Pairing-Based Cryptography

 \&
Generic Groups

Lecture 22

Bilinear Pairing

Bilinear Pairing

- Two (or three) groups with an efficient pairing operation, $e: G \times G \rightarrow G_{T}$ that is "bilinear"

Bilinear Pairing

- Two (or three) groups with an efficient pairing operation, $e: G \times G \rightarrow G_{T}$ that is "bilinear"
- Typically, prime order (cyclic) groups

Bilinear Pairing

- Two (or three) groups with an efficient pairing operation, $e: G \times G \rightarrow G_{T}$ that is "bilinear"
- Typically, prime order (cyclic) groups
- $e\left(g^{a}, g^{b}\right)=e(g, g)^{a b}$

Bilinear Pairing

- Two (or three) groups with an efficient pairing operation, $e: G \times G \rightarrow G_{T}$ that is "bilinear"
- Typically, prime order (cyclic) groups
- $e\left(g^{a}, g^{b}\right)=e(g, g)^{a b}$
- Multiplication (once) in the exponent!

Bilinear Pairing

- Two (or three) groups with an efficient pairing operation, $e: G \times G \rightarrow G_{T}$ that is "bilinear"
- Typically, prime order (cyclic) groups
- $e\left(g^{a}, g^{b}\right)=e(g, g)^{a b}$
- Multiplication (once) in the exponent!

$$
\text { - } e\left(g^{a} g^{a^{\prime}}, g^{b}\right)=e\left(g^{a}, g^{b}\right) e\left(g^{a^{\prime}}, g^{b}\right) ; e\left(g^{a}, g^{b c}\right)=e\left(g^{a c}, g^{b}\right) ; \ldots
$$

Bilinear Pairing

- Two (or three) groups with an efficient pairing operation, e: $G \times G \rightarrow G_{T}$ that is "bilinear"
- Typically, prime order (cyclic) groups
- $e\left(g^{a}, g^{b}\right)=e(g, g)^{a b}$
- Multiplication (once) in the exponent!

$$
\text { - } e\left(g^{a} g^{a^{\prime}}, g^{b}\right)=e\left(g^{a}, g^{b}\right) e\left(g^{a^{\prime}}, g^{b}\right) ; e\left(g^{a}, g^{b c}\right)=e\left(g^{a c}, g^{b}\right) ; \ldots
$$

- Not degenerate: $e\left(g_{,}, g_{,}\right) \neq 1$

Bilinear Pairing

- Two (or three) groups with an efficient pairing operation, e: $G \times G \rightarrow G_{T}$ that is "bilinear"
- Typically, prime order (cyclic) groups
- $e\left(g^{a}, g^{b}\right)=e(g, g)^{a b}$
- Multiplication (once) in the exponent!

$$
\text { - } e\left(g^{a} g^{a^{\prime}}, g^{b}\right)=e\left(g^{a}, g^{b}\right) e\left(g^{a^{\prime}}, g^{b}\right) ; e\left(g^{a}, g^{b c}\right)=e\left(g^{a c}, g^{b}\right) ; \ldots
$$

- Not degenerate: $e\left(g_{2}, g_{,}\right) \neq 1$
- D-BDH Assumption: For random (a, b, c, z), the distributions of $\left(\mathrm{g}^{a}, \mathrm{~g}^{\mathrm{b}}, \mathrm{g}^{\mathrm{c}}, \mathrm{g}^{\mathrm{abc}}\right)$ and $\left(\mathrm{g}^{a}, \mathrm{~g}^{\mathrm{b}}, \mathrm{g}^{\mathrm{c}}, \mathrm{g}^{\mathrm{z}}\right)$ are indistinguishable

3-Party Key Exchange

3-Party Key Exchange

- A single round 3-party key-exchange protocol secure against passive eavesdroppers (under D-BDH assumption)

3-Party Key Exchange

- A single round 3-party key-exchange protocol secure against passive eavesdroppers (under D-BDH assumption)
- Generalizes Diffie-Hellman key-exchange

3-Party Key Exchange

- A single round 3-party key-exchange protocol secure against passive eavesdroppers (under D-BDH assumption)
- Generalizes Diffie-Hellman key-exchange
- Let e: $G \times G \rightarrow G_{T}$ be bilinear and g a generator of G

3-Party Key Exchange

- A single round 3-party key-exchange protocol secure against passive eavesdroppers (under D-BDH assumption)
- Generalizes Diffie-Hellman key-exchange
- Let e: $G \times G \rightarrow G_{T}$ be bilinear and g a generator of G
- Alice broadcasts g^{a}, Bob broadcasts $\mathrm{g}^{\text {b }}$, and Carol broadcasts $\mathrm{g}^{\text {c }}$

