Searching on/Testing Encrypted Data

Lecture 23
Searchable Encryption
Searchable Encryption

A test key T_w that allows one to test if $\text{Dec}_{SK}(C) = w$
Searchable Encryption

- A test key T_w that allows one to test if $\text{Dec}_{SK}(C) = w$
- No other information about the message should be leaked
Searchable Encryption

- A test key T_w that allows one to test if $\text{Dec}_{SK}(C) = w$

- No other information about the message should be leaked

- w from a small dictionary of “keywords”
Searchable Encryption

- A test key T_w that allows one to test if $\text{Dec}_{SK}(C) = w$
- No other information about the message should be leaked
- w from a small dictionary of “keywords”

Public-Key Encryption with Keyword Search (PEKS)
Searchable Encryption

A test key T_w that allows one to test if $\text{Dec}_{SK}(C) = w$

- No other information about the message should be leaked
- w from a small dictionary of “keywords”

Public-Key Encryption with Keyword Search (PEKS)

- e.g. Application: delegating e-mail filtering
Searchable Encryption

- A test key T_w that allows one to test if $\text{Dec}_{SK}(C) = w$
- No other information about the message should be leaked
- w from a small dictionary of “keywords”

Public-Key Encryption with Keyword Search (PEKS)

- e.g. Application: delegating e-mail filtering

Sender attaches a list of (searchably) encrypted keywords to the (normally encrypted) mail. Receiver hands the mail-server test keys for keywords of its choice. Mail-server filters mails by checking for keywords and can forward them appropriately.
Searchable Encryption
Searchable Encryption

Components: $(PK, SK) \leftarrow \text{KeyGen}, T_w \leftarrow \text{TestKeyGen}(SK, w), Enc_{PK}(w), Dec_{SK}(C)$ and $Test_{T_w}(C)$
Searchable Encryption

Components: (PK, SK) ← KeyGen, Tw ← TestKeyGen(SK, w), EncPK(w), DecSK(C) and TestTw(C)

Correctness: For all (possibly adversarially chosen) words w, for C ← EncPK(w), we have DecSK(C) = w and TestTw(C) = 1. For any other (adversarially chosen) word w’, TestTw(C) = 0.
Searchable Encryption

Components: (PK, SK) ← KeyGen, \(T_w \leftarrow \text{TestKeyGen}(SK, w) \), Enc_{PK}(w), Dec_{SK}(C) and Test_{Tw}(C)

Correctness: For all (possibly adversarially chosen) words \(w \), for \(C \leftarrow \text{Enc}_{PK}(w) \), we have \(\text{Dec}_{SK}(C) = w \) and \(\text{Test}_{Tw}(C) = 1 \). For any other (adversarially chosen) word \(w' \), \(\text{Test}_{Tw}(C) = 0 \).

May require perfect or statistical correctness. Or, should hold w.h.p against computationally bounded environments choosing \(w, w' \) (after seeing PK, and for \(w' \), possibly after seeing \(C, T_w \) also).
Searchable Encryption

Components: \((PK, SK) \leftarrow \text{KeyGen}, T_w \leftarrow \text{TestKeyGen}(SK, w), \text{Enc}_{PK}(w), \text{Dec}_{SK}(C)\) and \(\text{Test}_{Tw}(C)\)

Correctness: For all (possibly adversarially chosen) words \(w\), for \(C \leftarrow \text{Enc}_{PK}(w)\), we have \(\text{Dec}_{SK}(C) = w\) and \(\text{Test}_{Tw}(C) = 1\). For any other (adversarially chosen) word \(w'\), \(\text{Test}_{Tw}(C) = 0\).

May require perfect or statistical correctness. Or, should hold \(w.h.p\) against computationally bounded environments choosing \(w, w'\) (after seeing \(PK\), and for \(w'\), possibly after seeing \(C, Tw\) also).

Secrecy: CPA or CCA security against adversary with oracle access to \(\text{TestKeyGen}(SK, .)\), as long as adversary doesn’t query \(w_0, w_1\)
Trivial Solution: using PKE
Trivial Solution: using PKE

If the dictionary is small, \((PK, SK) = \{(PK_w, SK_w) \mid w \text{ in dictionary}\}\)
Trivial Solution: using PKE

- If the dictionary is small, \((PK, SK) = \{(PK_w, SK_w) \mid w \text{ in dictionary}\}\)
- To encrypt a keyword (or, in fact, a list of keywords), \(Enc_{PK}(w) = \langle Enc_{PK_1}(0), ..., Enc_{PK_w}(1), ..., Enc_{PK_n}(0)\rangle\)
Trivial Solution: using PKE

If the dictionary is small, \((PK, SK) = \{ (PK_w, SK_w) \mid w \text{ in dictionary} \}\)

