK(x))(e.g., Security of El Gamal)

Trapdoor PRG from
Generic Assumption?

T
Rx

KeyGen

G

zz

PK SK

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

Trapdoor PRG from
Generic Assumption?

PRG constructed from OWP (or OWF)

T
Rx

KeyGen

G

zz

PK SK

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

Trapdoor PRG from
Generic Assumption?

PRG constructed from OWP (or OWF)

Allows us to instantiate the
construction with several
candidates

T
Rx

KeyGen

G

zz

PK SK

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

Trapdoor PRG from
Generic Assumption?

PRG constructed from OWP (or OWF)

Allows us to instantiate the
construction with several
candidates

Is there a similar construction for
TPRG from OWP?

T
Rx

KeyGen

G

zz

PK SK

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

Trapdoor PRG from
Generic Assumption?

PRG constructed from OWP (or OWF)

Allows us to instantiate the
construction with several
candidates

Is there a similar construction for
TPRG from OWP?

Trapdoor property seems
fundamentally different: generic
OWP does not suffice

T
Rx

KeyGen

G

zz

PK SK

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

Trapdoor PRG from
Generic Assumption?

PRG constructed from OWP (or OWF)

Allows us to instantiate the
construction with several
candidates

Is there a similar construction for
TPRG from OWP?

Trapdoor property seems
fundamentally different: generic
OWP does not suffice

Will start with “Trapdoor OWP”

T
Rx

KeyGen

G

zz

PK SK

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

Trapdoor OWP

(KeyGen,f,f’) (all PPT) is a trapdoor one-
way permutation (TOWP) if

Trapdoor OWP

(KeyGen,f,f’) (all PPT) is a trapdoor one-
way permutation (TOWP) if

For all (PK,SK) ←KeyGen

Trapdoor OWP

(KeyGen,f,f’) (all PPT) is a trapdoor one-
way permutation (TOWP) if

For all (PK,SK) ←KeyGen

fPK a permutation

Trapdoor OWP

(KeyGen,f,f’) (all PPT) is a trapdoor one-
way permutation (TOWP) if

For all (PK,SK) ←KeyGen

fPK a permutation

f’SK is the inverse of fPK

Trapdoor OWP

(KeyGen,f,f’) (all PPT) is a trapdoor one-
way permutation (TOWP) if

For all (PK,SK) ←KeyGen

fPK a permutation

f’SK is the inverse of fPK

For all PPT adversary, probability of
success in the TOWP experiment is
negligible

Trapdoor OWP

(KeyGen,f,f’) (all PPT) is a trapdoor one-
way permutation (TOWP) if

For all (PK,SK) ←KeyGen

fPK a permutation

f’SK is the inverse of fPK

For all PPT adversary, probability of
success in the TOWP experiment is
negligible

(PK,SK)←KeyGen

x←{0,1}k

x’ = x?

fPK(x),PK

x’

Yes/No

Trapdoor OWP

(KeyGen,f,f’) (all PPT) is a trapdoor one-
way permutation (TOWP) if

For all (PK,SK) ←KeyGen

fPK a permutation

f’SK is the inverse of fPK

For all PPT adversary, probability of
success in the TOWP experiment is
negligible

(PK,SK)←KeyGen

x←{0,1}k

b’ = BPK(x)?

fPK(x),PK

b’

Yes/No

Trapdoor OWP

Hardcore predicate:

BPK s.t. (PK,fPK(x),BPK(x)) ≈ (PK,fPK(x),r)

Trapdoor PRG from
Trapdoor OWP

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

T
Rx

KeyGen

G

zz

PK SK

Same construction as PRG from OWP

Trapdoor PRG from
Trapdoor OWP

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

T
Rx

KeyGen

G

zz

PK SK

Same construction as PRG from OWP

One bit TPRG

Trapdoor PRG from
Trapdoor OWP

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

T
Rx

KeyGen

G

zz

PK SK

Same construction as PRG from OWP

One bit TPRG

KeyGen same as TOWP’s KeyGen

Trapdoor PRG from
Trapdoor OWP

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

T
Rx

KeyGen

G

zz

PK SK

TPK(x)

GPK(x)

Same construction as PRG from OWP

One bit TPRG

KeyGen same as TOWP’s KeyGen

GPK(x) := BPK(x). TPK(x) := fPK(x).
RsK(y) := GPK(f’SK(y))