3-Party Key Exchange

- A single round 3-party key-exchange protocol secure against passive eavesdroppers (under D-BDH assumption)
- Generalizes Diffie-Hellman key-exchange
- Let e: $G \times G \rightarrow G_{T}$ be bilinear and g a generator of G
- Alice broadcasts g^{a}, Bob broadcasts $\mathrm{g}^{\text {b }}$, and Carol broadcasts $\mathrm{g}^{\text {c }}$
- Each party computes e(g,g) abc

3-Party Key Exchange

- A single round 3-party key-exchange protocol secure against passive eavesdroppers (under D-BDH assumption)
- Generalizes Diffie-Hellman key-exchange
- Let e: $G \times G \rightarrow G_{T}$ be bilinear and g a generator of G
- Alice broadcasts g^{a}, Bob broadcasts g^{b}, and Carol broadcasts $\mathrm{g}^{\text {c }}$
- Each party computes e(g,g) abc
- e.g. Alice computes $e(g, g)^{a b c}=e\left(g^{b}, g^{c}\right)^{a}$

3-Party Key Exchange

- A single round 3-party key-exchange protocol secure against passive eavesdroppers (under D-BDH assumption)
- Generalizes Diffie-Hellman key-exchange
- Let e: $G \times G \rightarrow G_{T}$ be bilinear and g a generator of G
- Alice broadcasts g^{a}, Bob broadcasts $\mathrm{g}^{\text {b }}$, and Carol broadcasts g^{c}
- Each party computes e(g,g) abc
- e.g. Alice computes $e(g, g)^{a b c}=e\left(g^{b}, g^{c}\right)^{a}$
- By D-BDH the key $e(g, g)^{a b c}=e\left(g, g^{a b c}\right)$ is pseudorandom given eavesdropper's view $\left(\mathrm{g}^{\mathrm{a}}, \mathrm{g}^{\mathrm{b}}, \mathrm{g}^{\mathrm{c}}\right)$

NIZK Proofs

NIZK Proofs

- Recall: ZK proofs to enforce honest behavior in a basic protocol (without compromising secrecy properties of the basic protocol)

NIZK Proofs

- Recall: ZK proofs to enforce honest behavior in a basic protocol (without compromising secrecy properties of the basic protocol)
- Non-interactive ZK, using a common random/reference string (CRS)

NIZK Proofs

- Recall: ZK proofs to enforce honest behavior in a basic protocol (without compromising secrecy properties of the basic protocol)
- Non-interactive ZK, using a common random/reference string (CRS)
- Can forge proofs or extract knowledge if a trapdoor for the CRS is available (used by the simulator)

NIZK Proofs

- Recall: ZK proofs to enforce honest behavior in a basic protocol (without compromising secrecy properties of the basic protocol)
- Non-interactive ZK, using a common random/reference string (CRS)
- Can forge proofs or extract knowledge if a trapdoor for the CRS is available (used by the simulator)
- NIZK useful in (non-interactive) public-key schemes

NIZK Proofs

- Recall: ZK proofs to enforce honest behavior in a basic protocol (without compromising secrecy properties of the basic protocol)
- Non-interactive ZK, using a common random/reference string (CRS)
- Can forge proofs or extract knowledge if a trapdoor for the CRS is available (used by the simulator)
- NIZK useful in (non-interactive) public-key schemes
- CRS can be part of the public key: when no security needed against the party generating CRS (e.g. signer of a message, receiver in an encryption scheme)

NIZK Proofs

- Recall: ZK proofs to enforce honest behavior in a basic protocol (without compromising secrecy properties of the basic protocol)
- Non-interactive ZK, using a common random/reference string (CRS)
- Can forge proofs or extract knowledge if a trapdoor for the CRS is available (used by the simulator)
- NIZK useful in (non-interactive) public-key schemes
- CRS can be part of the public key: when no security needed against the party generating CRS (e.g. signer of a message, receiver in an encryption scheme)
- Often "witness-indistinguishability" (NIWI or NIWI PoK) sufficient: can't distinguish proofs using different witnesses

NIZK Proofs

- Recall: ZK proofs to enforce honest behavior in a basic protocol (without compromising secrecy properties of the basic protocol)
- Non-interactive ZK, using a common random/reference string (CRS)
- Can forge proofs or extract knowledge if a trapdoor for the CRS is available (used by the simulator)
- NIZK useful in (non-interactive) public-key schemes
- CRS can be part of the public key: when no security needed against the party generating CRS (e.g. signer of a message, receiver in an encryption scheme)
- Often "witness-indistinguishability" (NIWI or NIWI PoK) sufficient: can't distinguish proofs using different witnesses
- Trivial if only one witness. Very useful when two kinds of witnesses