To encrypt a keyword (or, in fact, a list of keywords), \(Enc_{PK}(w) = \langle Enc_{PK_1}(0), \ldots, Enc_{PK_w}(1), \ldots, Enc_{PK_n}(0) \rangle\)

\(TestKeyGen(SK, w) = SK_w\)
Trivial Solution: using PKE

- If the dictionary is small, \((PK, SK) = \{ (PK_w, SK_w) \mid w \text{ in dictionary} \}\)

- To encrypt a keyword (or, in fact, a list of keywords), \(Enc_{PK}(w) = \langle Enc_{PK_1}(0), \ldots, Enc_{PK_w}(1), \ldots, Enc_{PK_n}(0) \rangle\)

- \(TestKeyGen(SK, w) = SK_w\)

- Keys and ciphertexts proportional to the dictionary size
Trivial Solution: using IBE
Trivial Solution: using IBE

Derive (PK_w, SK_w) as keys in an IBE scheme for identity w
Trivial Solution: using IBE

- Derive $\mathbf{(PK_w, SK_w)}$ as keys in an IBE scheme for identity w
- $(PK, SK) = (MPK, MSK)$ (master keys) for the IBE
Trivial Solution: using IBE

Derive \((PK_w, SK_w)\) as keys in an IBE scheme for identity \(w\)

\((PK, SK) = (MPK, MSK)\) (master keys) for the IBE

To encrypt a keyword (or, in fact, a list of keywords),
\[\text{Enc}_{PK}(w) = \langle \text{IBEnc}_{PK}(0; id=0), \ldots, \text{IBEnc}_{PK}(1; id=w), \ldots, \text{IBEnc}_{PK}(0; id=n)\rangle\]
Derive \((PK_w, SK_w)\) as keys in an IBE scheme for identity \(w\)

\((PK, SK) = (MPK, MSK)\) (master keys) for the IBE

To encrypt a keyword (or, in fact, a list of keywords), \(Enc_{PK}(w) = <IBEnc_{PK}(0;id=0), ..., IBEnc_{PK}(1;id=w), ..., IBEnc_{PK}(0;id=n)>\)

\(TestKeyGen(SK,w) = SK_w\), the secret-key for \(id=w\)
Trivial Solution: using IBE

- Derive \((PK_w, SK_w)\) as keys in an IBE scheme for identity \(w\)

- \((PK, SK) = (MPK, MSK)\) (master keys) for the IBE

- To encrypt a keyword (or, in fact, a list of keywords), \(Enc_{PK}(w) = <IBEnc_{PK}(0; id=0), ..., IBEnc_{PK}(1; id=w), ..., IBEnc_{PK}(0; id=n)>\)

- \(TestKeyGen(SK, w) = SK_w\), the secret-key for \(id=w\)

- Compact keys, but ciphertext is still long
PEKS from Anonymous IBE
PEKS from Anonymous IBE

Suppose, to encrypt a keyword $\text{Enc}_{PK}(w) = \text{IBE}_{\text{Enc}}_{PK}(1; id=w)$
PEKS from Anonymous IBE

Suppose, to encrypt a keyword $\text{Enc}_{PK}(w) = \text{IBE}\text{nc}_{PK}(1; id=w)$

Secure?
PEKS from Anonymous IBE

Suppose, to encrypt a keyword $\text{Enc}_{PK}(w) = \text{IBEnc}_{PK}(1;id=w)$

Secure?

IBE ciphertexts may reveal id (can have the id in the clear)
Suppose, to encrypt a keyword $Enc_{PK}(w) = \text{IBE}Enc_{PK}(1;id=w)$

Secure?

IBE ciphertexts may reveal id (can have the id in the clear)

Anonymous IBE
Suppose, to encrypt a keyword $\text{Enc}_{\text{PK}}(w) = \text{IBEnc}_{\text{PK}}(1; \text{id}=w)$

Secure?

IBE ciphertexts may reveal id (can have the id in the clear)

Anonymous IBE

Ciphertext does not reveal id used, unless has key for that id
PEKS from Anonymous IBE

- Suppose, to encrypt a keyword $\text{Enc}_{PK}(w) = \text{IBEEnc}_{PK}(1; id=w)$

 - Secure?

 - IBE ciphertexts may reveal id (can have the id in the clear)

- Anonymous IBE

 - Ciphertext does not reveal id used, unless has key for that id

 - cf. Anonymous (or key-private) encryption: ciphertext does not reveal the PK used for encryption (unless SK known)
PEKS from Anonymous IBE

Suppose, to encrypt a keyword $\text{Enc}_{\text{PK}}(w) = \text{IBEnc}_{\text{PK}}(1; \text{id}=w)$

Secure?