Trapdoor PRG from
Trapdoor OWP

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

fPK

BPK

x

T
Rx

KeyGen

G

zz

PK SK

TPK(x)

GPK(x)

Same construction as PRG from OWP

One bit TPRG

KeyGen same as TOWP’s KeyGen

GPK(x) := BPK(x). TPK(x) := fPK(x).
RsK(y) := GPK(f’SK(y))

Trapdoor PRG from
Trapdoor OWP

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

(PK,fPK(x),BPK(x)) ≈ (PK,fPK(x),r)

fPK

BPK

x

T
Rx

KeyGen

G

zz

PK SK

TPK(x)

GPK(x)

Same construction as PRG from OWP

One bit TPRG

KeyGen same as TOWP’s KeyGen

GPK(x) := BPK(x). TPK(x) := fPK(x).
RsK(y) := GPK(f’SK(y))

(SK assumed to contain PK)

Trapdoor PRG from
Trapdoor OWP

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

(PK,fPK(x),BPK(x)) ≈ (PK,fPK(x),r)

fPK

BPK

x

T
Rx

KeyGen

G

zz

PK SK

TPK(x)

GPK(x)

Same construction as PRG from OWP

One bit TPRG

KeyGen same as TOWP’s KeyGen

GPK(x) := BPK(x). TPK(x) := fPK(x).
RsK(y) := GPK(f’SK(y))

(SK assumed to contain PK)

More generally, last permutation
output serves as TPK

Trapdoor PRG from
Trapdoor OWP

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

(PK,fPK(x),BPK(x)) ≈ (PK,fPK(x),r)

fPK

BPK

x

T
Rx

KeyGen

G

zz

PK SK

TPK(x)

GPK(x)

Same construction as PRG from OWP

One bit TPRG

KeyGen same as TOWP’s KeyGen

GPK(x) := BPK(x). TPK(x) := fPK(x).
RsK(y) := GPK(f’SK(y))

(SK assumed to contain PK)

More generally, last permutation
output serves as TPK

Trapdoor PRG from
Trapdoor OWP

fPK

BPK

...fPK

BPK

GPK(x)

TPK(x)

(PK,TPK(x),GPK(x)) ≈ (PK,TPK(x),r)

(PK,fPK(x),BPK(x)) ≈ (PK,fPK(x),r)

fPK

BPK

x

T
Rx

KeyGen

G

zz

PK SK

Candidate TOWPs

Candidate TOWPs
From some (candidate) OWP collections, with index as public-key

Candidate TOWPs
From some (candidate) OWP collections, with index as public-key

Recall candidate OWF collections

Candidate TOWPs
From some (candidate) OWP collections, with index as public-key

Recall candidate OWF collections

Rabin OWF: fRabin(x; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {0...N})

Candidate TOWPs
From some (candidate) OWP collections, with index as public-key

Recall candidate OWF collections

Rabin OWF: fRabin(x; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {0...N})

Fact: fRabin(.; N) is a permutation among quadratic residues,
when P, Q are ≡ 3 (mod 4)

Candidate TOWPs
From some (candidate) OWP collections, with index as public-key

Recall candidate OWF collections

Rabin OWF: fRabin(x; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {0...N})

Fact: fRabin(.; N) is a permutation among quadratic residues,
when P, Q are ≡ 3 (mod 4)
Fact: Can invert fRabin(.; N) given factorization of N

Candidate TOWPs
From some (candidate) OWP collections, with index as public-key

Recall candidate OWF collections

Rabin OWF: fRabin(x; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {0...N})

Fact: fRabin(.; N) is a permutation among quadratic residues,
when P, Q are ≡ 3 (mod 4)
Fact: Can invert fRabin(.; N) given factorization of N

RSA function: fRSA(x; N,e) = xe mod N where N=PQ, P,Q k-bit
primes, e s.t. gcd(e,φ(N)) = 1 (and x uniform from {0...N})

Candidate TOWPs
From some (candidate) OWP collections, with index as public-key

Recall candidate OWF collections

Rabin OWF: fRabin(x; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {0...N})

Fact: fRabin(.; N) is a permutation among quadratic residues,
when P, Q are ≡ 3 (mod 4)
Fact: Can invert fRabin(.; N) given factorization of N