NIZK Proofs

NIZK Proofs

- NIZK proof/proof of knowledge systems exist for all "NP statements" (i.e., "there exists/I know a witness for the relation...") under fairly standard general assumptions

NIZK Proofs

- NIZK proof/proof of knowledge systems exist for all "NP statements" (i.e., "there exists/I know a witness for the relation...") under fairly standard general assumptions
- However, involves reduction to an NP-complete relation (e.g. graph Hamiltonicity) : considered impractical

NIZK Proofs

- NIZK proof/proof of knowledge systems exist for all "NP statements" (i.e., "there exists/I know a witness for the relation...") under fairly standard general assumptions
- However, involves reduction to an NP-complete relation (e.g. graph Hamiltonicity) : considered impractical
- Special purpose proof for statements that arise in specific schemes, under specific assumptions

NIZK Proofs

- NIZK proof/proof of knowledge systems exist for all "NP statements" (i.e., "there exists/I know a witness for the relation...") under fairly standard general assumptions
- However, involves reduction to an NP-complete relation (e.g. graph Hamiltonicity) : considered impractical
- Special purpose proof for statements that arise in specific schemes, under specific assumptions
- Much more efficient: no NP-completeness reductions

NIZK Proofs

- NIZK proof/proof of knowledge systems exist for all "NP statements" (i.e., "there exists/I know a witness for the relation...") under fairly standard general assumptions
- However, involves reduction to an NP-complete relation (e.g. graph Hamiltonicity) : considered impractical
- Special purpose proof for statements that arise in specific schemes, under specific assumptions
- Much more efficient: no NP-completeness reductions
- e.g. Chaum-Pedersen Honest-Verifier ZK PoK of discrete log

NIZK Proofs

- NIZK proof/proof of knowledge systems exist for all "NP statements" (i.e., "there exists/I know a witness for the relation...") under fairly standard general assumptions
- However, involves reduction to an NP-complete relation (e.g. graph Hamiltonicity) : considered impractical
- Special purpose proof for statements that arise in specific schemes, under specific assumptions
- Much more efficient: no NP-completeness reductions
- e.g. Chaum-Pedersen Honest-Verifier ZK PoK of discrete log
- May exploit similar assumptions as used in the basic scheme

A NIZK For Statements Involving Pairings

A NIZK For Statements Involving Pairings

- Groth-Sahai proofs (2008)

A NIZK For Statements Involving Pairings

- Groth-Sahai proofs (2008)
- Very useful in constructions using bilinear pairings

A NIZK For Statements Involving Pairings

- Groth-Sahai proofs (2008)
- Very useful in constructions using bilinear pairings
- Can get "perfect" witness-indistinguishability or zero-knowledge

A NIZK For Statements Involving Pairings

- Groth-Sahai proofs (2008)
- Very useful in constructions using bilinear pairings
- Can get "perfect" witness-indistinguishability or zero-knowledge
- Then, soundness will be under certain computational assumptions

A NIZK For Statements Involving Pairings

A NIZK For Statements Involving Pairings

- an e.g. statement

A NIZK For Statements Involving Pairings

- an e.g. statement
- I know $X, Y, Z \in G$ and integers u, v, w s.t.

A NIZK For Statements

Involving Pairings

- an e.g. statement
- I know $X, Y, Z \in G$ and integers u, v, w s.t.

$$
\text { - } e(X, A) \ldots e(X, Y)=1 \quad \text { (pairing product) }
$$

A NIZK For Statements Involving Pairings

- an e.g. statement
- I know $X, Y, Z \in G$ and integers u, v, w s.t.

$$
\begin{array}{ll}
\text { - } e(X, A) \ldots e(X, Y)=1 & \text { (pairing product) } \\
X^{a u} \ldots Z^{b v}=B & \text { (product) }
\end{array}
$$

A NIZK For Statements Involving Pairings

- an e.g. statement
- I know $X, Y, Z \in G$ and integers u, v, w s.t.

$$
\begin{array}{ll}
\text { - } e(X, A) \ldots e(X, Y)=1 & \text { (pairing product) } \\
X^{a u} \ldots Z^{b v}=B & \text { (product) } \\
a v+\ldots+b w=c &
\end{array}
$$

A NIZK For Statements

Involving Pairings

- an e.g. statement
- I know $X, Y, Z \in G$ and integers u, v, w s.t.

