
Pairing-Based Cryptography
&

Generic Groups
Lecture 22

Bilinear Pairing

Bilinear Pairing
Two (or three) groups with an efficient pairing operation,
e: G x G → GT that is “bilinear”

Bilinear Pairing
Two (or three) groups with an efficient pairing operation,
e: G x G → GT that is “bilinear”

Typically, prime order (cyclic) groups

Bilinear Pairing
Two (or three) groups with an efficient pairing operation,
e: G x G → GT that is “bilinear”

Typically, prime order (cyclic) groups

e(ga,gb) = e(g,g)ab

Bilinear Pairing
Two (or three) groups with an efficient pairing operation,
e: G x G → GT that is “bilinear”

Typically, prime order (cyclic) groups

e(ga,gb) = e(g,g)ab

Multiplication (once) in the exponent!

Bilinear Pairing
Two (or three) groups with an efficient pairing operation,
e: G x G → GT that is “bilinear”

Typically, prime order (cyclic) groups

e(ga,gb) = e(g,g)ab

Multiplication (once) in the exponent!

e(gaga’,gb) = e(ga,gb) e(ga’,gb) ; e(ga,gbc) = e(gac,gb) ; ...

Bilinear Pairing
Two (or three) groups with an efficient pairing operation,
e: G x G → GT that is “bilinear”

Typically, prime order (cyclic) groups

e(ga,gb) = e(g,g)ab

Multiplication (once) in the exponent!

e(gaga’,gb) = e(ga,gb) e(ga’,gb) ; e(ga,gbc) = e(gac,gb) ; ...

Not degenerate: e(g,g,) ≠ 1

Bilinear Pairing
Two (or three) groups with an efficient pairing operation,
e: G x G → GT that is “bilinear”

Typically, prime order (cyclic) groups

e(ga,gb) = e(g,g)ab

Multiplication (once) in the exponent!

e(gaga’,gb) = e(ga,gb) e(ga’,gb) ; e(ga,gbc) = e(gac,gb) ; ...

Not degenerate: e(g,g,) ≠ 1

D-BDH Assumption: For random (a,b,c,z), the distributions of
(ga,gb,gc,gabc) and (ga,gb,gc,gz) are indistinguishable

3-Party Key Exchange

3-Party Key Exchange
A single round 3-party key-exchange protocol secure
against passive eavesdroppers (under D-BDH assumption)

3-Party Key Exchange
A single round 3-party key-exchange protocol secure
against passive eavesdroppers (under D-BDH assumption)

Generalizes Diffie-Hellman key-exchange

3-Party Key Exchange
A single round 3-party key-exchange protocol secure
against passive eavesdroppers (under D-BDH assumption)

Generalizes Diffie-Hellman key-exchange

Let e: G x G → GT be bilinear and g a generator of G

3-Party Key Exchange
A single round 3-party key-exchange protocol secure
against passive eavesdroppers (under D-BDH assumption)

Generalizes Diffie-Hellman key-exchange

Let e: G x G → GT be bilinear and g a generator of G

Alice broadcasts ga, Bob broadcasts gb, and Carol
broadcasts gc

3-Party Key Exchange
A single round 3-party key-exchange protocol secure
against passive eavesdroppers (under D-BDH assumption)

Generalizes Diffie-Hellman key-exchange

Let e: G x G → GT be bilinear and g a generator of G

Alice broadcasts ga, Bob broadcasts gb, and Carol
broadcasts gc

Each party computes e(g,g)abc

3-Party Key Exchange
A single round 3-party key-exchange protocol secure
against passive eavesdroppers (under D-BDH assumption)

Generalizes Diffie-Hellman key-exchange

Let e: G x G → GT be bilinear and g a generator of G

Alice broadcasts ga, Bob broadcasts gb, and Carol
broadcasts gc

Each party computes e(g,g)abc

e.g. Alice computes e(g,g)abc = e(gb,gc)a

3-Party Key Exchange
A single round 3-party key-exchange protocol secure
against passive eavesdroppers (under D-BDH assumption)

Generalizes Diffie-Hellman key-exchange

Let e: G x G → GT be bilinear and g a generator of G

Alice broadcasts ga, Bob broadcasts gb, and Carol
broadcasts gc

Each party computes e(g,g)abc

e.g. Alice computes e(g,g)abc = e(gb,gc)a

By D-BDH the key e(g,g)abc = e(g,gabc) is pseudorandom
given eavesdropper’s view (ga,gb,gc)

NIZK Proofs

NIZK Proofs
Recall: ZK proofs to enforce honest behavior in a basic protocol
(without compromising secrecy properties of the basic protocol)

NIZK Proofs
Recall: ZK proofs to enforce honest behavior in a basic protocol
(without compromising secrecy properties of the basic protocol)
Non-interactive ZK, using a common random/reference string (CRS)

NIZK Proofs
Recall: ZK proofs to enforce honest behavior in a basic protocol
(without compromising secrecy properties of the basic protocol)
Non-interactive ZK, using a common random/reference string (CRS)

Can forge proofs or extract knowledge if a trapdoor for the
CRS is available (used by the simulator)

NIZK Proofs
Recall: ZK proofs to enforce honest behavior in a basic protocol
(without compromising secrecy properties of the basic protocol)
Non-interactive ZK, using a common random/reference string (CRS)

Can forge proofs or extract knowledge if a trapdoor for the
CRS is available (used by the simulator)

NIZK useful in (non-interactive) public-key schemes

NIZK Proofs
Recall: ZK proofs to enforce honest behavior in a basic protocol
(without compromising secrecy properties of the basic protocol)
Non-interactive ZK, using a common random/reference string (CRS)