RSA function: fRSA(x; N,e) = xe mod N where N=PQ, P,Q k-bit
primes, e s.t. gcd(e,φ(N)) = 1 (and x uniform from {0...N})

Fact: fRSA(.; N,e) is a permutation

Candidate TOWPs
From some (candidate) OWP collections, with index as public-key

Recall candidate OWF collections

Rabin OWF: fRabin(x; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {0...N})

Fact: fRabin(.; N) is a permutation among quadratic residues,
when P, Q are ≡ 3 (mod 4)
Fact: Can invert fRabin(.; N) given factorization of N

RSA function: fRSA(x; N,e) = xe mod N where N=PQ, P,Q k-bit
primes, e s.t. gcd(e,φ(N)) = 1 (and x uniform from {0...N})

Fact: fRSA(.; N,e) is a permutation

Fact: While picking (N,e), can also pick d s.t. xed = x

Candidate TOWPs
From some (candidate) OWP collections, with index as public-key

Recall candidate OWF collections

Rabin OWF: fRabin(x; N) = x2 mod N, where N = PQ, and P, Q
are k-bit primes (and x uniform from {0...N})

Fact: fRabin(.; N) is a permutation among quadratic residues,
when P, Q are ≡ 3 (mod 4)
Fact: Can invert fRabin(.; N) given factorization of N

RSA function: fRSA(x; N,e) = xe mod N where N=PQ, P,Q k-bit
primes, e s.t. gcd(e,φ(N)) = 1 (and x uniform from {0...N})

Fact: fRSA(.; N,e) is a permutation

Fact: While picking (N,e), can also pick d s.t. xed = x
se
e h

an
do

ut

Recap

Recap

CPA-secure PKE

Recap

CPA-secure PKE

DH Key-exchange, El Gamal and DDH assumption

Recap

CPA-secure PKE

DH Key-exchange, El Gamal and DDH assumption

Trapdoor PRG

Recap

CPA-secure PKE

DH Key-exchange, El Gamal and DDH assumption

Trapdoor PRG

Abstracts what DDH gives for El Gamal

Recap

CPA-secure PKE

DH Key-exchange, El Gamal and DDH assumption

Trapdoor PRG

Abstracts what DDH gives for El Gamal

With a secret-key, trapdoor information can also yield the
pseudorandom string

Recap

CPA-secure PKE

DH Key-exchange, El Gamal and DDH assumption

Trapdoor PRG

Abstracts what DDH gives for El Gamal

With a secret-key, trapdoor information can also yield the
pseudorandom string

Can be used to get IND-CPA secure PKE scheme

Recap

CPA-secure PKE

DH Key-exchange, El Gamal and DDH assumption

Trapdoor PRG

Abstracts what DDH gives for El Gamal

With a secret-key, trapdoor information can also yield the
pseudorandom string

Can be used to get IND-CPA secure PKE scheme

Trapdoor OWP

Recap

CPA-secure PKE

DH Key-exchange, El Gamal and DDH assumption

Trapdoor PRG

Abstracts what DDH gives for El Gamal

With a secret-key, trapdoor information can also yield the
pseudorandom string

Can be used to get IND-CPA secure PKE scheme

Trapdoor OWP

With a secret-key, invert the OWP

Recap

CPA-secure PKE

DH Key-exchange, El Gamal and DDH assumption

Trapdoor PRG

Abstracts what DDH gives for El Gamal

With a secret-key, trapdoor information can also yield the
pseudorandom string

Can be used to get IND-CPA secure PKE scheme

Trapdoor OWP

With a secret-key, invert the OWP

Can be used to construct Trapdoor PRG

Recap

CPA-secure PKE

DH Key-exchange, El Gamal and DDH assumption

Trapdoor PRG

Abstracts what DDH gives for El Gamal

With a secret-key, trapdoor information can also yield the
pseudorandom string

Can be used to get IND-CPA secure PKE scheme

Trapdoor OWP

With a secret-key, invert the OWP

Can be used to construct Trapdoor PRG

Next: CCA secure PKE

CCA Secure PKE

CCA Secure PKE

In SKE, to get CCA security, we used a MAC

CCA Secure PKE

In SKE, to get CCA security, we used a MAC

Bob would accept only messages from Alice

CCA Secure PKE

In SKE, to get CCA security, we used a MAC

Bob would accept only messages from Alice

But in PKE, Bob wants to receive messages from Eve
as well

CCA Secure PKE

In SKE, to get CCA security, we used a MAC

Bob would accept only messages from Alice

But in PKE, Bob wants to receive messages from Eve
as well

Only if it is indeed Eve’s own message: she should
know her own message!

