Broadcast Encryption and Some Other Primitives

Lecture 24
Broadcast Encryption
Broadcast Encryption

 Encrypt to a subset of users in the system
Broadcast Encryption

- Encrypt to a subset of users in the system
- e.g., subscribers who haven’t been revoked
Broadcast Encryption

- Encrypt to a subset of users in the system

 - e.g., subscribers who haven’t been revoked

 - Subset **not known** at time of setup (when users get private keys)
Broadcast Encryption

- Encrypt to a subset of users in the system
 - e.g., subscribers who haven’t been revoked
- Subset not known at time of setup (when users get private keys)
- Trivial solution 1: encrypt to each user separately
Broadcast Encryption

- Encrypt to a subset of users in the system
 - e.g., subscribers who haven’t been revoked
 - Subset not known at time of setup (when users get private keys)
- Trivial solution 1: encrypt to each user separately
 - Size of ciphertext is proportional to the number of users
Broadcast Encryption

- Encrypt to a subset of users in the system
 - e.g., subscribers who haven’t been revoked
- Subset not known at time of setup (when users get private keys)
- Trivial solution 1: encrypt to each user separately
 - Size of ciphertext is proportional to the number of users
- Trivial solution 2: for each possible subset, use a different key
Broadcast Encryption

- Encrypt to a subset of users in the system
 - e.g., subscribers who haven’t been revoked
- Subset not known at time of setup (when users get private keys)
- Trivial solution 1: encrypt to each user separately
 - Size of ciphertext is proportional to the number of users
- Trivial solution 2: for each possible subset, use a different key
 - Size of private key for each user is exponential
Broadcast Encryption

- Encrypt to a subset of users in the system
 - e.g., subscribers who haven’t been revoked
- Subset not known at time of setup (when users get private keys)
- Trivial solution 1: encrypt to each user separately
 - Size of ciphertext is proportional to the number of users
- Trivial solution 2: for each possible subset, use a different key
 - Size of private key for each user is exponential
- Question: Can we do better?
Broadcast Encryption

- Encrypt to a subset of users in the system
 - e.g., subscribers who haven’t been revoked
- Subset not known at time of setup (when users get private keys)
- Trivial solution 1: encrypt to each user separately
 - Size of ciphertext is proportional to the number of users
- Trivial solution 2: for each possible subset, use a different key
 - Size of private key for each user is exponential
- Question: Can we do better?
 - c.f. (Ciphertext Policy) Attribute-Based Encryption: set of recipients decided dynamically
Broadcast Encryption
Broadcast Encryption

Typical scenario considered: set of all users large, set of revoked users small
Broadcast Encryption

- Typical scenario considered: set of all users large, set of revoked users small
- Size of private-keys can depend on the number of users
Broadcast Encryption

- Typical scenario considered: set of all users large, set of revoked users small
 - Size of private-keys can depend on the number of users
 - Size of ciphertext can depend on the number of revoked users
Broadcast Encryption

Typical scenario considered: set of all users large, set of revoked users small

- Size of private-keys can depend on the number of users
- Size of ciphertext can depend on the number of revoked users
- Only a privileged broadcaster need to be able to encrypt
Broadcast Encryption

- Typical scenario considered: set of all users large, set of revoked users small
 - Size of private-keys can depend on the number of users
 - Size of ciphertext can depend on the number of revoked users
 - Only a privileged broadcaster need to be able to encrypt

- Security: No PPT adversary that obtains keys for all revoked users should have a non-negligible advantage in an IND-CPA (or IND-CCA) game
Broadcast Encryption

- Typical scenario considered: set of all users large, set of revoked users small
 - Size of private-keys can depend on the number of users
 - Size of ciphertext can depend on the number of revoked users
 - Only a privileged broadcaster need to be able to encrypt

- Security: No PPT adversary that obtains keys for all revoked users should have a non-negligible advantage in an IND-CPA (or IND-CCA) game
 - Set of revoked users is determined first (static corruption), or adaptively based on the public parameters, encryptions, and keys of users revoked so far
Broadcast Encryption

Typical scenario considered: set of all users large, set of revoked users small

- Size of private-keys can depend on the number of users
- Size of ciphertext can depend on the number of revoked users
- Only a privileged broadcaster need to be able to encrypt

Security: No PPT adversary that obtains keys for all revoked users should have a non-negligible advantage in an IND-CPA (or IND-CCA) game

