
Active Adversary
Lecture 7

CCA Security

MAC

Active Adversary

Active Adversary

An active adversary can inject messages into the channel

Active Adversary

An active adversary can inject messages into the channel

Eve can send ciphertexts to Bob and get them decrypted

Active Adversary

An active adversary can inject messages into the channel

Eve can send ciphertexts to Bob and get them decrypted

Chosen Ciphertext Attack (CCA)

Active Adversary

An active adversary can inject messages into the channel

Eve can send ciphertexts to Bob and get them decrypted

Chosen Ciphertext Attack (CCA)

If Bob decrypts all ciphertexts for Eve, no security
possible

Active Adversary

An active adversary can inject messages into the channel

Eve can send ciphertexts to Bob and get them decrypted

Chosen Ciphertext Attack (CCA)

If Bob decrypts all ciphertexts for Eve, no security
possible

What can Bob do?

SIM-CCA
secure if:

∀

∃ s.t.

∀

Key/
Enc

Key/
Dec

Env

Send Recv

Env
REAL

IDEAL

Replay
Filter

SIM-CCA Security
Symmetric-Key Encryption

REAL ≈ IDEAL

SIM-CCA
secure if:

∀

∃ s.t.

∀

Key/
Enc

Key/
Dec

Env

Send Recv

Env
REAL

IDEAL

Replay
Filter

SIM-CCA Security
Symmetric-Key Encryption

REAL ≈ IDEAL

Invalid ciphertexts
are silently ignored

Experiment picks b←{0,1} and K←KeyGen

For as long as Adversary wants

Adv sends two messages m0, m1
to the experiment

Expt returns Enc(mb,K) to the
adversary

Adversary returns a guess b’

Experiments outputs 1 iff b’=b

IND-CCA secure if for all feasible
adversaries Pr[b’=b] ≈ 1/2

b

Key/
Enc

b←{0,1}

b’=b?

m0,m1

mb

b’

Yes/No

Adv gets (guarded) access to DecK oracle
Enc(mb,K)

Key/
Dec

Replay Filter:
No challenge
ciphertext
answered

IND-CCA Security
Symmetric-Key EncryptionIND-CCA +

~correctness

equivalent to

SIM-CCA

CCA Security

CCA Security
How to obtain CCA security?

CCA Security
How to obtain CCA security?

Use a CPA-secure encryption scheme, but make sure Bob
“accepts” and decrypts only ciphertexts produced by Alice

CCA Security
How to obtain CCA security?

Use a CPA-secure encryption scheme, but make sure Bob
“accepts” and decrypts only ciphertexts produced by Alice

i.e., Eve can’t create new ciphertexts that will be
accepted by Bob

CCA Security
How to obtain CCA security?

Use a CPA-secure encryption scheme, but make sure Bob
“accepts” and decrypts only ciphertexts produced by Alice

i.e., Eve can’t create new ciphertexts that will be
accepted by Bob

Achieves the stronger guarantee: in IDEAL, Eve can’t
send its own messages to Bob

CCA Security
How to obtain CCA security?

Use a CPA-secure encryption scheme, but make sure Bob
“accepts” and decrypts only ciphertexts produced by Alice

i.e., Eve can’t create new ciphertexts that will be
accepted by Bob

Achieves the stronger guarantee: in IDEAL, Eve can’t
send its own messages to Bob

CCA secure SKE reduces to the problem of CPA secure SKE
and (shared key) message authentication

CCA Security
How to obtain CCA security?

Use a CPA-secure encryption scheme, but make sure Bob
“accepts” and decrypts only ciphertexts produced by Alice

i.e., Eve can’t create new ciphertexts that will be
accepted by Bob

Achieves the stronger guarantee: in IDEAL, Eve can’t
send its own messages to Bob

CCA secure SKE reduces to the problem of CPA secure SKE
and (shared key) message authentication

MAC: Message Authentication Code

Message Authentication
Codes

Message Authentication
Codes

A single short key shared by Alice and Bob

Message Authentication
Codes

A single short key shared by Alice and Bob

Can sign any (polynomial) number of
messages

Message Authentication
Codes

A single short key shared by Alice and Bob

Can sign any (polynomial) number of
messages

A triple (KeyGen, MAC, Verify)

MACK VerK

Message Authentication
Codes

A single short key shared by Alice and Bob

Can sign any (polynomial) number of
messages

A triple (KeyGen, MAC, Verify)

Correctness: For all K from KeyGen, and all
messages M, VerifyK(M,MACK(M))=1

MACK VerK

Message Authentication
Codes

A single short key shared by Alice and Bob

Can sign any (polynomial) number of
messages

A triple (KeyGen, MAC, Verify)

Correctness: For all K from KeyGen, and all
messages M, VerifyK(M,MACK(M))=1

Security: probability that an adversary can
produce (M,s) s.t. VerifyK(M,s)=1 is negligible
unless Alice produced an output s=MACK(M)