Chosen Ciphertext Attack

Chosen Ciphertext Attack
Suppose Enc SIM-CPA secure

A subtle
e-mail attack

Chosen Ciphertext Attack
Suppose Enc SIM-CPA secure

A subtle
e-mail attack

Chosen Ciphertext Attack
Suppose Enc SIM-CPA secure

A subtle
e-mail attack

Chosen Ciphertext Attack

I look around
 for your eyes shining
I seek you
 in everything...

Suppose Enc SIM-CPA secure

A subtle
e-mail attack

Chosen Ciphertext Attack

I look around
 for your eyes shining
I seek you
 in everything...

Suppose Enc SIM-CPA secure

Alice → Bob: Enc(m)

A subtle
e-mail attack

Chosen Ciphertext Attack

I look around
 for your eyes shining
I seek you
 in everything...

Suppose Enc SIM-CPA secure

Alice → Bob: Enc(m)

A subtle
e-mail attack

Chosen Ciphertext Attack

I look around
 for your eyes shining
I seek you
 in everything...

Suppose Enc SIM-CPA secure

Alice → Bob: Enc(m)

A subtle
e-mail attack

Chosen Ciphertext Attack

I look around
 for your eyes shining
I seek you
 in everything...

Suppose Enc SIM-CPA secure

Alice → Bob: Enc(m)
Eve: Hack(Enc(m)) = Enc(m*)

A subtle
e-mail attack

Chosen Ciphertext Attack

I look around
 for your eyes shining
I seek you
 in everything...

Suppose Enc SIM-CPA secure

Alice → Bob: Enc(m)
Eve: Hack(Enc(m)) = Enc(m*)

(where m* = Reverse of m)

A subtle
e-mail attack

Chosen Ciphertext Attack

I look around
 for your eyes shining
I seek you
 in everything...

Suppose Enc SIM-CPA secure

Suppose encrypts a character at a
time (still secure)

Alice → Bob: Enc(m)
Eve: Hack(Enc(m)) = Enc(m*)

(where m* = Reverse of m)

A subtle
e-mail attack

Chosen Ciphertext Attack

I look around
 for your eyes shining
I seek you
 in everything...

Eve → Bob: Enc(m*)

Suppose Enc SIM-CPA secure

Suppose encrypts a character at a
time (still secure)

Alice → Bob: Enc(m)
Eve: Hack(Enc(m)) = Enc(m*)

(where m* = Reverse of m)

A subtle
e-mail attack

Chosen Ciphertext Attack

I look around
 for your eyes shining
I seek you
 in everything...

Eve → Bob: Enc(m*)

Suppose Enc SIM-CPA secure

Suppose encrypts a character at a
time (still secure)

...gnihtyreve ni
uoy kees I
gninihs seye ruoy rof
dnuora kool I

Alice → Bob: Enc(m)
Eve: Hack(Enc(m)) = Enc(m*)

(where m* = Reverse of m)

A subtle
e-mail attack

Chosen Ciphertext Attack

I look around
 for your eyes shining
I seek you
 in everything...

Eve → Bob: Enc(m*)

Suppose Enc SIM-CPA secure

Suppose encrypts a character at a
time (still secure)

Hey Eve,

What’s this that you

sent me?

>
>
>
>

...gnihtyreve ni
uoy kees I
gninihs seye ruoy rof
dnuora kool I

Alice → Bob: Enc(m)

Bob → Eve: “what’s this: m*?”

Eve: Hack(Enc(m)) = Enc(m*)
(where m* = Reverse of m)

A subtle
e-mail attack

Chosen Ciphertext Attack

I look around
 for your eyes shining
I seek you
 in everything...

Eve → Bob: Enc(m*)

Suppose Enc SIM-CPA secure

Suppose encrypts a character at a
time (still secure)

Hey Eve,

What’s this that you

sent me?