- Set of revoked users is determined first (static corruption), or adaptively based on the public parameters, encryptions, and keys of users revoked so far
- Note: revoked users collude
Using Subset Covers
Using Subset Covers

Subset-Cover approach [Naor-Naor-Lotspiech’01]
Using Subset Covers

- Subset-Cover approach [Naor-Naor-Lotspiech’01]
- Define subsets of the universe X_1, \ldots, X_m
Using Subset Covers

- Subset-Cover approach [Naor-Naor-Lotspiech’01]
 - Define subsets of the universe X_1,\ldots,X_m
 - For each X_j create a secret key K_j for a PRF and give it to all parties in X_j
Using Subset Covers

- Subset-Cover approach [Naor-Naor-Lotspiech’01]
 - Define subsets of the universe X_1, \ldots, X_m
 - For each X_j create a secret key K_j for a PRF and give it to all parties in X_j
 - PRF/Block-cipher to be used as a semantically secure (multi-message) symmetric-key encryption scheme
Using Subset Covers

Subset-Cover approach [Naor-Naor-Lotspiech’01]

- Define subsets of the universe X_1,\ldots,X_m
- For each X_j create a secret key K_j for a PRF and give it to all parties in X_j
 - PRF/Block-cipher to be used as a semantically secure (multi-message) symmetric-key encryption scheme
- To encrypt a message to a set S find subsets X_{j1},\ldots,X_{jt} which form a cover of S, and encrypt the message under each key K_{ji}. All ciphertexts are broadcast.
Using Subset Covers

- Subset-Cover approach [Naor-Naor-Lots piech’01]
 - Define subsets of the universe \(X_1, \ldots, X_m \)
 - For each \(X_j \) create a secret key \(K_j \) for a PRF and give it to all parties in \(X_j \)
 - PRF/Block-cipher to be used as a semantically secure (multi-message) symmetric-key encryption scheme
 - To encrypt a message to a set \(S \) find subsets \(X_{j1}, \ldots, X_{jt} \) which form a cover of \(S \), and encrypt the message under each key \(K_{ji} \). All ciphertexts are broadcast.
 - Can use “hybrid encryption”: encrypt a fresh key for a one-time encryption scheme (seed of a PRG), and use that key to encrypt the message
Using Subset Covers

Subset-Cover approach [Naor-Naor-Lotspiech’01]
Using Subset Covers

Subset-Cover approach [Naor-Naor-Lotspiech’01]

To encrypt a message to a set S find subsets X_{j_1}, \ldots, X_{j_t} whose union is S, and encrypt the message under each key K_{j_i}.
Using Subset Covers

Subset-Cover approach [Naor-Naor-Lotspiech’01]

To encrypt a message to a set S find subsets X_{j_1}, \ldots, X_{j_t} whose union is S, and encrypt the message under each key K_{ji}

Goal: design X_1, \ldots, X_m such that any set S can be obtained as the union of a few sets X_j
Using Subset Covers

Subset-Cover approach [Naor-Naor-Lotspiech’01]

To encrypt a message to a set S find subsets $X_{j1},...,X_{jt}$ whose union is S, and encrypt the message under each key K_{ji}

Goal: design $X_1,...,X_m$ such that any set S can be obtained as the union of a few sets X_j

While keeping the total number of sets X_j not too large
Using Subset Covers

- Subset-Cover approach [Naor-Naor-Lotspiech’01]

- To encrypt a message to a set S find subsets $X_{j1},...,X_{jt}$ whose union is S, and encrypt the message under each key K_{ji}

- Goal: design $X_1,...,X_m$ such that any set S can be obtained as the union of a few sets X_j

- While keeping the total number of sets X_j not too large

- Each user gets keys for each X_j that it belongs to
Using Subset Covers

Subset-Cover approach [Naor-Naor-Lotspiech’01]

- To encrypt a message to a set S find subsets $X_{j1},...,X_{jt}$ whose union is S, and encrypt the message under each key K_{ji}

- Goal: design $X_1,...,X_m$ such that any set S can be obtained as the union of a few sets X_j

- While keeping the total number of sets X_j not too large

 - Each user gets keys for each X_j that it belongs to

- Will settle for S such that it has at most r users revoked
Subtree Covers
Define a balanced binary tree with leaves corresponding to the set of users \{1,\ldots,n\}
Subtree Covers

- Define a balanced binary tree with leaves corresponding to the set of users \(\{1,\ldots, n\}\)

- For each node \(u\), define set \(X_u\) as the set of leaves of the subtree rooted at \(u\)
Subtree Covers

- Define a balanced binary tree with leaves corresponding to the set of users \{1, \ldots, n\}
- For each node \(u\), define set \(X_u\) as the set of leaves of the subtree rooted at \(u\)
- Can find \(O(r \log n)\) sets \(X_u\) that cover any set \(S\) with at most \(r\) missing (revoked) leaves [How?]
Define a balanced binary tree with leaves corresponding to the set of users \(\{1, \ldots, n\} \).

