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Bilinear Pairing
Two (or three) groups with an efficient pairing operation,      
e: G x G → GT that is “bilinear”

Typically, prime order (cyclic) groups

e(ga,gb) = e(g,g)ab

Multiplication (once) in the exponent! 

e(gaga’,gb) = e(ga,gb) e(ga’,gb) ;  e(ga,gbc) = e(gac,gb) ; ...

Not degenerate: e(g,g,) ≠ 1

D-BDH Assumption: For random (a,b,c,z), the distributions of 
(ga,gb,gc,gabc) and (ga,gb,gc,gz) are indistinguishable
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3-Party Key Exchange
A single round 3-party key-exchange protocol secure 
against passive eavesdroppers (under D-BDH assumption)

Generalizes Diffie-Hellman key-exchange

Let e: G x G → GT be bilinear and g a generator of G

Alice broadcasts ga, Bob broadcasts gb, and Carol 
broadcasts gc

Each party computes e(g,g)abc

e.g. Alice computes e(g,g)abc = e(gb,gc)a

By D-BDH the key e(g,g)abc = e(g,gabc) is pseudorandom 
given eavesdropper’s view (ga,gb,gc)
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NIZK Proofs
Recall: ZK proofs to enforce honest behavior in a basic protocol 
(without compromising secrecy properties of the basic protocol)
Non-interactive ZK, using a common random/reference string (CRS)

Can forge proofs or extract knowledge if a trapdoor for the 
CRS is available (used by the simulator)

NIZK useful in (non-interactive) public-key schemes 
CRS can be part of the public key: when no security needed 
against the party generating CRS (e.g. signer of a message, 
receiver in an encryption scheme)

Often “witness-indistinguishability” (NIWI or NIWI PoK) sufficient: 
can’t distinguish proofs using different witnesses

Trivial if only one witness. Very useful when two kinds of 
witnesses



NIZK Proofs



NIZK Proofs

NIZK proof/proof of knowledge systems exist for all 
“NP statements”  (i.e., “there exists/I know a witness for the 
relation...” ) under fairly standard general assumptions



NIZK Proofs

NIZK proof/proof of knowledge systems exist for all 
“NP statements”  (i.e., “there exists/I know a witness for the 
relation...” ) under fairly standard general assumptions

However, involves reduction to an NP-complete relation (e.g. 
graph Hamiltonicity) : considered impractical



NIZK Proofs

NIZK proof/proof of knowledge systems exist for all 
“NP statements”  (i.e., “there exists/I know a witness for the 
relation...” ) under fairly standard general assumptions

However, involves reduction to an NP-complete relation (e.g. 
graph Hamiltonicity) : considered impractical

Special purpose proof for statements that arise in specific 
schemes, under specific assumptions



NIZK Proofs

NIZK proof/proof of knowledge systems exist for all 
“NP statements”  (i.e., “there exists/I know a witness for the 
relation...” ) under fairly standard general assumptions

However, involves reduction to an NP-complete relation (e.g. 
graph Hamiltonicity) : considered impractical

Special purpose proof for statements that arise in specific 
schemes, under specific assumptions

Much more efficient: no NP-completeness reductions



NIZK Proofs

NIZK proof/proof of knowledge systems exist for all 
“NP statements”  (i.e., “there exists/I know a witness for the 
relation...” ) under fairly standard general assumptions

However, involves reduction to an NP-complete relation (e.g. 
graph Hamiltonicity) : considered impractical

Special purpose proof for statements that arise in specific 
schemes, under specific assumptions

Much more efficient: no NP-completeness reductions

e.g. Chaum-Pedersen Honest-Verifier ZK PoK of discrete log



NIZK Proofs

NIZK proof/proof of knowledge systems exist for all 
“NP statements”  (i.e., “there exists/I know a witness for the 
relation...” ) under fairly standard general assumptions

However, involves reduction to an NP-complete relation (e.g. 
graph Hamiltonicity) : considered impractical

Special purpose proof for statements that arise in specific 
schemes, under specific assumptions

Much more efficient: no NP-completeness reductions

e.g. Chaum-Pedersen Honest-Verifier ZK PoK of discrete log

May exploit similar assumptions as used in the basic scheme
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A NIZK For Statements 
Involving Pairings

Groth-Sahai proofs (2008)

Very useful in constructions using bilinear pairings

Can get “perfect” witness-indistinguishability or zero-knowledge

Then, soundness will be under certain computational 
assumptions
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A NIZK For Statements 
Involving Pairings

an e.g. statement

I know X,Y,Z ∈ G  and integers u,v,w s.t.

e(X,A) ... e(X,Y) = 1            (pairing product)

Xau ... Zbv = B                   (product)

a v + ... + b w = c

(where  A,B∈G, integers a,b,c are known to both)

Useful in proving statements like “these two commitments are 
to the same value”, or “I have a signature for a message with 
a certain property”, when appropriate commitment/signature 
scheme is used
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Fancy signature schemes

Short group/ring signatures

Short attribute-based signatures

Efficient non-interactive proof of correctness of shuffle

Non-interactive anonymous credentials

...
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Some More Assumptions
C-BDH Assumption: For random (a,b,c), given (ga,gb,gc) infeasible 
to compute gabc

Strong DH Assumption: For random x, given (g,gx) infeasible to 
find (y,g1/x+y). (But can check: e(gxgy, g1/x+y) = e(g,g).)

q-SDH: Given (g,gx,...,gx^q), infeasible to find (y,g1/x+y)

Decision-Linear Assumption: (g,ga,gb,gax,gby, gx+y) and 
(g,ga,gb,gax,gby, gz) are indistinguishable

Variants and other assumptions, in different settings
When e:G1xG2→GT: DDH in G1 and/or G2

When G has composite order: Pseudorandomness of random 
elements from a prime order subgroup of G.