$$
\begin{aligned}
& \text { (} e(X, A) \ldots e(X, Y)=1 \\
& X^{a u} \ldots Z^{b v}=B \\
& a v+\ldots+b w=c
\end{aligned}
$$

- (where $A, B \in G$, integers a, b, c are known to both)

A NIZK For Statements Involving Pairings

- an e.g. statement
- I know $X, Y, Z \in G$ and integers u, v, w s.t.

$$
\begin{aligned}
& \text { (} e(X, A) \ldots e(X, Y)=1 \\
& X^{a u} \ldots Z^{b v}=B \\
& a v+\ldots+b w=c
\end{aligned}
$$

- (where $A, B \in G$, integers a, b, c are known to both)
- Useful in proving statements like "these two commitments are to the same value", or "I have a signature for a message with a certain property", when appropriate commitment/signature scheme is used

Applications

Applications

- Fancy signature schemes

Applications

- Fancy signature schemes
- Short group/ring signatures

Applications

- Fancy signature schemes
- Short group/ring signatures
- Short attribute-based signatures

Applications

- Fancy signature schemes
- Short group/ring signatures
- Short attribute-based signatures
- Efficient non-interactive proof of correctness of shuffle

Applications

- Fancy signature schemes
- Short group/ring signatures
- Short attribute-based signatures
- Efficient non-interactive proof of correctness of shuffle
- Non-interactive anonymous credentials

Applications

- Fancy signature schemes
- Short group/ring signatures
- Short attribute-based signatures
- Efficient non-interactive proof of correctness of shuffle
- Non-interactive anonymous credentials
- ...

Some More Assumptions

Some More Assumptions

- C-BDH Assumption: For random (a, b, c), given $\left(g^{a}, g^{b}, g^{c}\right)$ infeasible to compute $\mathrm{g}^{\text {abc }}$

Some More Assumptions

- C-BDH Assumption: For random (a, b, c), given $\left(g^{a}, g^{b}, g^{c}\right)$ infeasible to compute $\mathrm{g}^{\text {abc }}$
- Strong DH Assumption: For random x, given $\left(g, g^{x}\right)$ infeasible to find $\left(y, g^{1 / x+y}\right)$. (But can check: $e\left(g^{x} g^{y}, g^{1 / x+y}\right)=e(g, g)$.)

Some More Assumptions

- C-BDH Assumption: For random (a, b, c), given $\left(g^{a}, g^{b}, g^{c}\right)$ infeasible to compute $\mathrm{g}^{\text {abc }}$
- Strong DH Assumption: For random x, given $\left(g, g^{x}\right)$ infeasible to find $\left(y, g^{1 / x+y}\right)$. (But can check: $e\left(g^{x} g^{y}, g^{1 / x+y}\right)=e(g, g)$.)
- q-SDH: Given $\left(g, g^{x}, \ldots, g^{x^{\wedge}} 9\right)$, infeasible to find $\left(y, g^{1 / x+y}\right)$

Some More Assumptions

- C-BDH Assumption: For random (a, b, c), given $\left(g^{a}, g^{b}, g^{c}\right)$ infeasible to compute $\mathrm{g}^{\text {abc }}$
- Strong DH Assumption: For random x, given $\left(g, g^{x}\right)$ infeasible to find $\left(y, g^{1 / x+y}\right)$. (But can check: $e\left(g^{x} g^{y}, g^{1 / x+y}\right)=e(g, g)$.)
- q-SDH: Given $\left(g, g^{x}, \ldots, g^{x^{\wedge}} 9\right)$, infeasible to find $\left(y, g^{1 / x+y}\right)$
- Decision-Linear Assumption: $\left(g, g^{a}, g^{b}, g^{a x}, g^{b y}, g^{x+y}\right)$ and $\left(\mathrm{g}, \mathrm{g}^{a}, \mathrm{~g}^{b}, \mathrm{~g}^{a x}, \mathrm{~g}^{\text {by }}, \mathrm{g}^{\mathrm{z}}\right.$) are indistinguishable