>
>
>
>

...gnihtyreve ni
uoy kees I
gninihs seye ruoy rof
dnuora kool I

Alice → Bob: Enc(m)

Eve: Reverse m* to find m!
Bob → Eve: “what’s this: m*?”

Eve: Hack(Enc(m)) = Enc(m*)

I look around
 for your eyes shining
I seek you
 in everything... !

(where m* = Reverse of m)

Malleability

Malleability
Malleability: Eve can “malleate” a ciphertext (without having to
decrypt it) to produce a new ciphertext that would decrypt to
a “related” message

Malleability
Malleability: Eve can “malleate” a ciphertext (without having to
decrypt it) to produce a new ciphertext that would decrypt to
a “related” message

E.g.: Malleability of El Gamal

Malleability
Malleability: Eve can “malleate” a ciphertext (without having to
decrypt it) to produce a new ciphertext that would decrypt to
a “related” message

E.g.: Malleability of El Gamal

Recall: Enc(G,g,Y)(m) = (gx,M.Yx)

Malleability
Malleability: Eve can “malleate” a ciphertext (without having to
decrypt it) to produce a new ciphertext that would decrypt to
a “related” message

E.g.: Malleability of El Gamal

Recall: Enc(G,g,Y)(m) = (gx,M.Yx)

Given (X,C) change it to (X,TC): will decrypt to TM

Malleability
Malleability: Eve can “malleate” a ciphertext (without having to
decrypt it) to produce a new ciphertext that would decrypt to
a “related” message

E.g.: Malleability of El Gamal

Recall: Enc(G,g,Y)(m) = (gx,M.Yx)

Given (X,C) change it to (X,TC): will decrypt to TM

Or change (X,C) to (Xa,Ca): will decrypt to Ma

Malleability
Malleability: Eve can “malleate” a ciphertext (without having to
decrypt it) to produce a new ciphertext that would decrypt to
a “related” message

E.g.: Malleability of El Gamal

Recall: Enc(G,g,Y)(m) = (gx,M.Yx)

Given (X,C) change it to (X,TC): will decrypt to TM

Or change (X,C) to (Xa,Ca): will decrypt to Ma

If chosen-ciphertext attack possible

Malleability
Malleability: Eve can “malleate” a ciphertext (without having to
decrypt it) to produce a new ciphertext that would decrypt to
a “related” message

E.g.: Malleability of El Gamal

Recall: Enc(G,g,Y)(m) = (gx,M.Yx)

Given (X,C) change it to (X,TC): will decrypt to TM

Or change (X,C) to (Xa,Ca): will decrypt to Ma

If chosen-ciphertext attack possible

i.e., Eve can get a ciphertext of her choice decrypted

Malleability
Malleability: Eve can “malleate” a ciphertext (without having to
decrypt it) to produce a new ciphertext that would decrypt to
a “related” message

E.g.: Malleability of El Gamal

Recall: Enc(G,g,Y)(m) = (gx,M.Yx)

Given (X,C) change it to (X,TC): will decrypt to TM

Or change (X,C) to (Xa,Ca): will decrypt to Ma

If chosen-ciphertext attack possible

i.e., Eve can get a ciphertext of her choice decrypted

Then Eve can exploit malleability to learn something “related
to” Alice’s messages

Malleability
Malleability: Eve can “malleate” a ciphertext (without having to
decrypt it) to produce a new ciphertext that would decrypt to
a “related” message

E.g.: Malleability of El Gamal

Recall: Enc(G,g,Y)(m) = (gx,M.Yx)

Given (X,C) change it to (X,TC): will decrypt to TM

Or change (X,C) to (Xa,Ca): will decrypt to Ma

If chosen-ciphertext attack possible

i.e., Eve can get a ciphertext of her choice decrypted

Then Eve can exploit malleability to learn something “related
to” Alice’s messages

More subtly, the 1 bit - valid or invalid -
may leak information on message or SK

Hey Eve,

What’s this that you

sent me?

>
>
>
>

...gnihtyreve ni
uoy kees I
gninihs seye ruoy rof
dnuora kool I

I look around
 for your eyes shining
I seek you
 in everything...

I look around
 for your eyes shining
I seek you
 in everything... !

Chosen Ciphertext Attack
SIM-CCA: does capture this attack

Hey Eve,

What’s this that you

sent me?

