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Active Adversary

An active adversary can inject messages into the channel

Eve can send ciphertexts to Bob and get them decrypted

Chosen Ciphertext Attack (CCA)

If Bob decrypts all ciphertexts for Eve, no security 
possible

What can Bob do?
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secure if: 

∀    

∃      s.t.

∀      


Key/
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Key/
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Env

Send Recv

Env
REAL

IDEAL

Replay 
Filter

SIM-CCA Security
Symmetric-Key Encryption

REAL ≈ IDEAL

Invalid ciphertexts 
are silently ignored



Experiment picks b←{0,1} and K←KeyGen


For as long as Adversary wants


Adv sends two messages m0, m1      
to the experiment


Expt returns Enc(mb,K) to the 
adversary


Adversary returns a guess b’


Experiments outputs 1 iff b’=b


IND-CCA secure if for all feasible 
adversaries  Pr[b’=b] ≈ 1/2

b

Key/
Enc

b←{0,1}

b’=b?

m0,m1

mb

b’

Yes/No

Adv gets (guarded) access to DecK oracle
Enc(mb,K)

Key/
Dec

Replay Filter: 
No challenge 
ciphertext 
answered

IND-CCA Security
Symmetric-Key EncryptionIND-CCA + 

~correctness 

equivalent to 

SIM-CCA
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CCA Security
How to obtain CCA security?

Use a CPA-secure encryption scheme, but make sure Bob 
“accepts” and decrypts only ciphertexts produced by Alice

i.e., Eve can’t create new ciphertexts that will be 
accepted by Bob

Achieves the stronger guarantee: in IDEAL, Eve can’t 
send its own messages to Bob

CCA secure SKE reduces to the problem of CPA secure SKE 
and (shared key) message authentication

MAC: Message Authentication Code 
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Message Authentication 
Codes

A single short key shared by Alice and Bob

Can sign any (polynomial) number of 
messages

A triple (KeyGen, MAC, Verify)

Correctness: For all K from KeyGen, and all 
messages M, VerifyK(M,MACK(M))=1

Security: probability that an adversary can 
produce (M,s) s.t. VerifyK(M,s)=1 is negligible 
unless Alice produced an output s=MACK(M) 

Mi

si = 

MACK(Mi)

(M,s)

VerK(M,s)

Advantage 

  = Pr[ VerK(M,s)=1 and 

        (M,s) ∉ {(Mi,si)} ]

MACK VerK



CCA Secure SKE



CCA Secure SKE

CCA-EncK1,K2(m) = ( c:= CPA-EncK1(m), t:= MACK2(c) )



CCA Secure SKE

CCA-EncK1,K2(m) = ( c:= CPA-EncK1(m), t:= MACK2(c) )

CPA secure encryption: Block-cipher/CTR mode construction



CCA Secure SKE

CCA-EncK1,K2(m) = ( c:= CPA-EncK1(m), t:= MACK2(c) )

CPA secure encryption: Block-cipher/CTR mode construction

MAC: from a PRF or Block-Cipher (next time)



CCA Secure SKE

CCA-EncK1,K2(m) = ( c:= CPA-EncK1(m), t:= MACK2(c) )

CPA secure encryption: Block-cipher/CTR mode construction

MAC: from a PRF or Block-Cipher (next time)

SKE in practice entirely based on Block-Ciphers (next time)



CCA Secure SKE

CCA-EncK1,K2(m) = ( c:= CPA-EncK1(m), t:= MACK2(c) )

CPA secure encryption: Block-cipher/CTR mode construction

MAC: from a PRF or Block-Cipher (next time)

SKE in practice entirely based on Block-Ciphers (next time)

In principle, PRFs can be constructed (less efficiently) based 
on any One-Way Permutation or even any One-Way Function
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To sign a single n bit message

A simple (but inefficient) scheme

Shared secret key: 2n random 

strings (each k-bit long) (ri
0,ri

1)i=1..n

Signature for m1...mn be (ri
mi)i=1..n

Negligible probability that Eve can produce 
a signature on m’≠m

Doesn’t require any computational restrictions on adversary!

More efficient one-time MACs exist (later)

r1
0 r2

0 r3
0

r1
1 r2

1 r3
1

One-time MAC

r1
0 r2

1 r3
0

010

MAC Ver
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(Multi-msg) MAC from PRF

PRF is a MAC!

MACK(M) := FK(M) where F is a PRF

VerK(M,S) := 1 iff S=FK(M)

Output length of FK should be big enough

If an adversary forges MAC with probability εMAC, 
then can break PRF with advantage O(εMAC — 2-m(k))
(m(k) being the output length of the PRF) [How?]

If random function R used as MAC, then 
probability of forgery, εMAC* = 2-m(k)

When Each Message is a Single Block

FK

M FK(M)

Recall: Advantage in 
breaking a PRF F = 
diff in prob test has 
of outputting 1, when 

given F vs. truly 
random R
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MAC for           
Multiple-Block Messages

What if message is longer than one block?