IBE ciphertexts may reveal id (can have the id in the clear)

Anonymous IBE

Ciphertext does not reveal id used, unless has key for that id

cf. Anonymous (or key-private) encryption: ciphertext does not reveal the PK used for encryption (unless SK known)

Consistency issue: IBE makes no guarantees about what the output is when decrypted using a wrong id’s key (except that it reveals nothing about the correct plaintext)
PEKS from Anonymous IBE
PEKS from Anonymous IBE

Consistency issue: IBE makes no guarantees about what the output is when decrypted using a wrong id’s key (except that it reveals nothing about the correct plaintext)
PEKS from Anonymous IBE

Consistency issue: IBE makes no guarantees about what the output is when decrypted using a wrong id’s key (except that it reveals nothing about the correct plaintext)

To encrypt a keyword, $\text{Enc}_{PK}(w) = (\text{IBE} \text{Enc}_{PK}(r;\text{id}=w), r)$ for a random message r ($|r|=k$)
PEKS from Anonymous IBE

Consistency issue: IBE makes no guarantees about what the output is when decrypted using a wrong id’s key (except that it reveals nothing about the correct plaintext)

To encrypt a keyword, $\text{Enc}_{PK}(w) = (\text{IBEnc}_{PK}(r;id=w), r)$ for a random message r ($|r|=k$)

If decrypting $\text{IBEnc}_{PK}(r;id=w)$, for a random r, using a wrong id’s key gives r with significant probability, then breaks IBE security
PEKS from Anonymous IBE

Consistency issue: IBE makes no guarantees about what the output is when decrypted using a wrong id’s key (except that it reveals nothing about the correct plaintext)

To encrypt a keyword, $\text{Enc}_{PK}(w) = (\text{IBEnc}_{PK}(r;id=w), r)$ for a random message r ($|r|=k$)

If decrypting $\text{IBEnc}_{PK}(r;id=w)$, for a random r, using a wrong id’s key gives r with significant probability, then breaks IBE security

Breaking IBE’s security: give out r_0,r_1; decrypt challenge using the wrong id’s key; probability of getting r_0 when encryption is of r_1 is 2^{-k}, but is significant when it is of r_0
PEKS from Anonymous IBE

- Consistency issue: IBE makes no guarantees about what the output is when decrypted using a wrong id's key (except that it reveals nothing about the correct plaintext)

- To encrypt a keyword, $\text{Enc}_{PK}(w) = (\text{IBE}\text{Enc}_{PK}(r;id=w), r)$ for a random message r ($|r|=k$)

- If decrypting $\text{IBE}\text{Enc}_{PK}(r;id=w)$, for a random r, using a wrong id's key gives r with significant probability, then breaks IBE security

- Breaking IBE's security: give out r_0, r_1; decrypt challenge using the wrong id's key; probability of getting r_0 when encryption is of r_1 is 2^{-k}, but is significant when it is of r_0

- Or add such “decryption recognition” directly to Anonymous IBE
Predicate Encryption
Predicate Encryption

Test for properties of encrypted attributes
Predicate Encryption

Test for properties of encrypted attributes

For $C \leftarrow \text{Enc}_{PK}(a)$, we require that boolean $\text{Test}_{Tp}(C) = 1$ iff $P(a) = 1$
Predicate Encryption

Test for properties of encrypted attributes

For $C \leftarrow \text{Enc}_{PK}(a)$, we require that boolean $\text{Test}_{TP}(C) = 1$ iff $P(a) = 1$
Predicate Encryption

- Test for properties of encrypted attributes
- For $C \leftarrow \text{Enc}_{\text{PK}}(a)$, we require that boolean $\text{Test}_{T_P}(C)=1$ iff $P(a)=1$
 - Or $\text{Test}_{T_P}(C) = P(a)$, for a function P (e.g. $P(a,m)=m$ if $P'(a)=1$, else ⊥)

T_P is the key to test for property P
Predicate Encryption

- Test for properties of encrypted attributes
 - For $C \leftarrow \text{Enc}_{PK}(a)$, we require that boolean $\text{Test}_{T_P}(C)=1$ iff $P(a)=1$
 - Or $\text{Test}_{T_P}(C) = P(a)$, for a function P (e.g. $P(a,m)=m$ if $P'(a)=1$, else ⊥)
 - P from a certain predicate family will be supported

T_P is the key to test for property P
Predicate Encryption

- Test for properties of encrypted attributes

For $C \leftarrow \text{Enc}_{PK}(a)$, we require that boolean $\text{Test}_{Tp}(C) = 1$ iff $P(a) = 1$

- Or $\text{Test}_{Tp}(C) = P(a)$, for a function P (e.g. $P(a, m) = m$ if $P'(a) = 1$, else ⊥)

P from a certain predicate family will be supported

- e.g. P that checks for equality ($a = w$?) (i.e., PEKS), or for range ($a \in [r, s]$?) or membership in a list ($a \in S$?)