Mi

si =

MACK(Mi)

(M,s)

VerK(M,s)

Advantage

 = Pr[VerK(M,s)=1 and

 (M,s) ∉ {(Mi,si)}]

MACK VerK

CCA Secure SKE

CCA Secure SKE

CCA-EncK1,K2(m) = (c:= CPA-EncK1(m), t:= MACK2(c))

CCA Secure SKE

CCA-EncK1,K2(m) = (c:= CPA-EncK1(m), t:= MACK2(c))

CPA secure encryption: Block-cipher/CTR mode construction

CCA Secure SKE

CCA-EncK1,K2(m) = (c:= CPA-EncK1(m), t:= MACK2(c))

CPA secure encryption: Block-cipher/CTR mode construction

MAC: from a PRF or Block-Cipher (next time)

CCA Secure SKE

CCA-EncK1,K2(m) = (c:= CPA-EncK1(m), t:= MACK2(c))

CPA secure encryption: Block-cipher/CTR mode construction

MAC: from a PRF or Block-Cipher (next time)

SKE in practice entirely based on Block-Ciphers (next time)

CCA Secure SKE

CCA-EncK1,K2(m) = (c:= CPA-EncK1(m), t:= MACK2(c))

CPA secure encryption: Block-cipher/CTR mode construction

MAC: from a PRF or Block-Cipher (next time)

SKE in practice entirely based on Block-Ciphers (next time)

In principle, PRFs can be constructed (less efficiently) based
on any One-Way Permutation or even any One-Way Function

Making a MAC

One-time MAC

MAC Ver

To sign a single n bit message

One-time MAC

MAC Ver

To sign a single n bit message

A simple (but inefficient) scheme

One-time MAC

MAC Ver

To sign a single n bit message

A simple (but inefficient) scheme

Shared secret key: 2n random 

strings (each k-bit long) (ri
0,ri

1)i=1..n

r1
0 r2

0 r3
0

r1
1 r2

1 r3
1

One-time MAC

MAC Ver

To sign a single n bit message

A simple (but inefficient) scheme

Shared secret key: 2n random 

strings (each k-bit long) (ri
0,ri

1)i=1..n

r1
0 r2

0 r3
0

r1
1 r2

1 r3
1

One-time MAC

010

MAC Ver

To sign a single n bit message

A simple (but inefficient) scheme

Shared secret key: 2n random 

strings (each k-bit long) (ri
0,ri

1)i=1..n

Signature for m1...mn be (ri
mi)i=1..n

r1
0 r2

0 r3
0

r1
1 r2

1 r3
1

One-time MAC

r1
0 r2

1 r3
0

010

MAC Ver

To sign a single n bit message

A simple (but inefficient) scheme

Shared secret key: 2n random 

strings (each k-bit long) (ri
0,ri

1)i=1..n

Signature for m1...mn be (ri
mi)i=1..n

Negligible probability that Eve can produce 
a signature on m’≠m

r1
0 r2

0 r3
0

r1
1 r2

1 r3
1

One-time MAC

r1
0 r2

1 r3
0

010

MAC Ver

To sign a single n bit message

A simple (but inefficient) scheme

Shared secret key: 2n random 

strings (each k-bit long) (ri
0,ri

1)i=1..n

Signature for m1...mn be (ri
mi)i=1..n

Negligible probability that Eve can produce 
a signature on m’≠m

Doesn’t require any computational restrictions on adversary!

r1
0 r2

0 r3
0

r1
1 r2

1 r3
1

One-time MAC

r1
0 r2

1 r3
0

010

MAC Ver

To sign a single n bit message

A simple (but inefficient) scheme

Shared secret key: 2n random 

strings (each k-bit long) (ri
0,ri

1)i=1..n

Signature for m1...mn be (ri
mi)i=1..n

Negligible probability that Eve can produce 
a signature on m’≠m

Doesn’t require any computational restrictions on adversary!

More efficient one-time MACs exist (later)

r1
0 r2

0 r3
0

r1
1 r2

1 r3
1

One-time MAC

r1
0 r2

1 r3
0

010

MAC Ver

(Multi-msg) MAC from PRF
When Each Message is a Single Block

(Multi-msg) MAC from PRF

PRF is a MAC!

When Each Message is a Single Block

(Multi-msg) MAC from PRF

PRF is a MAC!

MACK(M) := FK(M) where F is a PRF

When Each Message is a Single Block

(Multi-msg) MAC from PRF

PRF is a MAC!

MACK(M) := FK(M) where F is a PRF

When Each Message is a Single Block

FK

M FK(M)

(Multi-msg) MAC from PRF

PRF is a MAC!