>
>
>
>

...gnihtyreve ni
uoy kees I
gninihs seye ruoy rof
dnuora kool I

I look around
 for your eyes shining
I seek you
 in everything...

I look around
 for your eyes shining
I seek you
 in everything... !

Chosen Ciphertext Attack
SIM-CCA: does capture this attack

Key/
Enc

Key/
Dec

Env

Hey Eve,

What’s this that you

sent me?

>
>
>
>

...gnihtyreve ni
uoy kees I
gninihs seye ruoy rof
dnuora kool I

I look around
 for your eyes shining
I seek you
 in everything...

I look around
 for your eyes shining
I seek you
 in everything... !

Chosen Ciphertext Attack
SIM-CCA: does capture this attack

Key/
Enc

Key/
Dec

Env

Hey Eve,

What’s this that you

sent me?

>
>
>
>

...gnihtyreve ni
uoy kees I
gninihs seye ruoy rof
dnuora kool I

I look around
 for your eyes shining
I seek you
 in everything...

I look around
 for your eyes shining
I seek you
 in everything... !

Chosen Ciphertext Attack
SIM-CCA: does capture this attack

Key/
Enc

Key/
Dec

Env

Hey Eve,

What’s this that you

sent me?

>
>
>
>

...gnihtyreve ni
uoy kees I
gninihs seye ruoy rof
dnuora kool I

I look around
 for your eyes shining
I seek you
 in everything...

I look around
 for your eyes shining
I seek you
 in everything... !

Chosen Ciphertext Attack
SIM-CCA: does capture this attack

Key/
Enc

Key/
Dec

Env

Hey Eve,

What’s this that you

sent me?

>
>
>
>

...gnihtyreve ni
uoy kees I
gninihs seye ruoy rof
dnuora kool I

I look around
 for your eyes shining
I seek you
 in everything...

I look around
 for your eyes shining
I seek you
 in everything... !

Chosen Ciphertext Attack
SIM-CCA: does capture this attack

Key/
Enc

Key/
Dec

Env

Hey Eve,

What’s this that you

sent me?

>
>
>
>

...gnihtyreve ni
uoy kees I
gninihs seye ruoy rof
dnuora kool I

I look around
 for your eyes shining
I seek you
 in everything...

I look around
 for your eyes shining
I seek you
 in everything... !

Chosen Ciphertext Attack
SIM-CCA: does capture this attack

Key/
Enc

Key/
Dec

Env

Hey Eve,

What’s this that you

sent me?

>
>
>
>

...gnihtyreve ni
uoy kees I
gninihs seye ruoy rof
dnuora kool I

I look around
 for your eyes shining
I seek you
 in everything...

I look around
 for your eyes shining
I seek you
 in everything... !

Chosen Ciphertext Attack
SIM-CCA: does capture this attack

Key/
Enc

Key/
Dec

Env

!

Secure (and
correct) if:

∀

∃ s.t.

∀

output of
is distributed
identically in
REAL and IDEAL

SIM-CCA Security (PKE)

PK/
Enc

SK/
Dec

Env

Send Recv

Env
REAL

IDEAL

Replay
Filter

SIM-CCA Security and
Malleability

PK/
Enc

SK/
Dec

Env

Send Recv

Env
REAL

IDEAL

Replay
Filter

SIM-CCA Security and
Malleability

PK/
Enc

SK/
Dec

Env

Send Recv

Env
REAL

IDEAL

Replay
FilterIf can

cause Bob to
output a
message

SIM-CCA Security and
Malleability

PK/
Enc

SK/
Dec

Env

Send Recv

Env
REAL

IDEAL

Replay
FilterIf can

cause Bob to
output a
message

then can send
such a message
to Bob by itself

SIM-CCA Security and
Malleability

PK/
Enc

SK/
Dec

Env

Send Recv

Env
REAL

IDEAL

Replay
FilterIf can

cause Bob to
output a
message

then can send
such a message
to Bob by itself

 Hence message
not a result of

malleating

Constructing CCA Secure PKE

Constructing CCA Secure PKE
Possible from generic assumptions

Constructing CCA Secure PKE
Possible from generic assumptions

e.g. Enhanced T-OWP, Lossy T-OWF, Correlation-secure T-OWF,
Adaptive T-OWF/relation, ...