T_p is the key to test for property P
Predicate Encryption

Test for properties of encrypted attributes

For \(C \leftarrow \text{Enc}_{PK}(a) \), we require that boolean \(\text{Test}_{TP}(C) = 1 \) iff \(P(a) = 1 \)

Or \(\text{Test}_{TP}(C) = P(a) \), for a function \(P \) (e.g. \(P(a,m) = m \) if \(P'(a) = 1 \), else \(\bot \))

\(P \) from a certain predicate family will be supported

e.g. \(P \) that checks for equality \((a=w?) \) (i.e., PEKS), or for range \((a \in [r,s]?) \) or membership in a list \((a \in S?) \)

Trivial solution, when the predicate family is small

\(TP \) is the key to test for property \(P \)
Predicate Encryption

- Test for properties of encrypted attributes
 - For $C \leftarrow \text{Enc}_{PK}(a)$, we require that boolean $\text{Test}_{Tp}(C) = 1$ iff $P(a) = 1$
 - Or $\text{Test}_{Tp}(C) = P(a)$, for a function P (e.g. $P(a,m) = m$ if $P'(a) = 1$, else ⊥)

- P from a certain predicate family will be supported
 - e.g. P that checks for equality ($a = w?$) (i.e., PEKS), or for range ($a \in [r,s]?$) or membership in a list ($a \in S?$)

- Trivial solution, when the predicate family is small
 - $(PK, SK) = \{(PK_P, SK_P) \mid P \text{ in the predicate family}\}$. Ciphertext has $\text{Enc}_{PK_p}(P(a))$ for each P.

 T_P is the key to test for property P
Predicate Encryption

Test for properties of encrypted attributes

For $C \leftarrow \text{Enc}_{PK}(a)$, we require that boolean $\text{Test}_{Tp}(C) = 1$ iff $P(a) = 1$

Or $\text{Test}_{Tp}(C) = P(a)$, for a function P (e.g. $P(a, m) = m$ if $P'(a) = 1$, else \perp)

P from a certain predicate family will be supported

e.g. P that checks for equality ($a=w?$) (i.e., PEKS), or for range ($a \in [r, s]?$) or membership in a list ($a \in S?$)

Trivial solution, when the predicate family is small

$(PK, SK) = \{(PK_P, SK_P) \mid P \text{ in the predicate family}\}$. Ciphertext has $\text{Enc}_{PK_p}(P(a))$ for each P.

Can support functions instead of predicates
Predicate Encryption

Test for properties of encrypted attributes

For $C \leftarrow \text{Enc}_{PK}(a)$, we require that boolean $\text{Test}_{T_P}(C) = 1$ iff $P(a) = 1$

Or $\text{Test}_{T_P}(C) = P(a)$, for a function P (e.g. $P(a,m) = m$ if $P'(a) = 1$, else \perp)

P from a certain predicate family will be supported

e.g. P that checks for equality ($a = w\,?$) (i.e., PEKS), or for range ($a \in [r,s]\,?$) or membership in a list ($a \in S\,?$)

Trivial solution, when the predicate family is small

$(PK,SK) = \{(PK_P,SK_P) \mid P \text{ in the predicate family}\}$. Ciphertext has $\text{Enc}_{PK_P}(P(a))$ for each P.

Can support functions instead of predicates

e.g. Can attach a message to be revealed if Test positive
Predicate Encryption

Test for properties of encrypted attributes

For \(C \leftarrow \text{Enc}_{PK}(a) \), we require that boolean \(\text{Test}_{T_P}(C) = 1 \) iff \(P(a) = 1 \)

Or \(\text{Test}_{T_P}(C) = P(a) \), for a function \(P \) (e.g. \(P(a,m) = m \) if \(P'(a) = 1 \), else \(\bot \))

\(P \) from a certain predicate family will be supported

e.g. \(P \) that checks for equality \((a=w?) \) (i.e., PEKS), or for range \((a \in [r,s]?) \) or membership in a list \((a \in S?) \)

Trivial solution, when the predicate family is small

\((PK,SK) = \{(PK_P,SK_P) \mid P \text{ in the predicate family}\} \). Ciphertext has \(\text{Enc}_{PK_P}(P(a)) \) for each \(P \).