For each node \(u \), define set \(X_u \) as the set of leaves of the subtree rooted at \(u \).

Can find \(O(r \log n) \) sets \(X_u \) that cover any set \(S \) with at most \(r \) missing (revoked) leaves [How?]

Each user appears in \(O(\log n) \) sets.
Subtree-Difference Covers
Subtree-Difference

Covers

Define a balanced binary tree with leaves corresponding to the set of users \{1,\ldots,n\}.
Subtree-Difference Covers

Define a balanced binary tree with leaves corresponding to the set of users \{1,..,n\}

For each pair of nodes (u,v), with v being a descendent of u, define set X_{uv} as the set of leaves of the subtree rooted at u that are not in the subtree rooted at v.
Define a balanced binary tree with leaves corresponding to the set of users \{1,\ldots,n\}

For each pair of nodes \((u,v)\), with \(v\) being a descendent of \(u\), define set \(X_{uv}\) as the set of leaves of the subtree rooted at \(u\) that are not in the subtree rooted at \(v\)

Can find \(2r-1\) sets \(X_u\) that cover any set \(S\) with \(r\) missing (revoked) leaves [How?]
Subtree-Difference Covers

Define a balanced binary tree with leaves corresponding to the set of users \{1,\ldots,n\}

For each pair of nodes \((u,v)\), with \(v\) being a descendent of \(u\), define set \(X_{uv}\) as the set of leaves of the subtree rooted at \(u\) that are not in the subtree rooted at \(v\)

Can find \(2r-1\) sets \(X_u\) that cover any set \(S\) with \(r\) missing (revoked) leaves [How?]

Each user appears in \(O(n)\) sets
Subtree-Difference Covers

Define a balanced binary tree with leaves corresponding to the set of users \{1,..,n\}

For each pair of nodes \((u,v)\), with \(v\) being a descendent of \(u\), define set \(X_{uv}\) as the set of leaves of the subtree rooted at \(u\) that are not in the subtree rooted at \(v\)

Can find \(2r-1\) sets \(X_u\) that cover any set \(S\) with \(r\) missing (revoked) leaves [How?]

Each user appears in \(O(n)\) sets

- But can use PRG to derive keys so that each user hold only \(O(\log^2 n)\) different keys
Subtree-Difference Covers
Subtree-Difference Covers

Pick random meta-keys $M_{u,u}$ for each node, which is used to derive, for each v, the key K_{uv} for set X_{uv}.
Subtree-Difference Covers

Pick random meta-keys $M_{u,u}$ for each node, which is used to derive, for each v, the key K_{uv} for set X_{uv}

Derive keys recursively using a PRF (or a length-tripling PRG): $M_{u,v0} = F_{M_{u,v}}(0)$, $M_{u,v1} = F_{M_{u,v}}(1)$ and $K_{u,v} = F_{M_{u,v}}(2)$ (where $v0$ and $v1$ are the children of v)
Subtree-Difference

Covers

- Pick random meta-keys $M_{u,u}$ for each node, which is used to derive, for each v, the key K_{uv} for set X_{uv}

- Derive keys recursively using a PRF (or a length-tripling PRG):
 $M_{u,v0} = F_{M_{u,v}}(0)$, $M_{u,v1} = F_{M_{u,v}}(1)$ and $K_{u,v} = F_{M_{u,v}}(2)$ (where $v0$ and $v1$ are the children of v)

- Deliver to a party at leaf w, for each ancestor u, log n keys: for each node v' on the path $u-w$, let v be the sibling of v'; give $M_{u,v}$. $O(\log^2 n)$ keys in all for each party.
Subtree-Difference Covers

Pick random meta-keys $M_{u,v}$ for each node, which is used to derive, for each v, the key $K_{u,v}$ for set $X_{u,v}$

Derive keys recursively using a PRF (or a length-tripling PRG):
$M_{u,v0} = F_{M_{u,v}}(0)$, $M_{u,v1} = F_{M_{u,v}}(1)$ and $K_{u,v} = F_{M_{u,v}}(2)$ (where $v0$ and $v1$ are the children of v)

Deliver to a party at leaf w, for each ancestor u, log n keys: for each node v' on the path u-w, let v be the sibling of v'; give $M_{u,v}$. $O(\log^2 n)$ keys in all for each party.