Some More Assumptions

- C-BDH Assumption: For random (a, b, c), given $\left(g^{a}, g^{b}, g^{c}\right)$ infeasible to compute $\mathrm{g}^{\text {abc }}$
- Strong DH Assumption: For random x, given $\left(g, g^{x}\right)$ infeasible to find $\left(y, g^{1 / x+y}\right)$. (But can check: $e\left(g^{x} g^{y}, g^{1 / x+y}\right)=e(g, g)$.)
- q-SDH: Given $\left(g, g^{x}, \ldots, g^{x^{\wedge}} 9\right)$, infeasible to find $\left(y, g^{1 / x+y}\right)$
- Decision-Linear Assumption: $\left(\mathrm{g}, \mathrm{g}^{\mathrm{a}}, \mathrm{g}^{\mathrm{b}}, \mathrm{g}^{\mathrm{ax}}, \mathrm{g}^{\text {by }}, \mathrm{g}^{x+y}\right.$) and $\left(\mathrm{g}, \mathrm{g}^{a}, \mathrm{~g}^{b}, \mathrm{~g}^{a x}, \mathrm{~g}^{b y}, \mathrm{~g}^{z}\right.$) are indistinguishable
- Variants and other assumptions, in different settings

Some More Assumptions

- C-BDH Assumption: For random (a, b, c), given $\left(g^{a}, g^{b}, g^{c}\right)$ infeasible to compute $\mathrm{g}^{\text {abc }}$
- Strong DH Assumption: For random x, given $\left(g, g^{x}\right)$ infeasible to find $\left(y, g^{1 / x+y}\right)$. (But can check: $e\left(g^{x} g^{y}, g^{1 / x+y}\right)=e(g, g)$.)
- q-SDH: Given $\left(g, g^{x}, \ldots, g^{x^{\wedge}} 9\right)$, infeasible to find $\left(y, g^{1 / x+y}\right)$
- Decision-Linear Assumption: $\left(\mathrm{g}, \mathrm{g}^{\mathrm{a}}, \mathrm{g}^{\mathrm{b}}, \mathrm{g}^{\mathrm{ax}}, \mathrm{g}^{\text {by }}, \mathrm{g}^{x+y}\right.$) and $\left(\mathrm{g}, \mathrm{g}^{a}, \mathrm{~g}^{b}, \mathrm{~g}^{a x}, \mathrm{~g}^{\text {by }}, \mathrm{g}^{2}\right.$) are indistinguishable
- Variants and other assumptions, in different settings
- When $e: G_{1} \times G_{2} \rightarrow G_{T}: D D H$ in G_{1} and/or G_{2}

Some More Assumptions

- C-BDH Assumption: For random (a, b, c), given $\left(g^{a}, g^{b}, g^{c}\right)$ infeasible to compute $\mathrm{g}^{\text {abc }}$
- Strong DH Assumption: For random x, given $\left(g, g^{x}\right)$ infeasible to find $\left(y, g^{1 / x+y}\right)$. (But can check: $e\left(g^{x} g^{y}, g^{1 / x+y}\right)=e(g, g)$.)
- q-SDH: Given $\left(g, g^{x}, \ldots, g^{x^{\wedge}} 9\right)$, infeasible to find $\left(y, g^{1 / x+y}\right)$
- Decision-Linear Assumption: $\left(g, g^{a}, g^{b}, g^{a x}, g^{b y}, g^{x+y}\right)$ and $\left(\mathrm{g}, \mathrm{g}^{a}, \mathrm{~g}^{b}, \mathrm{~g}^{a x}, \mathrm{~g}^{\text {by }}, \mathrm{g}^{2}\right.$) are indistinguishable
- Variants and other assumptions, in different settings
- When $e: G_{1} \times G_{2} \rightarrow G_{T}: D D H$ in G_{1} and/or G_{2}
- When G has composite order: Pseudorandomness of random elements from a prime order subgroup of G.

Cheap Crypto

Cheap Crypto

- A significant amount of effort/expertise required to reduce the security to (standard) hardness assumptions

Cheap Crypto

- A significant amount of effort/expertise required to reduce the security to (standard) hardness assumptions
- Or even to new "simple" assumptions

Cheap Crypto

- A significant amount of effort/expertise required to reduce the security to (standard) hardness assumptions
- Or even to new "simple" assumptions
- New assumptions may not have been actively attacked

Cheap Crypto

- A significant amount of effort/expertise required to reduce the security to (standard) hardness assumptions
- Or even to new "simple" assumptions
- New assumptions may not have been actively attacked
- Sometimes the resulting schemes may be quite complicated and relatively inefficient

Cheap Crypto

- A significant amount of effort/expertise required to reduce the security to (standard) hardness assumptions
- Or even to new "simple" assumptions
- New assumptions may not have been actively attacked
- Sometimes the resulting schemes may be quite complicated and relatively inefficient
- Quicker/cheaper alternative: Use heuristic idealizations

Cheap Crypto

- A significant amount of effort/expertise required to reduce the security to (standard) hardness assumptions
- Or even to new "simple" assumptions
- New assumptions may not have been actively attacked
- Sometimes the resulting schemes may be quite complicated and relatively inefficient
- Quicker/cheaper alternative: Use heuristic idealizations
- Random Oracle Model