Can support functions instead of predicates

e.g. Can attach a message to be revealed if Test positive

Can use IBE to shorten keys. Ciphertext still too long.
Predicate Encryption
Predicate Encryption

Comparison predicates (given Enc(a), for \(a \in [1, n] \), check if \(a \geq q \))
Predicate Encryption

- Comparison predicates (given $\text{Enc}(a)$, for $a \in [1,n]$, check if $a \geq q$)
- Can use a “set-hiding” broadcast encryption for intervals
Predicate Encryption

- Comparison predicates (given $\text{Enc}(a)$, for $a \in [1,n]$, check if $a \geq q$)
- Can use a “set-hiding” broadcast encryption for intervals
- Will see in next lecture
Predicate Encryption

- Comparison predicates (given $\text{Enc}(a)$, for $a \in [1,n]$, check if $a \geq q$)
- Can use a “set-hiding” broadcast encryption for intervals
 - Will see in next lecture
 - Idea: create ciphertexts that can be decrypted by keys in a range. To encrypt a, encrypt a random message addressed to the range $[a,n]$. Test key is the key for index q.

Predicate Encryption

- Comparison predicates (given $\text{Enc}(a)$, for $a \in [1,n]$, check if $a \geq q$)
- Can use a "set-hiding" broadcast encryption for intervals
 - Will see in next lecture
 - Idea: create ciphertexts that can be decrypted by keys in a range. To encrypt a, encrypt a random message addressed to the range $[a,n]$. Test key is the key for index q.
 - Extends to range checking
Conjunctive Predicates
Conjunctive Predicates

Predicates of the form \((\phi_1(a_1) \text{ AND } \ldots \text{ AND } \phi_n(a_m))\)
Conjunctive Predicates

Predicates of the form \((\phi_1(a_1) \text{ AND } \ldots \text{ AND } \phi_n(a_m))\)

Should not reveal which clauses were not satisfied, if any
Conjunctive Predicates

Predicates of the form \((\phi_1(a_1) \text{ AND } \ldots \text{ AND } \phi_n(a_m))\)

- Should not reveal which clauses were not satisfied, if any
- e.g. in [BW07] \(\phi_i\) can be equality check \((a=w?)\), comparison \((a \geq q?)\), range check \((a \in [r,s]?)\) or membership in a list \((a \in S?)\)
Conjunctive Predicates

- Predicates of the form \((\phi_1(a_1) \, \text{AND} \ldots \text{AND} \, \phi_n(a_m))\)

- Should not reveal which clauses were not satisfied, if any

- e.g. in [BW07] \(\phi_i\) can be equality check \((a=w?)\), comparison \((a \geq q?)\), range check \((a \in [r,s]?)\) or membership in a list \((a \in S?)\)

- Tool: Hidden Vector matching, in which each \(\phi_i\) is an equality check or a don't care
Conjunctive Predicates

Predicates of the form \((\phi_1(a_1) \text{ AND } \ldots \text{ AND } \phi_n(a_m))\)

- Should not reveal which clauses were not satisfied, if any

- e.g. in [BW07] \(\phi_i\) can be equality check \((a=w?)\), comparison \((a \geq q?)\), range check \((a \in [r,s]?)\) or membership in a list \((a \in S?)\)

- Tool: Hidden Vector matching, in which each \(\phi_i\) is an equality check or a don’t care

- e.g. Using hidden vector matching to implement a conjunctive comparison predicate: for all \(i\), \(a_i \geq r_i\)
Predicates of the form \((\varphi_1(a_1) \text{ AND } ... \text{ AND } \varphi_n(a_m))\)

Should not reveal which clauses were not satisfied, if any

e.g. in [BW07] \(\varphi_i\) can be equality check \((a=w?)\), comparison \((a \geq q?)\), range check \((a \in [r,s]?)\) or membership in a list \((a \in S?)\)

Tool: Hidden Vector matching, in which each \(\varphi_i\) is an equality check or a don’t care

e.g. Using hidden vector matching to implement a conjunctive comparison predicate: for all \(i\), \(a_i \geq r_i\)

Check if binary \([X_{aij}]\) defined as \(X_{aij} = 1\) iff \(j \leq a_i\), matches with \([T_{rij}]\) defined as \(T_{rij} = 1\) if \(j \leq r_i\), and * otherwise
Conjunctive Predicates
Conjunctive Predicates

Using hidden vector matching for set membership: $a \in S \subseteq [1,n]$?
Conjunctive Predicates

Using hidden vector matching for set membership: \(a \in S \subseteq [1,n] \)?

Set membership is a disjunction of equalities: can be represented as (the negation of) a conjunction of inequalities.
Conjunctive Predicates

Using hidden vector matching for set membership: \(a \in S \subseteq [1,n] \)?

Set membership is a disjunction of equalities: can be represented as (the negation of) a conjunction of inequalities.

Check if binary vector \(X_a \) defined as \(X_{ai} = 1 \) iff \(a = i \), matches with \(T_S \) defined as \(T_{Si} = 0 \) if \(i \notin S \), and * otherwise.
Conjunctive Predicates

Using hidden vector matching for set membership: \(a \in S \subseteq [1,n] \)?