If $X_{u,u'}$ covers a party at leaf w, it can derive $K_{u,u'}$: Let v be the highest ancestor of u' for which w is not a descendent (i.e., v's sibling is on the u-w path). Use $M_{u,v}$ to derive $K_{u,u'}$.
Using Secret-Sharing
Using Secret-Sharing

A secret-sharing based scheme [Naor-Pinkas’00]
Using Secret-Sharing

- A secret-sharing based scheme [Naor-Pinkas’00]
- One-time revocation scheme (using any CPA-secure encryption)
Using Secret-Sharing

- A secret-sharing based scheme [Naor-Pinkas’00]
- One-time revocation scheme (using any CPA-secure encryption)
 - Share a key K using an $(r+1)$ out of n secret-sharing.
 - Give the share K_i to user i
Using Secret-Sharing

- A secret-sharing based scheme [Naor-Pinkas’00]
- One-time revocation scheme (using any CPA-secure encryption)
 - Share a key K using an $(r+1)$ out of n secret-sharing. Give the share K_i to user i
 - To revoke a set of r users (including some dummy users, if necessary), broadcast their shares, and encrypt the message using the key K
Using Secret-Sharing

- A secret-sharing based scheme [Naor-Pinkas’00]
- One-time revocation scheme (using any CPA-secure encryption)
 - Share a key K using an $(r+1)$ out of n secret-sharing. Give the share K_i to user i
 - To revoke a set of r users (including some dummy users, if necessary), broadcast their shares, and encrypt the message using the key K
 - Only parties not in the revoked set can reconstruct K
Using Secret-Sharing

- A secret-sharing based scheme [Naor-Pinkas’00]
- One-time revocation scheme (using any CPA-secure encryption)
 - Share a key K using an $(r+1)$ out of n secret-sharing. Give the share K_i to user i
 - To revoke a set of r users (including some dummy users, if necessary), broadcast their shares, and encrypt the message using the key K
 - Only parties not in the revoked set can reconstruct K
- Many-times revocation scheme (secure under DDH)
Using Secret-Sharing

- A secret-sharing based scheme [Naor-Pinkas’00]
- One-time revocation scheme (using any CPA-secure encryption)
 - Share a key K using an $(r+1)$ out of n secret-sharing. Give the share K_i to user i
 - To revoke a set of r users (including some dummy users, if necessary), broadcast their shares, and encrypt the message using the key K
 - Only parties not in the revoked set can reconstruct K
- Many-times revocation scheme (secure under DDH)
 - Broadcast g^x, Mg^{Kx}, and $g^{K_i.x}$ for each i being revoked. Each non-revoked party can reconstruct g^{Kx} (but not K, or g^K)
Using Secret-Sharing

A secret-sharing based scheme [Naor-Pinkas’00]

One-time revocation scheme (using any CPA-secure encryption)

Share a key K using an $(r+1)$ out of n secret-sharing. Give the share K_i to user i

To revoke a set of r users (including some dummy users, if necessary), broadcast their shares, and encrypt the message using the key K

Only parties not in the revoked set can reconstruct K

Many-times revocation scheme (secure under DDH)

Broadcast g^x, Mg^{Kx}, and $g^{Ki.x}$ for each i being revoked. Each non-revoked party can reconstruct g^{Kx} (but not K, or g^K)

Ciphertext size proportional to the size of the set being revoked
Using Bilinear Pairings
Using Bilinear Pairings

A public-key scheme, with short ciphertexts, supporting arbitrary set sizes [Boneh-Gentry-Waters’05]
Using Bilinear Pairings

- A public-key scheme, with short ciphertexts, supporting arbitrary set sizes [Boneh-Gentry-Waters’05]
- Public parameters: $e(g,g)^z, u_1,...,u_n$ for n users
Using Bilinear Pairings

- A public-key scheme, with short ciphertexts, supporting arbitrary set sizes [Boneh-Gentry-Waters’05]