Cheap Crypto

- A significant amount of effort/expertise required to reduce the security to (standard) hardness assumptions
- Or even to new "simple" assumptions
- New assumptions may not have been actively attacked
- Sometimes the resulting schemes may be quite complicated and relatively inefficient
- Quicker/cheaper alternative: Use heuristic idealizations
- Random Oracle Model
- Generic Group Model

Cheap Crypto

- A significant amount of effort/expertise required to reduce the security to (standard) hardness assumptions
- Or even to new "simple" assumptions
- New assumptions may not have been actively attacked
- Sometimes the resulting schemes may be quite complicated and relatively inefficient
- Quicker/cheaper alternative: Use heuristic idealizations
- Random Oracle Model
- Generic Group Model
- Useful in at least "prototyping" new primitives (e.g. IBE)

Generic Group Model

Generic Group Model

- A group is modeled as an oracle, which uses "handles" to represent group elements

Generic Group Model

- A group is modeled as an oracle, which uses "handles" to represent group elements
- The oracle maintains an internal table mapping group elements to handles one-to-one. Handles are generated arbitrarily in response to queries (say, randomly, or "symbolically")

Generic Group Model

- A group is modeled as an oracle, which uses "handles" to represent group elements
- The oracle maintains an internal table mapping group elements to handles one-to-one. Handles are generated arbitrarily in response to queries (say, randomly, or "symbolically")
- Provides the following operations:

Generic Group Model

- A group is modeled as an oracle, which uses "handles" to represent group elements
- The oracle maintains an internal table mapping group elements to handles one-to-one. Handles are generated arbitrarily in response to queries (say, randomly, or "symbolically")
- Provides the following operations:
- Sample: pick random x and return Handle (x)

Generic Group Model

- A group is modeled as an oracle, which uses "handles" to represent group elements
- The oracle maintains an internal table mapping group elements to handles one-to-one. Handles are generated arbitrarily in response to queries (say, randomly, or "symbolically")
- Provides the following operations:
- Sample: pick random x and return Handle(x)
- Multiply: On input two handles h_{1} and h_{2}, return Handle(Elem(h_{1}).Elem(h_{2}))

Generic Group Model

- A group is modeled as an oracle, which uses "handles" to represent group elements
- The oracle maintains an internal table mapping group elements to handles one-to-one. Handles are generated arbitrarily in response to queries (say, randomly, or "symbolically")
- Provides the following operations:
- Sample: pick random x and return Handle(x)
- Multiply: On input two handles h_{1} and h_{2}, return Handle(Elem(h1).Elem(h2))
- Raise: On input a handle h and integer a (can be negative), return Handle(Elem(h)a)

Generic Group Model

- A group is modeled as an oracle, which uses "handles" to represent group elements
- The oracle maintains an internal table mapping group elements to handles one-to-one. Handles are generated arbitrarily in response to queries (say, randomly, or "symbolically")
- Provides the following operations:
- Sample: pick random x and return Handle (x)
- Multiply: On input two handles h_{1} and h_{2}, return Handle(Elem(h1).Elem(h2))
- Raise: On input a handle h and integer a (can be negative), return Handle(Elem(h)a)
- In addition, if modeling a group with bilinear pairing, also provides the pairing operation and operations for the target group

Generic Group Model

- A group is modeled as an oracle, which uses "handles" to represent group elements
- The oracle maintains an internal table mapping group elements to handles one-to-one. Handles are generated arbitrarily in response to queries (say, randomly, or "symbolically")
- Provides the following operations:
- Sample: pick random x and return Handle(x)
- Multiply: On input two handles h_{1} and h_{2}, return Handle(Elem(h1).Elem(h2))
- Raise: On input a handle h and integer a (can be negative), return Handle(Elem(h)a)
- In addition, if modeling a group with bilinear pairing, also provides the pairing operation and operations for the target group
- Discrete-log assumption, DDH (or B-DDH), DLin etc. are true in GGM

Generic Group Model

Generic Group Model

- Cryptographic scheme will be defined in the generic group model

Generic Group Model

- Cryptographic scheme will be defined in the generic group model
- Typically an underlying group of exponentially large order

Generic Group Model

- Cryptographic scheme will be defined in the generic group model
- Typically an underlying group of exponentially large order
- Adversary knows the underlying group structure, and may perform unlimited computations, but is allowed to query the oracle only a polynomial number of times over all