MACK(M) := FK(M) where F is a PRF

VerK(M,S) := 1 iff S=FK(M)

When Each Message is a Single Block

FK

M FK(M)

(Multi-msg) MAC from PRF

PRF is a MAC!

MACK(M) := FK(M) where F is a PRF

VerK(M,S) := 1 iff S=FK(M)

Output length of FK should be big enough

When Each Message is a Single Block

FK

M FK(M)

(Multi-msg) MAC from PRF

PRF is a MAC!

MACK(M) := FK(M) where F is a PRF

VerK(M,S) := 1 iff S=FK(M)

Output length of FK should be big enough

If an adversary forges MAC with probability εMAC,
then can break PRF with advantage O(εMAC — 2-m(k))
(m(k) being the output length of the PRF) [How?]

When Each Message is a Single Block

FK

M FK(M)

(Multi-msg) MAC from PRF

PRF is a MAC!

MACK(M) := FK(M) where F is a PRF

VerK(M,S) := 1 iff S=FK(M)

Output length of FK should be big enough

If an adversary forges MAC with probability εMAC,
then can break PRF with advantage O(εMAC — 2-m(k))
(m(k) being the output length of the PRF) [How?]

When Each Message is a Single Block

FK

M FK(M)

Recall: Advantage in
breaking a PRF F =
diff in prob test has
of outputting 1, when

given F vs. truly
random R

(Multi-msg) MAC from PRF

PRF is a MAC!

MACK(M) := FK(M) where F is a PRF

VerK(M,S) := 1 iff S=FK(M)

Output length of FK should be big enough

If an adversary forges MAC with probability εMAC,
then can break PRF with advantage O(εMAC — 2-m(k))
(m(k) being the output length of the PRF) [How?]

If random function R used as MAC, then
probability of forgery, εMAC* = 2-m(k)

When Each Message is a Single Block

FK

M FK(M)

Recall: Advantage in
breaking a PRF F =
diff in prob test has
of outputting 1, when

given F vs. truly
random R

MAC for
Multiple-Block Messages

MAC for
Multiple-Block Messages

What if message is longer than one block?

MAC for
Multiple-Block Messages

What if message is longer than one block?

MAC’ing each block separately is not secure (unlike
in the case of CPA secure encryption)

MAC for
Multiple-Block Messages

What if message is longer than one block?

MAC’ing each block separately is not secure (unlike
in the case of CPA secure encryption)

Eve can rearrange the blocks/drop some blocks

MAC for
Multiple-Block Messages

What if message is longer than one block?

MAC’ing each block separately is not secure (unlike
in the case of CPA secure encryption)

Eve can rearrange the blocks/drop some blocks

Could use a PRF that takes longer inputs

MAC for
Multiple-Block Messages

What if message is longer than one block?

MAC’ing each block separately is not secure (unlike
in the case of CPA secure encryption)

Eve can rearrange the blocks/drop some blocks

Could use a PRF that takes longer inputs

Can we use a PRF with a fixed block-length (i.e., a
block cipher)?

MAC for
Multiple-Block Messages

MAC for
Multiple-Block Messages
A simple solution: “tie the blocks together”

MAC for
Multiple-Block Messages
A simple solution: “tie the blocks together”

Add to each block a random string r (same r for all blocks),
total number of blocks, and a sequence number

MAC for
Multiple-Block Messages
A simple solution: “tie the blocks together”

Add to each block a random string r (same r for all blocks),
total number of blocks, and a sequence number

Bi = (r, t, i, Mi)

MAC for
Multiple-Block Messages
A simple solution: “tie the blocks together”

Add to each block a random string r (same r for all blocks),
total number of blocks, and a sequence number

Bi = (r, t, i, Mi)

MAC(M) = (r, (MAC(Bi))i=1..t)

MAC for
Multiple-Block Messages
A simple solution: “tie the blocks together”

Add to each block a random string r (same r for all blocks),
total number of blocks, and a sequence number

Bi = (r, t, i, Mi)

MAC(M) = (r, (MAC(Bi))i=1..t)

r prevents mixing blocks from two messages, t prevents
dropping blocks and i prevents rearranging

MAC for
Multiple-Block Messages
A simple solution: “tie the blocks together”

Add to each block a random string r (same r for all blocks),
total number of blocks, and a sequence number

Bi = (r, t, i, Mi)

MAC(M) = (r, (MAC(Bi))i=1..t)

r prevents mixing blocks from two messages, t prevents
dropping blocks and i prevents rearranging

Inefficient! Tag length increases with message length

CBC-MAC

CBC-MAC

PRF domain extension: Chaining the blocks

CBC-MAC

PRF domain extension: Chaining the blocks

m1 m2 mt

FK FK FK

⊕ ⊕

T

...

CBC-MAC

PRF domain extension: Chaining the blocks

cf. CBC mode for encryption (which
is not a MAC!)

m1 m2 mt

FK FK FK

⊕ ⊕

T

...