- Public parameters: $e(g,g)^z, u_1, ..., u_n$ for n users

- Secret Key for user i: $R_i := g^{r_i}, u_j^{r_i}$ for $j \neq i$, and $K_i := g^z u_i^{r_i}$
Using Bilinear Pairings

A public-key scheme, with short ciphertexts, supporting arbitrary set sizes [Boneh-Gentry-Waters’05]

- Public parameters: $e(g,g)^z$, $u_1,...,u_n$ for n users
- Secret Key for user i: $R_i := g^{r_i}$, $u_j^{r_i}$ for $j \neq i$, and $K_i := g^z u_i^{r_i}$
- Encrypt$_{PK,S}(M;x) := (g^x, M^{e(g,g)^{zx}}, H(S)^x)$ where S is the set of users allowed to decrypt, x is randomly chosen, and $H(S) := \prod_{j \in S} u_j$
Using Bilinear Pairings

- A public-key scheme, with short ciphertexts, supporting arbitrary set sizes [Boneh-Gentry-Waters’05]

- Public parameters: \(e(g,g)^z, u_1, ..., u_n \) for \(n \) users

- Secret Key for user \(i \): \(R_i := g^{r_i}, u_j^{r_i} \) for \(j \neq i \), and \(K_i := g^z u_i^{r_i} \)

- Encrypt\(_{PK,S}(M;x) := (g^x, M e(g,g)^{zx}, H(S)^x) \) where \(S \) is the set of users allowed to decrypt, \(x \) is randomly chosen, and \(H(S) := \prod_{j \in S} u_j \)

- Decryption (by \(i \in S \)): From \(e(g^x, \prod_{j \in S \setminus \{i\}} u_j^{r_i}) / e(R_i, H(S)^x) = e(g,u_i)^{-r_i \cdot x} \) and \(e(g^x,K_i) = e(g,g)^{zx} e(g,u_i)^{r_i \cdot x} \), get \(e(g,g)^{zx} \) and hence \(M \)
Using Bilinear Pairings

A public-key scheme, with short ciphertexts, supporting arbitrary set sizes [Boneh-Gentry-Waters’05]

Public parameters: \(e(g,g)^z, u_1, \ldots, u_n \) for \(n \) users

Secret Key for user \(i \): \(R_i := g^{r_i}, u_j^{r_i} \) for \(j \neq i \), and \(K_i := g^z u_i^{r_i} \)

Encrypt \(\text{PK, S}(M; x) := (g^x, M e(g,g)^{zx}, H(S)^x) \) where \(S \) is the set of users allowed to decrypt, \(x \) is randomly chosen, and \(H(S) := \prod_{j \in S} u_j \)

Decryption (by \(i \in S \)): From \(e(g^x, \prod_{j \in S \setminus \{i\}} u_j^{r_i}) / e(R_i, H(S)^x) = e(g, u_i)^{-r_i \cdot x} \) and \(e(g^x, K_i) = e(g, g)^{zx} e(g, u_i)^{r_i \cdot x} \), get \(e(g, g)^{zx} \) and hence \(M \)

Security relies on an indistinguishability assumption involving \(O(n) \) group elements (cf. DDH has 3 group elements)
Traitor Tracing
Traitor Tracing

A legitimate user (paid subscriber) may sell pirated devices/software for decryption
Traitor Tracing

- A legitimate user (paid subscriber) may sell pirated devices/software for decryption
- To detect such a user
Traitor Tracing

- A legitimate user (paid subscriber) may sell pirated devices/software for decryption
- To detect such a user
 - Using black-box access to the pirated device/code
A legitimate user (paid subscriber) may sell pirated devices/software for decryption.

To detect such a user:

Using black-box access to the pirated device/code.

Device may output only if message “interesting” (hence cannot trace if the device is interested only in a hard to guess subset of the message space).
Traitor Tracing

- A legitimate user (paid subscriber) may sell pirated devices/software for decryption.

- To detect such a user:
 - Using black-box access to the pirated device/code.
 - Device may output only if message “interesting” (hence cannot trace if the device is interested only in a hard to guess subset of the message space).

- Will assume stateless decoder.
Traitor Tracing

- A legitimate user (paid subscriber) may sell pirated devices/software for decryption

- To detect such a user
 - Using black-box access to the pirated device/code
 - Device may output only if message “interesting” (hence cannot trace if the device is interested only in a hard to guess subset of the message space)

- Will assume stateless decoder

- Can use “robust watermarks” to handle stateful decoders
Traitor Tracing

A legitimate user (paid subscriber) may sell pirated devices/software for decryption.