Generic Group Model

- Cryptographic scheme will be defined in the generic group model
- Typically an underlying group of exponentially large order
- Adversary knows the underlying group structure, and may perform unlimited computations, but is allowed to query the oracle only a polynomial number of times over all
- Can write the discrete log of every handle as a linear polynomial (or a quadratic polynomial, if allowing pairing) in variables corresponding to the sampling operation. An "accidental collision" if two formally different polynomials give same value

Generic Group Model

- Cryptographic scheme will be defined in the generic group model
- Typically an underlying group of exponentially large order
- Adversary knows the underlying group structure, and may perform unlimited computations, but is allowed to query the oracle only a polynomial number of times over all
- Can write the discrete log of every handle as a linear polynomial (or a quadratic polynomial, if allowing pairing) in variables corresponding to the sampling operation. An "accidental collision" if two formally different polynomials give same value
- Negligible probability of accidental collision: by "SchwartzZippel Lemma", number of zeroes of a (non-zero) low-degree multi-variate polynomial is bounded

Generic Group Model

- Cryptographic scheme will be defined in the generic group model
- Typically an underlying group of exponentially large order
- Adversary knows the underlying group structure, and may perform unlimited computations, but is allowed to query the oracle only a polynomial number of times over all
- Can write the discrete log of every handle as a linear polynomial (or a quadratic polynomial, if allowing pairing) in variables corresponding to the sampling operation. An "accidental collision" if two formally different polynomials give same value
- Negligible probability of accidental collision: by "SchwartzZippel Lemma", number of zeroes of a (non-zero) low-degree multi-variate polynomial is bounded
- And an exhaustive analysis in terms of formal polynomials to show requisite security properties

Generic Group Model

Generic Group Model

- What does security in GGM mean?

Generic Group Model

- What does security in GGM mean?
- Secure against adversaries who do not "look inside" the group

Generic Group Model

- What does security in GGM mean?
- Secure against adversaries who do not "look inside" the group
- Risk: There maybe a simple attack against our construction because of some specific (otherwise benign) structure in the group

Generic Group Model

- What does security in GGM mean?
- Secure against adversaries who do not "look inside" the group
- Risk: There maybe a simple attack against our construction because of some specific (otherwise benign) structure in the group
- No "if this scheme is broken, so are many others" guarantee

Generic Group Model

- What does security in GGM mean?
- Secure against adversaries who do not "look inside" the group
- Risk: There maybe a simple attack against our construction because of some specific (otherwise benign) structure in the group
- No "if this scheme is broken, so are many others" guarantee
- Better practice: when possible identify simple (new) assumptions sufficient for the security of the scheme. Then prove the assumption in the generic group model
"Knowledge" Assumptions

"Knowledge" Assumptions

- KEA-1: Given $\left(\mathrm{g}, \mathrm{g}^{\mathrm{a}}\right.$) for a random generator g and random a, if a PPT adversary extends it to a DDH tuple $\left(\mathrm{g}, \mathrm{g}^{\mathrm{a}}, \mathrm{g}^{b}, \mathrm{~g}^{\mathrm{ab}}\right)$ then it "must know" b

"Knowledge" Assumptions

- KEA-1: Given $\left(\mathrm{g}, \mathrm{g}^{\mathrm{a}}\right.$) for a random generator g and random a, if a PPT adversary extends it to a DDH tuple $\left(\mathrm{g}, \mathrm{g}^{a}, \mathrm{~g}^{b}, \mathrm{~g}^{a b}\right)$ then it "must know" b
- KEA-3: Given $\left(g, g^{a}, g^{b}, g^{a b}\right)$ for random g, a, b, if a PPT adversary outputs $\left(h, h^{b}\right)$, then it "must know" c_{1}, c_{2} such that $h=g^{c 1}\left(g^{a}\right)^{c 2}$ (and $h^{b}=\left(g^{b}\right)^{c 1}\left(g^{a b}\right)^{c 2}$)

"Knowledge" Assumptions

- KEA-1: Given $\left(\mathrm{g}, \mathrm{g}^{\mathrm{a}}\right.$) for a random generator g and random a, if a PPT adversary extends it to a DDH tuple $\left(\mathrm{g}, \mathrm{g}^{a}, \mathrm{~g}^{b}, \mathrm{~g}^{a b}\right)$ then it "must know" b
- KEA-3: Given $\left(g, g^{a}, g^{b}, g^{a b}\right)$ for random g, a, b, if a PPT adversary outputs $\left(h, h^{b}\right)$, then it "must know" c_{1}, c_{2} such that $h=g^{c 1}\left(g^{a}\right)^{c 2}$ (and $h^{b}=\left(g^{b}\right)^{c 1}\left(g^{a b}\right)^{c 2}$)
- By "fixing" KEA-2 (which forgot to consider c_{1})