MAC’ing each block separately is not secure (unlike 
in the case of CPA secure encryption)

Eve can rearrange the blocks/drop some blocks

Could use a PRF that takes longer inputs

Can we use a PRF with a fixed block-length (i.e., a 
block cipher)?
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MAC for           
Multiple-Block Messages
A simple solution: “tie the blocks together”

Add to each block a random string r (same r for all blocks), 
total number of blocks, and a sequence number

Bi = (r, t, i, Mi)

MAC(M) = (r, (MAC(Bi))i=1..t)

r prevents mixing blocks from two messages, t prevents 
dropping blocks and i prevents rearranging

Inefficient! Tag length increases with message length
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CBC-MAC

PRF domain extension: Chaining the blocks

cf. CBC mode for encryption (which                        
is not a MAC!)

t-block messages, a single block tag

Can be shown to be secure

If restricted to t-block messages (i.e., same length)

Else attacks possible (by extending a previously 
signed message)

m1 m2 mt

FK FK FK

⊕ ⊕

T

...
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Patching CBC-MAC
Patching CBC MAC to handle message of any (polynomial) length 
but still producing a single block tag (secure if block-cipher is):

Derive K as FK’(t), where t is the number of blocks

Use first block to specify number of blocks

Important that first block is used: if last block, message 
extension attacks still possible

EMAC: Output not the last tag T, but FK’(T), where K’ is an 
independent key (after padding the message to an integral 
number of blocks). No need to know message length a priori.

CMAC: XOR last message block with a key (derived from the 
original key using the block-cipher). Also avoids padding when 
message is integral number of blocks.

Later: Hash-based HMAC used in TLS and IPSec

NIST Recommendation. 2005

IETF Standard. 1997
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Stream Ciphers

A key should be used for only a single stream

RC4, eSTREAM portfolio, ...

In practice, stream ciphers take a key and an “IV” (for 
initialization vector) as inputs

Heuristic goal: behave somewhat like a PRF (instead of a 
PRG) so that it can be used for multi-message encryption

But often breaks if used this way

NIST Standard: For multi-message encryption, use a block-
cipher in CTR mode

Also used to 
denote the random 
nonce chosen for 
encryption using a 
block-cipher
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Block Ciphers

DES, 3DES, Blowfish, AES, ...

Heuristic constructions

Permutations that can be inverted with the key

Speed (hardware/software) is of the essence

But should withstand known attacks

As a PRP (or at least, against key recovery)
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Let f: {0,1}m → {0,1}m be an arbitrary function
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f2

＋

Feistel Network

f1

＋

Building a permutation from a (block) function

Let f: {0,1}m → {0,1}m be an arbitrary function

Ff: {0,1}2m→{0,1}2m  defined as Ff(x,y) = ( y, x⊕f(y) )    

Ff is a permutation (Why?)

Can invert (How?)

Given functions f1,...,ft can build a t-layer Feistel 
network Ff1...ft

Still a permutation from {0,1}2m to {0,1}2m

Luby-Rackoff: A 3-layer Feistel network, in which 3 
PRFs with independent seeds are the 3 round 
functions, is a PRP. A 4-layer Feistel gives a strong 
PRP

Fewer layers do not suffice! [Exercise]
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With 4 layers (and 4 independent seeds), it is a strong 
PRP

3 layers do not suffice! [Exercise]

OWF/OWP ⇒ PRG ⇒ PRF ⇒ (strong) PRP, i.e., Block Cipher

OWF/OWP ⇒ PRG ⇒ PRF is too slow for standards
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DES uses a 16-layer Feistel network (and a few other steps)

The round functions are not PRFs, but ad hoc

“Confuse and diffuse”

Defined for fixed key/block lengths (56 bits and 64 bits);       
key is used to generate subkeys for round functions

DES’s key length too short

Can now mount brute force key-recovery attacks (e.g. using $10K 
hardware, running for under a week, in 2006; now, in under a 
day)

DES-X: extra keys to pad input and output

Triple DES: 3 successive applications of DES (or DES-1) with 3 keys

NIST Standard. 1976
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AES Block Cipher
Advanced Encryption Standard (AES)

AES-128, AES-192, AES-256 (3 key sizes; block size = 128 bits)

Very efficient in software implementations (unlike DES)

Uses “Substitute-and-Permute” instead of Feistel networks

Has some algebraic structure

Operations in a vector space over the field GF(28)

The algebraic structure may lead to “attacks”?

Some implementations may lead to side-channel attacks (e.g. 
cache-timing attacks)

No “simple” hardness assumption known to imply any sort of 
security for AES

NIST Standard. 2001



By Jeff Moser (http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html)

http://www.moserware.com/2009/09/stick-figure-guide-to-advanced.html
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Cryptanalysis
Attacking stream ciphers and block ciphers

Typically for key recovery

Brute force cryptanalysis, using specialized hardware

e.g. Attack on DES in 1998

Several other analytical techniques to speed up attacks

Sometimes “theoretical”: on weakened (“reduced round”) 
constructions, showing improvement over brute-force attack

Meet-in-the-middle, linear cryptanalysis, differential 
cryptanalysis, impossible differential cryptanalysis, 
boomerang attack, integral cryptanalysis, cube attack, ...
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Authenticated Encryption
Doing encryption + authentication better

Generic composition: encrypt, then MAC

Needs two keys and two passes

AE aims to do this more efficiently

Several constructions based on block-ciphers (modes of 
operation) provably secure modeling block-cipher as PRP

One pass: IAPM, OCB, ...  [patented]

Two pass: CCM, GCM, SIV, ... [included in NIST standards]

AE with Associated Data: Allows unencrypted (but 
authenticated) parts of the plaintext, for headers etc.
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SKE in IPsec, TLS etc. mainly based on AES block-ciphers

AES-128, AES-192, AES-256

Recommended: AES Counter-mode + CMAC (or HMAC)

Gives CCA security, and provides authentication

Older components/modes still in use

Supported by many standards for legacy purposes

In many applications (sometimes with modifications)

e.g. RC4 in BitTorrent, Skype, PDF