Constructing CCA Secure PKE
Possible from generic assumptions

e.g. Enhanced T-OWP, Lossy T-OWF, Correlation-secure T-OWF,
Adaptive T-OWF/relation, ...

e.g. Using a CPA secure PKE to create two ciphertexts and
a “Non-Interactive Zero Knowledge proof” of consistency

Constructing CCA Secure PKE
Possible from generic assumptions

e.g. Enhanced T-OWP, Lossy T-OWF, Correlation-secure T-OWF,
Adaptive T-OWF/relation, ...

e.g. Using a CPA secure PKE to create two ciphertexts and
a “Non-Interactive Zero Knowledge proof” of consistency

e.g. Include a “NIZK proof of knowledge” of the plaintext

Constructing CCA Secure PKE
Possible from generic assumptions

e.g. Enhanced T-OWP, Lossy T-OWF, Correlation-secure T-OWF,
Adaptive T-OWF/relation, ...

e.g. Using a CPA secure PKE to create two ciphertexts and
a “Non-Interactive Zero Knowledge proof” of consistency

e.g. Include a “NIZK proof of knowledge” of the plaintext

Much more efficient from specific number theoretic/algebraic
assumptions

Constructing CCA Secure PKE
Possible from generic assumptions

e.g. Enhanced T-OWP, Lossy T-OWF, Correlation-secure T-OWF,
Adaptive T-OWF/relation, ...

e.g. Using a CPA secure PKE to create two ciphertexts and
a “Non-Interactive Zero Knowledge proof” of consistency

e.g. Include a “NIZK proof of knowledge” of the plaintext

Much more efficient from specific number theoretic/algebraic
assumptions

Even more efficient in the “Random Oracle Model”

Constructing CCA Secure PKE
Possible from generic assumptions

e.g. Enhanced T-OWP, Lossy T-OWF, Correlation-secure T-OWF,
Adaptive T-OWF/relation, ...

e.g. Using a CPA secure PKE to create two ciphertexts and
a “Non-Interactive Zero Knowledge proof” of consistency

e.g. Include a “NIZK proof of knowledge” of the plaintext

Much more efficient from specific number theoretic/algebraic
assumptions

Even more efficient in the “Random Oracle Model”

Significant efficiency gain using “Hybrid Encryption”

Hybrid Encryption

Hybrid Encryption
PKE is far less efficient compared to SKE (CCA- or CPA-secure)

Hybrid Encryption
PKE is far less efficient compared to SKE (CCA- or CPA-secure)

SKE using Block Ciphers (e.g. AES) and MAC is very fast

Hybrid Encryption
PKE is far less efficient compared to SKE (CCA- or CPA-secure)

SKE using Block Ciphers (e.g. AES) and MAC is very fast

El Gamal uses exponentiations (CCA-secure versions even more)

Hybrid Encryption
PKE is far less efficient compared to SKE (CCA- or CPA-secure)

SKE using Block Ciphers (e.g. AES) and MAC is very fast

El Gamal uses exponentiations (CCA-secure versions even more)

Hybrid encryption: Use (CCA secure) PKE to transfer a key (or key
generation material) for the (CCA secure) SKE. Use SKE with this
key for sending data

Hybrid Encryption
PKE is far less efficient compared to SKE (CCA- or CPA-secure)

SKE using Block Ciphers (e.g. AES) and MAC is very fast

El Gamal uses exponentiations (CCA-secure versions even more)

Hybrid encryption: Use (CCA secure) PKE to transfer a key (or key
generation material) for the (CCA secure) SKE. Use SKE with this
key for sending data

Hopefully the combination remains CCA secure

Hybrid Encryption
PKE is far less efficient compared to SKE (CCA- or CPA-secure)

SKE using Block Ciphers (e.g. AES) and MAC is very fast

El Gamal uses exponentiations (CCA-secure versions even more)

Hybrid encryption: Use (CCA secure) PKE to transfer a key (or key
generation material) for the (CCA secure) SKE. Use SKE with this
key for sending data

Hopefully the combination remains CCA secure

PKE used to encrypt only a (short) key for the SKE

Hybrid Encryption
PKE is far less efficient compared to SKE (CCA- or CPA-secure)