CBC-MAC

PRF domain extension: Chaining the blocks

cf. CBC mode for encryption (which
is not a MAC!)

t-block messages, a single block tag

m1 m2 mt

FK FK FK

⊕ ⊕

T

...

CBC-MAC

PRF domain extension: Chaining the blocks

cf. CBC mode for encryption (which
is not a MAC!)

t-block messages, a single block tag

Can be shown to be secure

m1 m2 mt

FK FK FK

⊕ ⊕

T

...

CBC-MAC

PRF domain extension: Chaining the blocks

cf. CBC mode for encryption (which
is not a MAC!)

t-block messages, a single block tag

Can be shown to be secure

If restricted to t-block messages (i.e., same length)

m1 m2 mt

FK FK FK

⊕ ⊕

T

...

CBC-MAC

PRF domain extension: Chaining the blocks

cf. CBC mode for encryption (which
is not a MAC!)

t-block messages, a single block tag

Can be shown to be secure

If restricted to t-block messages (i.e., same length)

Else attacks possible (by extending a previously
signed message)

m1 m2 mt

FK FK FK

⊕ ⊕

T

...

Patching CBC-MAC

Patching CBC-MAC
Patching CBC MAC to handle message of any (polynomial) length
but still producing a single block tag (secure if block-cipher is):

Patching CBC-MAC
Patching CBC MAC to handle message of any (polynomial) length
but still producing a single block tag (secure if block-cipher is):

Derive K as FK’(t), where t is the number of blocks

Patching CBC-MAC
Patching CBC MAC to handle message of any (polynomial) length
but still producing a single block tag (secure if block-cipher is):

Derive K as FK’(t), where t is the number of blocks

Use first block to specify number of blocks

Patching CBC-MAC
Patching CBC MAC to handle message of any (polynomial) length
but still producing a single block tag (secure if block-cipher is):

Derive K as FK’(t), where t is the number of blocks

Use first block to specify number of blocks

Important that first block is used: if last block, message
extension attacks still possible

Patching CBC-MAC
Patching CBC MAC to handle message of any (polynomial) length
but still producing a single block tag (secure if block-cipher is):

Derive K as FK’(t), where t is the number of blocks

Use first block to specify number of blocks

Important that first block is used: if last block, message
extension attacks still possible

EMAC: Output not the last tag T, but FK’(T), where K’ is an
independent key (after padding the message to an integral
number of blocks). No need to know message length a priori.

Patching CBC-MAC
Patching CBC MAC to handle message of any (polynomial) length
but still producing a single block tag (secure if block-cipher is):

Derive K as FK’(t), where t is the number of blocks

Use first block to specify number of blocks

Important that first block is used: if last block, message
extension attacks still possible

EMAC: Output not the last tag T, but FK’(T), where K’ is an
independent key (after padding the message to an integral
number of blocks). No need to know message length a priori.

CMAC: XOR last message block with a key (derived from the
original key using the block-cipher). Also avoids padding when
message is integral number of blocks.

Patching CBC-MAC
Patching CBC MAC to handle message of any (polynomial) length
but still producing a single block tag (secure if block-cipher is):

Derive K as FK’(t), where t is the number of blocks

Use first block to specify number of blocks

Important that first block is used: if last block, message
extension attacks still possible

EMAC: Output not the last tag T, but FK’(T), where K’ is an
independent key (after padding the message to an integral
number of blocks). No need to know message length a priori.

CMAC: XOR last message block with a key (derived from the
original key using the block-cipher). Also avoids padding when
message is integral number of blocks. NIST Recommendation. 2005

Patching CBC-MAC
Patching CBC MAC to handle message of any (polynomial) length
but still producing a single block tag (secure if block-cipher is):

Derive K as FK’(t), where t is the number of blocks

Use first block to specify number of blocks

Important that first block is used: if last block, message
extension attacks still possible

EMAC: Output not the last tag T, but FK’(T), where K’ is an
independent key (after padding the message to an integral
number of blocks). No need to know message length a priori.

CMAC: XOR last message block with a key (derived from the
original key using the block-cipher). Also avoids padding when
message is integral number of blocks.

Later: Hash-based HMAC used in TLS and IPSec

NIST Recommendation. 2005

IETF Standard. 1997

SKE in Practice

Stream Ciphers

Stream Ciphers

A key should be used for only a single stream

Stream Ciphers

A key should be used for only a single stream

RC4, eSTREAM portfolio, ...

Stream Ciphers

A key should be used for only a single stream

RC4, eSTREAM portfolio, ...

In practice, stream ciphers take a key and an “IV” (for
initialization vector) as inputs

Stream Ciphers

A key should be used for only a single stream

RC4, eSTREAM portfolio, ...