Cheap Crypto



Cheap Crypto
A significant amount of effort/expertise required to 
reduce the security to (standard) hardness assumptions



Cheap Crypto
A significant amount of effort/expertise required to 
reduce the security to (standard) hardness assumptions

Or even to new “simple” assumptions



Cheap Crypto
A significant amount of effort/expertise required to 
reduce the security to (standard) hardness assumptions

Or even to new “simple” assumptions

New assumptions may not have been actively attacked



Cheap Crypto
A significant amount of effort/expertise required to 
reduce the security to (standard) hardness assumptions

Or even to new “simple” assumptions

New assumptions may not have been actively attacked

Sometimes the resulting schemes may be quite complicated 
and relatively inefficient



Cheap Crypto
A significant amount of effort/expertise required to 
reduce the security to (standard) hardness assumptions

Or even to new “simple” assumptions

New assumptions may not have been actively attacked

Sometimes the resulting schemes may be quite complicated 
and relatively inefficient

Quicker/cheaper alternative: Use heuristic idealizations 



Cheap Crypto
A significant amount of effort/expertise required to 
reduce the security to (standard) hardness assumptions

Or even to new “simple” assumptions

New assumptions may not have been actively attacked

Sometimes the resulting schemes may be quite complicated 
and relatively inefficient

Quicker/cheaper alternative: Use heuristic idealizations 

Random Oracle Model



Cheap Crypto
A significant amount of effort/expertise required to 
reduce the security to (standard) hardness assumptions

Or even to new “simple” assumptions

New assumptions may not have been actively attacked

Sometimes the resulting schemes may be quite complicated 
and relatively inefficient

Quicker/cheaper alternative: Use heuristic idealizations 

Random Oracle Model

Generic Group Model



Cheap Crypto
A significant amount of effort/expertise required to 
reduce the security to (standard) hardness assumptions

Or even to new “simple” assumptions

New assumptions may not have been actively attacked

Sometimes the resulting schemes may be quite complicated 
and relatively inefficient

Quicker/cheaper alternative: Use heuristic idealizations 

Random Oracle Model

Generic Group Model

Useful in at least “prototyping” new primitives (e.g. IBE)
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Generic Group Model
A group is modeled as an oracle, which uses “handles” to represent 
group elements

The oracle maintains an internal table mapping group elements 
to handles one-to-one. Handles are generated arbitrarily in 
response to queries (say, randomly, or “symbolically”)
Provides the following operations:

Sample: pick random x and return Handle(x)
Multiply: On input two handles h1 and h2, return           
Handle(Elem(h1).Elem(h2))
Raise: On input a handle h and integer a (can be negative), 
return Handle(Elem(h)a)

In addition, if modeling a group with bilinear pairing, also provides 
the pairing operation and operations for the target group

Discrete-log assumption, DDH (or B-DDH), DLin etc. are true in GGM
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Generic Group Model
Cryptographic scheme will be defined in the generic group model
Typically an underlying group of exponentially large order
Adversary knows the underlying group structure, and may 
perform unlimited computations, but is allowed to query the 
oracle only a polynomial number of times over all
Can write the discrete log of every handle as a linear polynomial 
(or a quadratic polynomial, if allowing pairing) in variables 
corresponding to the sampling operation. An “accidental collision” 
if two formally different polynomials give same value

Negligible probability of accidental collision: by “Schwartz-
Zippel Lemma”,  number of zeroes of a (non-zero) low-degree 
multi-variate polynomial is bounded
And an exhaustive analysis in terms of formal polynomials to 
show requisite security properties
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Generic Group Model
What does security in GGM mean?

Secure against adversaries who do not “look inside” the group

Risk: There maybe a simple attack against our construction 
because of some specific (otherwise benign) structure in the 
group

No “if this scheme is broken, so are many others” guarantee

Better practice: when possible identify simple (new) assumptions 
sufficient for the security of the scheme. Then prove the 
assumption in the generic group model
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KEA-1: Given (g,ga) for a random generator g and random a,  if a 
PPT adversary extends it to a DDH tuple (g,ga,gb,gab)  then it 
“must know” b

KEA-3: Given (g,ga,gb,gab) for random g,a,b, if a PPT adversary 
outputs (h,hb), then it “must know” c1, c2 such that h=gc1 (ga)c2  
(and hb=(gb)c1 (gab)c2 )

By “fixing” KEA-2 (which forgot to consider c1)

KEA-DH: Given g, if a PPT adversary extends it to a DDH tuple 
(g,ga,gb,gab) then it “must know” either a or b

All provable in the generic group model (for g with large order)

Even if the group has a bilinear pairing operation
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Various recent assumptions used

Generic Group Model

Knowledge-of-Exponent Assumptions