SKE using Block Ciphers (e.g. AES) and MAC is very fast

El Gamal uses exponentiations (CCA-secure versions even more)

Hybrid encryption: Use (CCA secure) PKE to transfer a key (or key
generation material) for the (CCA secure) SKE. Use SKE with this
key for sending data

Hopefully the combination remains CCA secure

PKE used to encrypt only a (short) key for the SKE

Relatively low overhead on top of the (fast) SKE encryption

Hybrid Encryption

Hybrid Encryption
Hybrid Encryption: KEM/DEM paradigm

Hybrid Encryption
Hybrid Encryption: KEM/DEM paradigm

Key Encapsulation Method: a public-key scheme to transfer a
key

Hybrid Encryption
Hybrid Encryption: KEM/DEM paradigm

Key Encapsulation Method: a public-key scheme to transfer a
key

Or to

gene
rate

 a

key

Hybrid Encryption
Hybrid Encryption: KEM/DEM paradigm

Key Encapsulation Method: a public-key scheme to transfer a
key

Data Encapsulation Method: a shared-key scheme (using the
key transferred using KEM)

Or to

gene
rate

 a

key

Hybrid Encryption
Hybrid Encryption: KEM/DEM paradigm

Key Encapsulation Method: a public-key scheme to transfer a
key

Data Encapsulation Method: a shared-key scheme (using the
key transferred using KEM)

For what KEM/DEM is a hybrid encryption scheme CCA secure?

Or to

gene
rate

 a

key

Hybrid Encryption
Hybrid Encryption: KEM/DEM paradigm

Key Encapsulation Method: a public-key scheme to transfer a
key

Data Encapsulation Method: a shared-key scheme (using the
key transferred using KEM)

For what KEM/DEM is a hybrid encryption scheme CCA secure?

Works if KEM is a SIM-CCA secure PKE scheme and DEM is a
SIM-CCA secure SKE scheme

Or to

gene
rate

 a

key

Hybrid Encryption
Hybrid Encryption: KEM/DEM paradigm

Key Encapsulation Method: a public-key scheme to transfer a
key

Data Encapsulation Method: a shared-key scheme (using the
key transferred using KEM)

For what KEM/DEM is a hybrid encryption scheme CCA secure?

Works if KEM is a SIM-CCA secure PKE scheme and DEM is a
SIM-CCA secure SKE scheme

Easy to prove using “composition” properties of the SIM
definition

Or to

gene
rate

 a

key

Hybrid Encryption
Hybrid Encryption: KEM/DEM paradigm

Key Encapsulation Method: a public-key scheme to transfer a
key

Data Encapsulation Method: a shared-key scheme (using the
key transferred using KEM)

For what KEM/DEM is a hybrid encryption scheme CCA secure?

Works if KEM is a SIM-CCA secure PKE scheme and DEM is a
SIM-CCA secure SKE scheme

Easy to prove using “composition” properties of the SIM
definition

Less security sufficient: KEM used to transfer a random key;
DEM uses a new key every time.

Or to

gene
rate

 a

key

Today

Today
CPA secure PKE: Constructions

Today
CPA secure PKE: Constructions

El Gamal Encryption

Today
CPA secure PKE: Constructions

El Gamal Encryption

TPRG and TOWP

Today
CPA secure PKE: Constructions

El Gamal Encryption

TPRG and TOWP

CCA secure PKE

Today
CPA secure PKE: Constructions

El Gamal Encryption

TPRG and TOWP

CCA secure PKE

Motivating problem: Malleability

Today
CPA secure PKE: Constructions

El Gamal Encryption

TPRG and TOWP

CCA secure PKE

Motivating problem: Malleability

Hybrid Encryption: KEM/DEM

Today
CPA secure PKE: Constructions

El Gamal Encryption

TPRG and TOWP

CCA secure PKE

Motivating problem: Malleability

Hybrid Encryption: KEM/DEM

Given a basic (CCA secure) PKE, improves efficiency
by combining with (CCA secure) SKE

Today
CPA secure PKE: Constructions

El Gamal Encryption

TPRG and TOWP

CCA secure PKE

Motivating problem: Malleability

Hybrid Encryption: KEM/DEM

Given a basic (CCA secure) PKE, improves efficiency
by combining with (CCA secure) SKE

Next: Constructions for CCA secure PKE