In practice, stream ciphers take a key and an “IV” (for
initialization vector) as inputs

Also used to
denote the random
nonce chosen for
encryption using a
block-cipher

Stream Ciphers

A key should be used for only a single stream

RC4, eSTREAM portfolio, ...

In practice, stream ciphers take a key and an “IV” (for
initialization vector) as inputs

Heuristic goal: behave somewhat like a PRF (instead of a
PRG) so that it can be used for multi-message encryption

Also used to
denote the random
nonce chosen for
encryption using a
block-cipher

Stream Ciphers

A key should be used for only a single stream

RC4, eSTREAM portfolio, ...

In practice, stream ciphers take a key and an “IV” (for
initialization vector) as inputs

Heuristic goal: behave somewhat like a PRF (instead of a
PRG) so that it can be used for multi-message encryption

But often breaks if used this way

Also used to
denote the random
nonce chosen for
encryption using a
block-cipher

Stream Ciphers

A key should be used for only a single stream

RC4, eSTREAM portfolio, ...

In practice, stream ciphers take a key and an “IV” (for
initialization vector) as inputs

Heuristic goal: behave somewhat like a PRF (instead of a
PRG) so that it can be used for multi-message encryption

But often breaks if used this way

NIST Standard: For multi-message encryption, use a block-
cipher in CTR mode

Also used to
denote the random
nonce chosen for
encryption using a
block-cipher

Block Ciphers

Block Ciphers

DES, 3DES, Blowfish, AES, ...

Block Ciphers

DES, 3DES, Blowfish, AES, ...

Heuristic constructions

Block Ciphers

DES, 3DES, Blowfish, AES, ...

Heuristic constructions

Permutations that can be inverted with the key

Block Ciphers

DES, 3DES, Blowfish, AES, ...

Heuristic constructions

Permutations that can be inverted with the key

Speed (hardware/software) is of the essence

Block Ciphers

DES, 3DES, Blowfish, AES, ...

Heuristic constructions

Permutations that can be inverted with the key

Speed (hardware/software) is of the essence

But should withstand known attacks

Block Ciphers

DES, 3DES, Blowfish, AES, ...

Heuristic constructions

Permutations that can be inverted with the key

Speed (hardware/software) is of the essence

But should withstand known attacks

As a PRP (or at least, against key recovery)

Feistel Network

Feistel Network
Building a permutation from a (block) function

Feistel Network
Building a permutation from a (block) function

Let f: {0,1}m → {0,1}m be an arbitrary function

Feistel Network

f1

＋

Building a permutation from a (block) function

Let f: {0,1}m → {0,1}m be an arbitrary function

Ff: {0,1}2m→{0,1}2m defined as Ff(x,y) = (y, x⊕f(y))

Feistel Network

f1

＋

Building a permutation from a (block) function

Let f: {0,1}m → {0,1}m be an arbitrary function

Ff: {0,1}2m→{0,1}2m defined as Ff(x,y) = (y, x⊕f(y))

Ff is a permutation (Why?)

Feistel Network

f1

＋

Building a permutation from a (block) function

Let f: {0,1}m → {0,1}m be an arbitrary function

Ff: {0,1}2m→{0,1}2m defined as Ff(x,y) = (y, x⊕f(y))

Ff is a permutation (Why?)

Can invert (How?)

Feistel Network

f1

＋

Building a permutation from a (block) function

Let f: {0,1}m → {0,1}m be an arbitrary function

Ff: {0,1}2m→{0,1}2m defined as Ff(x,y) = (y, x⊕f(y))

Ff is a permutation (Why?)

Can invert (How?)

Given functions f1,...,ft can build a t-layer Feistel
network Ff1...ft

f2

＋

Feistel Network

f1

＋

Building a permutation from a (block) function

Let f: {0,1}m → {0,1}m be an arbitrary function

Ff: {0,1}2m→{0,1}2m defined as Ff(x,y) = (y, x⊕f(y))

Ff is a permutation (Why?)

Can invert (How?)

Given functions f1,...,ft can build a t-layer Feistel
network Ff1...ft

1

f2

＋

Feistel Network

f1

＋

Building a permutation from a (block) function

Let f: {0,1}m → {0,1}m be an arbitrary function

Ff: {0,1}2m→{0,1}2m defined as Ff(x,y) = (y, x⊕f(y))

Ff is a permutation (Why?)

Can invert (How?)

Given functions f1,...,ft can build a t-layer Feistel
network Ff1...ft

Still a permutation from {0,1}2m to {0,1}2m

1

f2

＋

Feistel Network

f1

＋

Building a permutation from a (block) function

Let f: {0,1}m → {0,1}m be an arbitrary function

Ff: {0,1}2m→{0,1}2m defined as Ff(x,y) = (y, x⊕f(y))

Ff is a permutation (Why?)

Can invert (How?)