To detect such a user:
- Using black-box access to the pirated device/code.
- Device may output only if message “interesting” (hence cannot trace if the device is interested only in a hard to guess subset of the message space).

Will assume stateless decoder.
- Can use “robust watermarks” to handle stateful decoders.
- Useful for broadcast encryption, but also considered independently.
Traitor Tracing
Traitor Tracing

A proof-of-concept scheme (with a long ciphertext)
Traitor Tracing

A proof-of-concept scheme (with a long ciphertext)

\[\text{Encrypt}(M) = (E_{P_1}(M),...,E_{P_n}(M)) \]
Traitor Tracing

- A proof-of-concept scheme (with a long ciphertext)

- Encrypt(M) = (E_{PK1}(M),...,E_{PKn}(M))

- Trace^D: Feed D encryptions of the form (E_{PK1}(0),...,E_{PKi-1}(0), E_{PKi}(M), ... E_{PKn}(M)). Let p_i be the probability of D outputting M
A proof-of-concept scheme (with a long ciphertext)

Encrypt(M) = (E_{PK1}(M),...,E_{PKn}(M))

Trace^D: Feed D encryptions of the form (E_{PK1}(0),...,E_{PK_{i-1}}(0), E_{PK_i}(M), ... E_{PKn}(M)). Let p_i be the probability of D outputting M

Determine p_i empirically: relies on sampling “interesting” M
A proof-of-concept scheme (with a long ciphertext)

Encrypt(M) = (E_{PK_1}(M),...,E_{PK_n}(M))

TraceD: Feed D encryptions of the form (E_{PK_1}(0),...,E_{PK_{i-1}}(0),
E_{PK_i}(M), ... E_{PK_n}(M)). Let p_i be the probability of D outputting M

Determine p_i empirically: relies on sampling “interesting” M

If p_i - p_{i-1} is large for some i, implicate PK_i
Traitor Tracing

A proof-of-concept scheme (with a long ciphertext)

Encrypt(M) = (\(E_{PK_1}(M) \), ... , \(E_{PK_n}(M) \))

Trace\(^D\): Feed D encryptions of the form (\(E_{PK_1}(0) \), ... , \(E_{PK_{i-1}}(0) \), \(E_{PK_i}(M) \), ... \(E_{PK_n}(M) \)). Let \(p_i \) be the probability of D outputting M.

Determine \(p_i \) empirically: relies on sampling “interesting” M.

If \(p_i - p_{i-1} \) is large for some i, implicate PK\(i\).

Note: D may have multiple keys, and may check consistency of decryptions before outputting a message.
A proof-of-concept scheme (with a long ciphertext)

Encrypt(M) = (E_{PK1}(M),...,E_{PKn}(M))

Trace^D: Feed D encryptions of the form (E_{PK1}(0),...,E_{PKi-1}(0), E_{PKi}(M), ... E_{PKn}(M)). Let p_i be the probability of D outputting M

- Determine p_i empirically: relies on sampling “interesting” M
- If p_i - p_{i-1} is large for some i, implicate PK_i

Note: D may have multiple keys, and may check consistency of decryptions before outputting a message

Use with subset cover based broadcast encryption? Can be used for “subset tracing”, but not satisfactory if D decrypts only when, say, the subset that will be traced is large
Traitor Tracing
Traitor Tracing

Traitor tracing from “Set-hiding Broadcast Encryption” for intervals
Traitor Tracing

- Traitor tracing from "Set-hiding Broadcast Encryption" for intervals
- For intervals: Allows broadcasting to sets of the form \{i, i+1, ..., n\}
Traitor Tracing

Traitor tracing from “Set-hiding Broadcast Encryption” for intervals

- For intervals: Allows broadcasting to sets of the form \{i, i+1, ..., n\}

- Set to which the encryption is addressed is hidden (i.e., i is hidden), except as revealed by decrypting using the keys possessed by the adversary
Traitor Tracing

- Traitor tracing from “Set-hiding Broadcast Encryption” for intervals

- For intervals: Allows broadcasting to sets of the form \(\{i, i+1, \ldots, n\}\)

- Set to which the encryption is addressed is hidden (i.e., \(i\) is hidden), except as revealed by decrypting using the keys possessed by the adversary