- Set membership is a disjunction of equalities: can be represented as (the negation of) a conjunction of inequalities

- Check if binary vector \(X^a \) defined as \(X^a_i = 1 \) iff \(a = i \), matches with \(T^S \) defined as \(T^S_i = 0 \) if \(i \not\in S \), and * otherwise

- Key and ciphertext proportional to size of universe \([1,n]\)
Conjunctive Predicates

- Using hidden vector matching for set membership: $a \in S \subseteq [1,n]$?

- Set membership is a disjunction of equalities: can be represented as (the negation of) a conjunction of inequalities

- Check if binary vector X^a defined as $X^a_i = 1$ iff $a=i$, matches with T^S defined as $T^S_i = 0$ if $i \notin S$, and * otherwise

- Key and ciphertext proportional to size of universe $[1,n]$

- Can extend to conjunction with other predicates
Conjunctive Predicates

- Using hidden vector matching for set membership: $a \in S \subseteq [1,n]$?

- Set membership is a disjunction of equalities: can be represented as (the negation of) a conjunction of inequalities

- Check if binary vector X^a defined as $X^a_i = 1$ iff $a=i$, matches with T^S defined as $T^S_i = 0$ if $i \notin S$, and * otherwise

- Key and ciphertext proportional to size of universe $[1,n]$

- Can extend to conjunction with other predicates

- More efficient set membership?
Bloom Filters
Bloom Filters

Elements x in the universe mapped to n-bit binary vectors $h(x)$
Bloom Filters

- Elements x in the universe mapped to n-bit binary vectors $h(x)$
- A subset S is represented by $H(S) = \bigvee_{x \in S} h(x)$ (i.e., bit-wise OR)
Bloom Filters

- Elements x in the universe mapped to n-bit binary vectors $h(x)$
- A subset S is represented by $H(S) = \lor_{x \in S} h(x)$ (i.e., bit-wise OR)
- Given $H(S)$, to check if $x \in S$, for each coordinate i s.t. $h(x)_i = 1$, check that $H(S)_i = 1$
Bloom Filters

- Elements x in the universe mapped to n-bit binary vectors $h(x)$
- A subset S is represented by $H(S) = \bigvee_{x \in S} h(x)$ (i.e., bit-wise OR)
- Given $H(S)$, to check if $x \in S$, for each coordinate i s.t $h(x)_i = 1$, check that $H(S)_i = 1$
- No false negatives
Bloom Filters

- Elements x in the universe mapped to n-bit binary vectors $h(x)$
- A subset S is represented by $H(S) = \bigvee_{x \in S} h(x)$ (i.e., bit-wise OR)
- Given $H(S)$, to check if $x \in S$, for each coordinate i s.t. $h(x)_i = 1$, check that $H(S)_i = 1$

- No false negatives

- False positive if all i s.t. $h(x)_i = 1$ are covered by $h(x')$ for a set of other values x'
Bloom Filters

- Elements x in the universe mapped to n-bit binary vectors $h(x)$
- A subset S is represented by $H(S) = \bigvee_{x \in S} h(x)$ (i.e., bit-wise OR)
- Given $H(S)$, to check if $x \in S$, for each coordinate i s.t $h(x)_i = 1$, check that $H(S)_i = 1$
- No false negatives
- False positive if all i s.t. $h(x)_i = 1$ are covered by $h(x')$ for a set of other values x'
 - If h is a random function with outputs of weight d, can bound the false positive rate in terms of n, d and $|S|$
Bloom Filters

- Elements x in the universe mapped to n-bit binary vectors $h(x)$
- A subset S is represented by $H(S) = \bigvee_{x \in S} h(x)$ (i.e., bit-wise OR)
- Given $H(S)$, to check if $x \in S$, for each coordinate i s.t $h(x)_i = 1$, check that $H(S)_i = 1$

- No false negatives

- False positive if all i s.t. $h(x)_i = 1$ are covered by $h(x')$ for a set of other values x'

- If h is a random function with outputs of weight d, can bound the false positive rate in terms of n, d and $|S|$

- Or h a CRHF with range being indices of a “cover free set system”
Set-Membership Predicate with Bloom Filters
Set-Membership Predicate with Bloom Filters

To check $a \in S \subseteq U$, where the universe U can be large
Set-Membership Predicate with Bloom Filters

To check $a \in S \subseteq U$, where the universe U can be large

Checking if $a \in S$ amounts to checking if the vector $h(a)$ is covered by $H(S)$
Set-Membership Predicate with Bloom Filters

- To check $a \in S \subseteq U$, where the universe U can be large

- Checking if $a \in S$ amounts to checking if the vector $h(a)$ is covered by $H(S)$

- Implemented using hidden vector matching
Set-Membership Predicate with Bloom Filters

To check $a \in S \subseteq U$, where the universe U can be large

Checking if $a \in S$ amounts to checking if the vector $h(a)$ is covered by $H(S)$

Implemented using hidden vector matching

S encrypted: T^a defined as: $T^a_i = 1$ if $h(a)_i = 1$, else *
Set-Membership Predicate with Bloom Filters

- To check \(a \in S \subseteq U \), where the universe \(U \) can be large.