Given functions f1,...,ft can build a t-layer Feistel
network Ff1...ft

Still a permutation from {0,1}2m to {0,1}2m

Luby-Rackoff: A 3-layer Feistel network, in which 3
PRFs with independent seeds are the 3 round
functions, is a PRP. A 4-layer Feistel gives a strong
PRP

1

f2

＋

Feistel Network

f1

＋

Building a permutation from a (block) function

Let f: {0,1}m → {0,1}m be an arbitrary function

Ff: {0,1}2m→{0,1}2m defined as Ff(x,y) = (y, x⊕f(y))

Ff is a permutation (Why?)

Can invert (How?)

Given functions f1,...,ft can build a t-layer Feistel
network Ff1...ft

Still a permutation from {0,1}2m to {0,1}2m

Luby-Rackoff: A 3-layer Feistel network, in which 3
PRFs with independent seeds are the 3 round
functions, is a PRP. A 4-layer Feistel gives a strong
PRP

Fewer layers do not suffice! [Exercise]

1

Luby-Rackoff

Luby-Rackoff
Using Feistel networks of PRFs to build a PRP

Luby-Rackoff
Using Feistel networks of PRFs to build a PRP

A 3-layer Feistel network, with PRFs with 3 independent
seeds as the round functions, is a PRP

Luby-Rackoff
Using Feistel networks of PRFs to build a PRP

A 3-layer Feistel network, with PRFs with 3 independent
seeds as the round functions, is a PRP

1 or 2 layers do not suffice! [Exercise]

Luby-Rackoff
Using Feistel networks of PRFs to build a PRP

A 3-layer Feistel network, with PRFs with 3 independent
seeds as the round functions, is a PRP

1 or 2 layers do not suffice! [Exercise]

With 4 layers (and 4 independent seeds), it is a strong
PRP

Luby-Rackoff
Using Feistel networks of PRFs to build a PRP

A 3-layer Feistel network, with PRFs with 3 independent
seeds as the round functions, is a PRP

1 or 2 layers do not suffice! [Exercise]

With 4 layers (and 4 independent seeds), it is a strong
PRP

3 layers do not suffice! [Exercise]

Luby-Rackoff
Using Feistel networks of PRFs to build a PRP

A 3-layer Feistel network, with PRFs with 3 independent
seeds as the round functions, is a PRP

1 or 2 layers do not suffice! [Exercise]

With 4 layers (and 4 independent seeds), it is a strong
PRP

3 layers do not suffice! [Exercise]

OWF/OWP ⇒ PRG ⇒ PRF ⇒ (strong) PRP, i.e., Block Cipher

Luby-Rackoff
Using Feistel networks of PRFs to build a PRP

A 3-layer Feistel network, with PRFs with 3 independent
seeds as the round functions, is a PRP

1 or 2 layers do not suffice! [Exercise]

With 4 layers (and 4 independent seeds), it is a strong
PRP

3 layers do not suffice! [Exercise]

OWF/OWP ⇒ PRG ⇒ PRF ⇒ (strong) PRP, i.e., Block Cipher

OWF/OWP ⇒ PRG ⇒ PRF is too slow for standards

DES Block Cipher

DES Block Cipher
Data Encryption Standard (DES), Triple-DES, DES-X

NIST Standard. 1976

DES Block Cipher
Data Encryption Standard (DES), Triple-DES, DES-X

DES uses a 16-layer Feistel network (and a few other steps)

NIST Standard. 1976

DES Block Cipher
Data Encryption Standard (DES), Triple-DES, DES-X

DES uses a 16-layer Feistel network (and a few other steps)

The round functions are not PRFs, but ad hoc

NIST Standard. 1976

DES Block Cipher
Data Encryption Standard (DES), Triple-DES, DES-X

DES uses a 16-layer Feistel network (and a few other steps)

The round functions are not PRFs, but ad hoc

“Confuse and diffuse”

NIST Standard. 1976

DES Block Cipher
Data Encryption Standard (DES), Triple-DES, DES-X

DES uses a 16-layer Feistel network (and a few other steps)

The round functions are not PRFs, but ad hoc

“Confuse and diffuse”

Defined for fixed key/block lengths (56 bits and 64 bits);
key is used to generate subkeys for round functions

NIST Standard. 1976

DES Block Cipher
Data Encryption Standard (DES), Triple-DES, DES-X

DES uses a 16-layer Feistel network (and a few other steps)

The round functions are not PRFs, but ad hoc

“Confuse and diffuse”

Defined for fixed key/block lengths (56 bits and 64 bits);
key is used to generate subkeys for round functions

DES’s key length too short

NIST Standard. 1976

DES Block Cipher
Data Encryption Standard (DES), Triple-DES, DES-X

DES uses a 16-layer Feistel network (and a few other steps)

The round functions are not PRFs, but ad hoc

“Confuse and diffuse”