- In particular, encryption to \(\{i, \ldots, n\}\) and \(\{i+1, \ldots, n\}\) distinguishable only if adversary gets key for user \(i\)
Traitor Tracing

- Traitor tracing from “Set-hiding Broadcast Encryption” for intervals

- For intervals: Allows broadcasting to sets of the form \{i,i+1,...,n\}

- Set to which the encryption is addressed is hidden (i.e., i is hidden), except as revealed by decrypting using the keys possessed by the adversary

- In particular, encryption to \{i,...,n\} and \{i+1,...,n\} distinguishable only if adversary gets key for user i

- In the traitor-tracing scheme, encryption will use the broadcast encryption with i=1 (i.e., for the entire set of users) and tracing algorithm will use encryptions to all intervals
Traitor Tracing

- Traitor tracing from “Set-hiding Broadcast Encryption” for intervals

- For intervals: Allows broadcasting to sets of the form \{i, i+1, ..., n\}

- Set to which the encryption is addressed is hidden (i.e., i is hidden), except as revealed by decrypting using the keys possessed by the adversary

- In particular, encryption to \{i, ..., n\} and \{i+1, ..., n\} distinguishable only if adversary gets key for user i

- In the traitor-tracing scheme, encryption will use the broadcast encryption with i=1 (i.e., for the entire set of users) and tracing algorithm will use encryptions to all intervals

- Scheme with \(O(\sqrt{n})\) ciphertext, using bilinear pairing [BSW’06]
Group Key Assignment
Group Key Assignment

A.k.a key distribution for dynamic conferences
Group Key Assignment

A.k.a a key distribution for dynamic conferences

A center distributes private information to each party (and possibly publishes additional public information)
Group Key Assignment

A.k.a key distribution for dynamic conferences

A center distributes private information to each party (and possibly publishes additional public information)

Each party should be able to derive the key for any group containing it, using its private information and public information alone
Group Key Assignment

- A.k.a key distribution for dynamic conferences
- A center distributes private information to each party (and possibly publishes additional public information)
- Each party should be able to derive the key for any group containing it, using its private information and public information alone
- Security requirement: a set of colluding parties outside a group should not be able to distinguish the key for the group from a random key
Group Key Assignment

A.k.a key distribution for dynamic conferences

A center distributes private information to each party (and possibly publishes additional public information)

Each party should be able to derive the key for any group containing it, using its private information and public information alone

Security requirement: a set of colluding parties outside a group should not be able to distinguish the key for the group from a random key

May impose an upperbound on the number of colluding parties
Group Key Assignment
Group Key Assignment

A perfectly secure scheme [Blundo et al. ‘92]
Group Key Assignment

- A perfectly secure scheme [Blundo et al. ‘92]

- Symmetric polynomial: \(P(x_1, \ldots, x_t) = P(x_{\pi(1)}, \ldots, x_{\pi(t)}) \) for any permutation \(\pi \)
Group Key Assignment

- A perfectly secure scheme [Blundo et al. ’92]

- Symmetric polynomial: \(P(x_1, \ldots, x_t) = P(x_{\pi(1)}, \ldots, x_{\pi(t)}) \) for any permutation \(\pi \)

 - i.e. \(a_{d_1 \ldots d_t} = a_{\pi(d_1) \ldots \pi(d_t)} \) for all \(\pi \), where \(a_{d_1 \ldots d_t} \) is the coefficient of \(x_1^{d_1}x_2^{d_2} \ldots x_t^{d_t} \)
Group Key Assignment

- A perfectly secure scheme [Blundo et al. ’92]

- Symmetric polynomial: \(P(x_1, \ldots, x_t) = P(x_{\pi(1)}, \ldots, x_{\pi(t)}) \) for any permutation \(\pi \)

 - i.e. \(a_{d_1 \ldots d_t} = a_{\pi(d_1) \ldots \pi(d_t)} \) for all \(\pi \), where \(a_{d_1 \ldots d_t} \) is the coefficient of \(x_1^{d_1} x_2^{d_2} \ldots x_t^{d_t} \)

- Key for the group \((j_1, \ldots, j_t) \) will be \(P(j_1, \ldots, j_t) \). Each user \(j \) will have the \((t-1)\)-variate polynomial \(f_i(x_1, \ldots, x_{t-1}) \) defined as \(P(x_1, \ldots, x_{t-1}, j) \)
A perfectly secure scheme [Blundo et al. ’92]