- Checking if \(a \in S \) amounts to checking if the vector \(h(a) \) is covered by \(H(S) \).

- Implemented using hidden vector matching.

- \(S \) encrypted: \(T^a \) defined as: \(T^a_i = 1 \) if \(h(a)_i = 1 \), else *

- \(a \) encrypted: \(T^S \) defined as: \(T^S_i = 0 \) if \(H(S) = 0 \), else *
Inner-product Predicate
Attribute \(a \) is a vector. Predicate \(P_v \) is also specified by a vector \(v \): \(P_v(a) = 1 \) iff \(\langle v,a \rangle = 0 \)
Inner-product Predicate

 Attribute a is a vector. Predicate P_v is also specified by a vector v: $P_v(a) = 1$ iff $\langle v, a \rangle = 0$

 Or function P_v: $P_v(a,m) = m$ iff $\langle v, a \rangle = 0$, else \perp
Inner-product Predicate

- Attribute a is a vector. Predicate P_v is also specified by a vector v: $P_v(a) = 1$ iff $<v,a> = 0$

- Or function P_v: $P_v(a,m)=m$ iff $<v,a>=0$, else \perp

- General enough to capture several applications
Inner-product Predicate

Attribute \(a \) is a vector. Predicate \(P_v \) is also specified by a vector \(v \): \(P_v(a) = 1 \) iff \(\langle v, a \rangle = 0 \)

Or function \(P_v: P_v(a,m) = m \) iff \(\langle v, a \rangle = 0 \), else \(\bot \)

General enough to capture several applications

- e.g. Anonymous IBE from Inner-Product PE (with attached messages) over attributes in \(\mathbb{Z}_N \times \mathbb{Z}_N \)
Inner-product Predicate

- Attribute a is a vector. Predicate P_v is also specified by a vector v: $P_v(a) = 1$ iff $\langle v, a \rangle = 0$

- Or function P_v: $P_v(a,m)=m$ iff $\langle v, a \rangle=0$, else \perp

- General enough to capture several applications

- E.g. Anonymous IBE from Inner-Product PE (with attached messages) over attributes in $\mathbb{Z}_N \times \mathbb{Z}_N$

- For encrypting to identity id use attribute $a_{id} = (1, id)$. SK_{id} is the test key for predicate with $v_{id} = (-id, 1)$. Anonymity: attribute remains hidden if no matching SK given.
Inner-product Predicate
Inner-product Predicate

- Can be used to get Hidden Vector matching predicate
Inner-product Predicate

- Can be used to get Hidden Vector matching predicate
- Map a given pattern vector of length m to a vector v in $(\mathbb{Z}_N)^{2m}$ by mapping * to (0,0) and a to (1,a).
Inner-product Predicate

- Can be used to get Hidden Vector matching predicate

- Map a given pattern vector of length m to a vector v in \((\mathbb{Z}_N)^{2m}\) by mapping * to (0,0) and a to (1,a).

- Map the hidden attribute vector u to a vector a by mapping each co-ordinate \(u_i\) to \((-r_i.u_i, r_i)\), for random \(r_i\)
Inner-product Predicate

- Can be used to get Hidden Vector matching predicate

- Map a given pattern vector of length m to a vector v in $(\mathbb{Z}_N)^{2m}$ by mapping * to (0,0) and a to (1,a).

- Map the hidden attribute vector u to a vector a by mapping each co-ordinate u_i to $(-r_i \cdot u_i, r_i)$, for random r_i

- If pattern matches u, then $\langle v, a \rangle = 0$
Inner-product Predicate

- Can be used to get Hidden Vector matching predicate

- Map a given pattern vector of length m to a vector v in $(\mathbb{Z}_N)^{2m}$ by mapping * to (0,0) and a to (1,a).

- Map the hidden attribute vector u to a vector a by mapping each co-ordinate u_i to $(-r_i u_i, r_i)$, for random r_i

- If pattern matches u, then $<v,a>=0$

- Random r_i to avoid cancelations while summing, so that if pattern does not match, w.h.p $<v,a>\neq 0$
Inner-product Predicate

- Can be used to get Hidden Vector matching predicate

- Map a given pattern vector of length m to a vector v in \((\mathbb{Z}_N)^{2m}\) by mapping * to (0,0) and a to (1,a).