Defined for fixed key/block lengths (56 bits and 64 bits);
key is used to generate subkeys for round functions

DES’s key length too short

Can now mount brute force key-recovery attacks (e.g. using $10K
hardware, running for under a week, in 2006; now, in under a
day)

NIST Standard. 1976

DES Block Cipher
Data Encryption Standard (DES), Triple-DES, DES-X

DES uses a 16-layer Feistel network (and a few other steps)

The round functions are not PRFs, but ad hoc

“Confuse and diffuse”

Defined for fixed key/block lengths (56 bits and 64 bits);
key is used to generate subkeys for round functions

DES’s key length too short

Can now mount brute force key-recovery attacks (e.g. using $10K
hardware, running for under a week, in 2006; now, in under a
day)

DES-X: extra keys to pad input and output

NIST Standard. 1976

DES Block Cipher
Data Encryption Standard (DES), Triple-DES, DES-X

DES uses a 16-layer Feistel network (and a few other steps)

The round functions are not PRFs, but ad hoc

“Confuse and diffuse”

Defined for fixed key/block lengths (56 bits and 64 bits);
key is used to generate subkeys for round functions

DES’s key length too short

Can now mount brute force key-recovery attacks (e.g. using $10K
hardware, running for under a week, in 2006; now, in under a
day)

DES-X: extra keys to pad input and output

Triple DES: 3 successive applications of DES (or DES-1) with 3 keys

NIST Standard. 1976

AES Block Cipher

AES Block Cipher
Advanced Encryption Standard (AES)

NIST Standard. 2001

AES Block Cipher
Advanced Encryption Standard (AES)

AES-128, AES-192, AES-256 (3 key sizes; block size = 128 bits)

NIST Standard. 2001

AES Block Cipher
Advanced Encryption Standard (AES)

AES-128, AES-192, AES-256 (3 key sizes; block size = 128 bits)

Very efficient in software implementations (unlike DES)

NIST Standard. 2001

AES Block Cipher
Advanced Encryption Standard (AES)

AES-128, AES-192, AES-256 (3 key sizes; block size = 128 bits)

Very efficient in software implementations (unlike DES)

Uses “Substitute-and-Permute” instead of Feistel networks

NIST Standard. 2001

AES Block Cipher
Advanced Encryption Standard (AES)

AES-128, AES-192, AES-256 (3 key sizes; block size = 128 bits)

Very efficient in software implementations (unlike DES)

Uses “Substitute-and-Permute” instead of Feistel networks

Has some algebraic structure

NIST Standard. 2001

AES Block Cipher
Advanced Encryption Standard (AES)

AES-128, AES-192, AES-256 (3 key sizes; block size = 128 bits)

Very efficient in software implementations (unlike DES)

Uses “Substitute-and-Permute” instead of Feistel networks

Has some algebraic structure

Operations in a vector space over the field GF(28)

NIST Standard. 2001

AES Block Cipher
Advanced Encryption Standard (AES)

AES-128, AES-192, AES-256 (3 key sizes; block size = 128 bits)

Very efficient in software implementations (unlike DES)

Uses “Substitute-and-Permute” instead of Feistel networks

Has some algebraic structure

Operations in a vector space over the field GF(28)

The algebraic structure may lead to “attacks”?

NIST Standard. 2001

AES Block Cipher
Advanced Encryption Standard (AES)

AES-128, AES-192, AES-256 (3 key sizes; block size = 128 bits)

Very efficient in software implementations (unlike DES)

Uses “Substitute-and-Permute” instead of Feistel networks

Has some algebraic structure

Operations in a vector space over the field GF(28)

The algebraic structure may lead to “attacks”?

Some implementations may lead to side-channel attacks (e.g.
cache-timing attacks)

NIST Standard. 2001

AES Block Cipher
Advanced Encryption Standard (AES)

AES-128, AES-192, AES-256 (3 key sizes; block size = 128 bits)

Very efficient in software implementations (unlike DES)

Uses “Substitute-and-Permute” instead of Feistel networks

Has some algebraic structure

Operations in a vector space over the field GF(28)

The algebraic structure may lead to “attacks”?