Symmetric polynomial: \(P(x_1, ..., x_t) = P(x_{\pi(1)}, ..., x_{\pi(t)}) \) for any permutation \(\pi \)

i.e. \(a_{d_1...d_t} = a_{\pi(d_1)...\pi(d_t)} \) for all \(\pi \), where \(a_{d_1...d_t} \) is the coefficient of \(x_1^{d_1}x_2^{d_2} ... x_t^{d_t} \)

Key for the group \((j_1, ..., j_t)\) will be \(P(j_1, ..., j_t) \). Each user \(j \) will have the \((t-1)\)-variate polynomial \(f_i(x_1, ..., x_{t-1}) \) defined as \(P(x_1, ..., x_{t-1}, j) \)

If \(P \) is a random symmetric polynomial of degree \(k \) in each variable, then the scheme is \(k \)-secure (i.e., for up to \(k \) users outside the group, the group key is perfectly random)
Group Key Agreement
Group Key Agreement

Recall 3-party extension of Diffie-Hellman key exchange [Joux’00]
Group Key Agreement

- Recall 3-party extension of Diffie-Hellman key exchange [Joux’00]
- Single round (of broadcasts), using bilinear pairings, under DBDH
Group Key Agreement

- Recall 3-party extension of Diffie-Hellman key exchange [Joux’00]
 - Single round (of broadcasts), using bilinear pairings, under DBDH
- How about larger groups?
Group Key Agreement

- Recall 3-party extension of Diffie-Hellman key exchange [Joux’00]
 - Single round (of broadcasts), using bilinear pairings, under DBDH
- How about larger groups?
 - 2-round, based on DDH [Burmester-Desmedt’94]
Group Key Agreement

- Recall 3-party extension of Diffie-Hellman key exchange [Joux’00]
 - Single round (of broadcasts), using bilinear pairings, under DBDH
- How about larger groups?
 - 2-round, based on DDH [Burmester-Desmedt’94]
 - Each player i chooses \(r_i \) and broadcasts \(z_i = g^{r_i} \)
Group Key Agreement

- Recall 3-party extension of Diffie-Hellman key exchange [Joux’00]
 - Single round (of broadcasts), using bilinear pairings, under DBDH

- How about larger groups?

- 2-round, based on DDH [Burmester-Desmedt’94]
 - Each player i chooses r_i and broadcasts $z_i = g^{r_i}$
 - Each player i broadcasts $X_i = (z_{i+1}/z_{i-1})^{r_i}$
Group Key Agreement

Recall 3-party extension of Diffie-Hellman key exchange [Joux’00]

Single round (of broadcasts), using bilinear pairings, under DBDH

How about larger groups?

2-round, based on DDH [Burmester-Desmedt’94]

Each player i chooses r_i and broadcasts $z_i = g^{r_i}$

Each player i broadcasts $X_i = (z_{i+1}/z_{i-1})^{r_i}$

Key $K_i = z_{i-1}^{n_{ri}} \cdot X_i^{n-1} \cdot X_{i+1}^{n-2} \ldots X_{i-3}^2 \cdot X_{i-2} = g^{r_1.r_2 + r_2.r_3 + \ldots + r_n.r_1}$
Group Key Agreement

- Recall 3-party extension of Diffie-Hellman key exchange [Joux’00]
 - Single round (of broadcasts), using bilinear pairings, under DBDH
- How about larger groups?
- 2-round, based on DDH [Burmester-Desmedt’94]
 - Each player i chooses r_i and broadcasts $z_i = g^{r_i}$
 - Each player i broadcasts $X_i = (z_{i+1}/z_{i-1})^{r_i}$
 - Key $K_i = z_{i-1}^{n.r_i} \cdot X_i^{n-1} \cdot X_{i+1}^{n-2} \cdots X_{i-3}^2 \cdot X_{i-2} = g^{r_1.r_2 + r_2.r_3 + \ldots + r_n.r_1}$
- Can convert to authenticated group key agreement [KY’03]
Today
Today

Broadcast encryption
Today

- Broadcast encryption
- Traitor Tracing
Today

- Broadcast encryption
- Traitor Tracing
- Group Key Assignment (a.k.a key distribution for dynamic conferences)
Today

Broadcast encryption

Traitor Tracing

Group Key Assignment (a.k.a. key distribution for dynamic conferences)

Group Key Agreement (a.k.a. group key exchange)