- Map the hidden attribute vector u to a vector a by mapping each co-ordinate \(u_i\) to \((-r_i.u_i, r_i)\), for random \(r_i\)

- If pattern matches u, then \(\langle v, a \rangle = 0\)

- Random \(r_i\) to avoid cancelations while summing, so that if pattern does not match, w.h.p \(\langle v, a \rangle \neq 0\)

- Can support * in both the pattern and the hidden vector
Inner-product Predicate
Inner-product Predicate

Other predicates implied:
Inner-product Predicate

Other predicates implied:

- Polynomials: \(P_v \) can be a polynomial (represented as a vector of co-efficients) and attribute a the value (represented as the vector \(<1,a,a^2,\ldots,a^d> \)) at which \(P_v \) is evaluated, or vice versa.
Inner-product Predicate

Other predicates implied:

Polynomials: \(P_v \) can be a polynomial (represented as a vector of co-efficients) and attribute a the value (represented as the vector \(<1,a,a^2,...,a^d> \)) at which \(P_v \) is evaluated, or vice versa.

Disjunction \((a_1=v_1) \) OR \((a_2=v_2) \): polynomial \((a_1-v_1) \) \((a_2-v_2) \)
Inner-product Predicate

Other predicates implied:

Polynomials: P_v can be a polynomial (represented as a vector of co-efficients) and attribute a the value (represented as the vector $<1,a,a^2,...,a^d>$) at which P_v is evaluated, or vice versa.

- Disjunction $(a_1=v_1) \text{ OR } (a_2=v_2)$: polynomial $(a_1-v_1)(a_2-v_2)$
- Conjunction $(a_1=v_1) \text{ AND } (a_2=v_2)$: $r_1(a_1-v_1) + r_2(a_2-v_2)$
Inner-product Predicate

Other predicates implied:

Polynomials: P_v can be a polynomial (represented as a vector of co-efficients) and attribute a the value (represented as the vector $<1,a,a^2,...,a^d>$) at which P_v is evaluated, or vice versa

- Disjunction $(a_1=v_1) \lor (a_2=v_2)$: polynomial $(a_1-v_1)(a_2-v_2)$

- Conjunction $(a_1=v_1) \land (a_2=v_2)$: $r_1(a_1-v_1) + r_2(a_2-v_2)$

Exact threshold: for $A, V \subseteq [1,n]$, $P_{V,t}(A) = 1$ iff $|A \cap V|=t$
Inner-product Predicate

Other predicates implied:

- Polynomials: P_v can be a polynomial (represented as a vector of co-efficients) and attribute a the value (represented as the vector $<1,a,a^2,\ldots,a^d>$) at which P_v is evaluated, or vice versa.

- Disjunction $(a_1=v_1) \text{ OR } (a_2=v_2)$: polynomial $(a_1-v_1) (a_2-v_2)$

- Conjunction $(a_1=v_1) \text{ AND } (a_2=v_2)$: $r_1(a_1-v_1) + r_2(a_2-v_2)$

- Exact threshold: for $A, V \subseteq [1,n]$, $P_{V,t}(A) = 1 \iff |A \cap V|=t$

- Map V to v as $v_0=1$ and for $i=1$ to n, $v_i = 1 \iff i \in V$. Map A to a vector a where $a_0 = -t$, for $i=1$ to n, $a_i = 1 \iff i \in A$.
Predicate/Functional Encryption
Predicate/Functional Encryption

- Constructions using bilinear pairings known [KSW08,LOSTW10,OT10]
Predicate/Functional Encryption

- Constructions using bilinear pairings known [KSW08,LOSTW10,OT10]
- Supports inner product predicates (and more)
Predicate/Functional Encryption

- Constructions using bilinear pairings known [KSW08,LOSTW10,OT10]
- Supports inner product predicates (and more)
- Can base security on Decision Linear assumption
Predicate/Functional Encryption

- Constructions using bilinear pairings known \([\text{KSW08,LOSTW10,OT10}]\)
- Supports inner product predicates (and more)
- Can base security on Decision Linear assumption
- Can get CCA security
Today
Today

🔍 Searching on Encrypted Data
Today

- Searching on Encrypted Data
 - To check if encrypted keyword matches a given keyword
Today

- Searching on Encrypted Data
 - To check if encrypted keyword matches a given keyword
 - From anonymous IBE
Today

- Searching on Encrypted Data
 - To check if encrypted keyword matches a given keyword
 - From anonymous IBE
- Predicate/Functional encryption
Today

- Searching on Encrypted Data
 - To check if encrypted keyword matches a given keyword
 - From anonymous IBE
- Predicate/Functional encryption
 - To check if encrypted attributes satisfy a given predicate
Today

- Searching on Encrypted Data
 - To check if encrypted keyword matches a given keyword
 - From anonymous IBE

- Predicate/Functional encryption
 - To check if encrypted attributes satisfy a given predicate
 - Hidden vector matching, inner-product predicate, ...