"Knowledge" Assumptions

- KEA-1: Given $\left(\mathrm{g}, \mathrm{g}^{a}\right)$ for a random generator g and random a, if a PPT adversary extends it to a DDH tuple $\left(\mathrm{g}, \mathrm{g}^{a}, \mathrm{~g}^{b}, \mathrm{~g}^{a b}\right)$ then it "must know" b
- KEA-3: Given $\left(g, g^{a}, g^{b}, g^{a b}\right)$ for random g, a, b, if a PPT adversary outputs $\left(h, h^{b}\right)$, then it "must know" c_{1}, c_{2} such that $h=g^{c 1}\left(g^{a}\right)^{c 2}$ (and $h^{b}=\left(g^{b}\right)^{c 1}\left(g^{a b}\right)^{c 2}$)
- By "fixing" KEA-2 (which forgot to consider c_{1})
- KEA-DH: Given g, if a PPT adversary extends it to a DDH tuple ($g, g^{a}, g^{b}, g^{a b}$) then it "must know" either a or b

"Knowledge" Assumptions

- KEA-1: Given $\left(\mathrm{g}, \mathrm{g}^{a}\right)$ for a random generator g and random a, if a PPT adversary extends it to a DDH tuple $\left(\mathrm{g}, \mathrm{g}^{\mathrm{a}}, \mathrm{g}^{\mathrm{b}}, \mathrm{g}^{\mathrm{ab}}\right)$ then it "must know" b
- KEA-3: Given $\left(g, g^{a}, g^{b}, g^{a b}\right)$ for random g, a, b, if a PPT adversary outputs $\left(h, h^{b}\right)$, then it "must know" c_{1}, c_{2} such that $h=g^{c 1}\left(g^{a}\right)^{c 2}$ (and $h^{b}=\left(g^{b}\right)^{c 1}\left(g^{a b}\right)^{c 2}$)
- By "fixing" KEA-2 (which forgot to consider c_{1})
- KEA-DH: Given g, if a PPT adversary extends it to a DDH tuple ($\mathrm{g}, \mathrm{g}^{\mathrm{a}}, \mathrm{g}^{\mathrm{b}}, \mathrm{g}^{\mathrm{ab}}$) then it "must know" either a or b
- All provable in the generic group model (for g with large order)

"Knowledge" Assumptions

- KEA-1: Given $\left(\mathrm{g}, \mathrm{g}^{a}\right)$ for a random generator g and random a, if a PPT adversary extends it to a DDH tuple $\left(\mathrm{g}, \mathrm{g}^{a}, \mathrm{~g}^{b}, \mathrm{~g}^{a b}\right)$ then it "must know" b
- KEA-3: Given $\left(\mathrm{g}, \mathrm{g}^{a}, \mathrm{~g}^{b}, \mathrm{~g}^{a b}\right)$ for random $\mathrm{g}, \mathrm{a}, \mathrm{b}$, if a PPT adversary outputs $\left(h, h^{b}\right)$, then it "must know" c_{1}, c_{2} such that $h=g^{c 1}\left(g^{a}\right)^{c 2}$ (and $h^{b}=\left(g^{b}\right)^{c 1}\left(g^{a b}\right)^{c 2}$)
- By "fixing" KEA-2 (which forgot to consider c_{1})
- KEA-DH: Given g, if a PPT adversary extends it to a DDH tuple ($g, g^{a}, g^{b}, g^{a b}$) then it "must know" either a or b
- All provable in the generic group model (for g with large order)
- Even if the group has a bilinear pairing operation

Today

Today

Bilinear Pairings

Today

- Bilinear Pairings
- D-BDH and Joux's 3-party key-exchange

Today

- Bilinear Pairings
- D-BDH and Joux's 3-party key-exchange
- Groth-Sahai NIZK/NIWI proofs/PoKs

Today

- Bilinear Pairings
- D-BDH and Joux's 3-party key-exchange
- Groth-Sahai NIZK/NIWI proofs/PoKs
- Various recent assumptions used

Today

- Bilinear Pairings
- D-BDH and Joux's 3-party key-exchange
- Groth-Sahai NIZK/NIWI proofs/PoKs
- Various recent assumptions used
- Generic Group Model

Today

- Bilinear Pairings
- D-BDH and Joux's 3-party key-exchange
- Groth-Sahai NIZK/NIWI proofs/PoKs
- Various recent assumptions used
- Generic Group Model
- Knowledge-of-Exponent Assumptions