Some implementations may lead to side-channel attacks (e.g.
cache-timing attacks)

No “simple” hardness assumption known to imply any sort of
security for AES

NIST Standard. 2001

By Jeff Moser (http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html)

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html

Cryptanalysis

Cryptanalysis
Attacking stream ciphers and block ciphers

Cryptanalysis
Attacking stream ciphers and block ciphers

Typically for key recovery

Cryptanalysis
Attacking stream ciphers and block ciphers

Typically for key recovery

Brute force cryptanalysis, using specialized hardware

Cryptanalysis
Attacking stream ciphers and block ciphers

Typically for key recovery

Brute force cryptanalysis, using specialized hardware

e.g. Attack on DES in 1998

Cryptanalysis
Attacking stream ciphers and block ciphers

Typically for key recovery

Brute force cryptanalysis, using specialized hardware

e.g. Attack on DES in 1998

Several other analytical techniques to speed up attacks

Cryptanalysis
Attacking stream ciphers and block ciphers

Typically for key recovery

Brute force cryptanalysis, using specialized hardware

e.g. Attack on DES in 1998

Several other analytical techniques to speed up attacks

Sometimes “theoretical”: on weakened (“reduced round”)
constructions, showing improvement over brute-force attack

Cryptanalysis
Attacking stream ciphers and block ciphers

Typically for key recovery

Brute force cryptanalysis, using specialized hardware

e.g. Attack on DES in 1998

Several other analytical techniques to speed up attacks

Sometimes “theoretical”: on weakened (“reduced round”)
constructions, showing improvement over brute-force attack

Meet-in-the-middle, linear cryptanalysis, differential
cryptanalysis, impossible differential cryptanalysis,
boomerang attack, integral cryptanalysis, cube attack, ...

Authenticated Encryption

Authenticated Encryption
Doing encryption + authentication better

Authenticated Encryption
Doing encryption + authentication better

Generic composition: encrypt, then MAC

Authenticated Encryption
Doing encryption + authentication better

Generic composition: encrypt, then MAC

Needs two keys and two passes

Authenticated Encryption
Doing encryption + authentication better

Generic composition: encrypt, then MAC

Needs two keys and two passes

AE aims to do this more efficiently

Authenticated Encryption
Doing encryption + authentication better

Generic composition: encrypt, then MAC

Needs two keys and two passes

AE aims to do this more efficiently

Several constructions based on block-ciphers (modes of
operation) provably secure modeling block-cipher as PRP

Authenticated Encryption
Doing encryption + authentication better

Generic composition: encrypt, then MAC

Needs two keys and two passes

AE aims to do this more efficiently

Several constructions based on block-ciphers (modes of
operation) provably secure modeling block-cipher as PRP

One pass: IAPM, OCB, ... [patented]

Authenticated Encryption
Doing encryption + authentication better

Generic composition: encrypt, then MAC

Needs two keys and two passes

AE aims to do this more efficiently

Several constructions based on block-ciphers (modes of
operation) provably secure modeling block-cipher as PRP

One pass: IAPM, OCB, ... [patented]

Two pass: CCM, GCM, SIV, ... [included in NIST standards]

Authenticated Encryption
Doing encryption + authentication better

Generic composition: encrypt, then MAC

Needs two keys and two passes

AE aims to do this more efficiently

Several constructions based on block-ciphers (modes of
operation) provably secure modeling block-cipher as PRP

One pass: IAPM, OCB, ... [patented]

Two pass: CCM, GCM, SIV, ... [included in NIST standards]

AE with Associated Data: Allows unencrypted (but
authenticated) parts of the plaintext, for headers etc.

SKE today

SKE today
SKE in IPsec, TLS etc. mainly based on AES block-ciphers

SKE today
SKE in IPsec, TLS etc. mainly based on AES block-ciphers

AES-128, AES-192, AES-256

SKE today
SKE in IPsec, TLS etc. mainly based on AES block-ciphers

AES-128, AES-192, AES-256

Recommended: AES Counter-mode + CMAC (or HMAC)

SKE today
SKE in IPsec, TLS etc. mainly based on AES block-ciphers

AES-128, AES-192, AES-256

Recommended: AES Counter-mode + CMAC (or HMAC)

Gives CCA security, and provides authentication

SKE today
SKE in IPsec, TLS etc. mainly based on AES block-ciphers

AES-128, AES-192, AES-256

Recommended: AES Counter-mode + CMAC (or HMAC)

Gives CCA security, and provides authentication

Older components/modes still in use

SKE today
SKE in IPsec, TLS etc. mainly based on AES block-ciphers

AES-128, AES-192, AES-256

Recommended: AES Counter-mode + CMAC (or HMAC)

Gives CCA security, and provides authentication

Older components/modes still in use

Supported by many standards for legacy purposes

SKE today
SKE in IPsec, TLS etc. mainly based on AES block-ciphers

AES-128, AES-192, AES-256

Recommended: AES Counter-mode + CMAC (or HMAC)

Gives CCA security, and provides authentication

Older components/modes still in use

Supported by many standards for legacy purposes

In many applications (sometimes with modifications)

SKE today
SKE in IPsec, TLS etc. mainly based on AES block-ciphers

AES-128, AES-192, AES-256

Recommended: AES Counter-mode + CMAC (or HMAC)

Gives CCA security, and provides authentication

Older components/modes still in use

Supported by many standards for legacy purposes

In many applications (sometimes with modifications)

e.g. RC4 in BitTorrent, Skype, PDF