Can forge proofs or extract knowledge if a trapdoor for the
CRS is available (used by the simulator)

NIZK useful in (non-interactive) public-key schemes
CRS can be part of the public key: when no security needed
against the party generating CRS (e.g. signer of a message,
receiver in an encryption scheme)

NIZK Proofs
Recall: ZK proofs to enforce honest behavior in a basic protocol
(without compromising secrecy properties of the basic protocol)
Non-interactive ZK, using a common random/reference string (CRS)

Can forge proofs or extract knowledge if a trapdoor for the
CRS is available (used by the simulator)

NIZK useful in (non-interactive) public-key schemes
CRS can be part of the public key: when no security needed
against the party generating CRS (e.g. signer of a message,
receiver in an encryption scheme)

Often “witness-indistinguishability” (NIWI or NIWI PoK) sufficient:
can’t distinguish proofs using different witnesses

NIZK Proofs
Recall: ZK proofs to enforce honest behavior in a basic protocol
(without compromising secrecy properties of the basic protocol)
Non-interactive ZK, using a common random/reference string (CRS)

Can forge proofs or extract knowledge if a trapdoor for the
CRS is available (used by the simulator)

NIZK useful in (non-interactive) public-key schemes
CRS can be part of the public key: when no security needed
against the party generating CRS (e.g. signer of a message,
receiver in an encryption scheme)

Often “witness-indistinguishability” (NIWI or NIWI PoK) sufficient:
can’t distinguish proofs using different witnesses

Trivial if only one witness. Very useful when two kinds of
witnesses

NIZK Proofs

NIZK Proofs

NIZK proof/proof of knowledge systems exist for all
“NP statements” (i.e., “there exists/I know a witness for the
relation...”) under fairly standard general assumptions

NIZK Proofs

NIZK proof/proof of knowledge systems exist for all
“NP statements” (i.e., “there exists/I know a witness for the
relation...”) under fairly standard general assumptions

However, involves reduction to an NP-complete relation (e.g.
graph Hamiltonicity) : considered impractical

NIZK Proofs

NIZK proof/proof of knowledge systems exist for all
“NP statements” (i.e., “there exists/I know a witness for the
relation...”) under fairly standard general assumptions

However, involves reduction to an NP-complete relation (e.g.
graph Hamiltonicity) : considered impractical

Special purpose proof for statements that arise in specific
schemes, under specific assumptions

NIZK Proofs

NIZK proof/proof of knowledge systems exist for all
“NP statements” (i.e., “there exists/I know a witness for the
relation...”) under fairly standard general assumptions

However, involves reduction to an NP-complete relation (e.g.
graph Hamiltonicity) : considered impractical

Special purpose proof for statements that arise in specific
schemes, under specific assumptions

Much more efficient: no NP-completeness reductions

NIZK Proofs

NIZK proof/proof of knowledge systems exist for all
“NP statements” (i.e., “there exists/I know a witness for the
relation...”) under fairly standard general assumptions

However, involves reduction to an NP-complete relation (e.g.
graph Hamiltonicity) : considered impractical

Special purpose proof for statements that arise in specific
schemes, under specific assumptions

Much more efficient: no NP-completeness reductions

e.g. Chaum-Pedersen Honest-Verifier ZK PoK of discrete log

NIZK Proofs

NIZK proof/proof of knowledge systems exist for all
“NP statements” (i.e., “there exists/I know a witness for the
relation...”) under fairly standard general assumptions

However, involves reduction to an NP-complete relation (e.g.
graph Hamiltonicity) : considered impractical

Special purpose proof for statements that arise in specific
schemes, under specific assumptions

Much more efficient: no NP-completeness reductions

e.g. Chaum-Pedersen Honest-Verifier ZK PoK of discrete log

May exploit similar assumptions as used in the basic scheme

A NIZK For Statements
Involving Pairings

A NIZK For Statements
Involving Pairings

Groth-Sahai proofs (2008)

A NIZK For Statements
Involving Pairings

Groth-Sahai proofs (2008)

Very useful in constructions using bilinear pairings

A NIZK For Statements
Involving Pairings

Groth-Sahai proofs (2008)

Very useful in constructions using bilinear pairings

Can get “perfect” witness-indistinguishability or zero-knowledge

A NIZK For Statements
Involving Pairings

Groth-Sahai proofs (2008)

Very useful in constructions using bilinear pairings

Can get “perfect” witness-indistinguishability or zero-knowledge

Then, soundness will be under certain computational
assumptions

A NIZK For Statements
Involving Pairings

A NIZK For Statements
Involving Pairings

an e.g. statement

A NIZK For Statements
Involving Pairings

an e.g. statement

I know X,Y,Z ∈ G and integers u,v,w s.t.

A NIZK For Statements
Involving Pairings

an e.g. statement

I know X,Y,Z ∈ G and integers u,v,w s.t.

e(X,A) ... e(X,Y) = 1 (pairing product)

A NIZK For Statements
Involving Pairings

an e.g. statement

I know X,Y,Z ∈ G and integers u,v,w s.t.

e(X,A) ... e(X,Y) = 1 (pairing product)

Xau ... Zbv = B (product)

A NIZK For Statements
Involving Pairings

an e.g. statement

I know X,Y,Z ∈ G and integers u,v,w s.t.

e(X,A) ... e(X,Y) = 1 (pairing product)

Xau ... Zbv = B (product)

a v + ... + b w = c

A NIZK For Statements
Involving Pairings

an e.g. statement

I know X,Y,Z ∈ G and integers u,v,w s.t.

e(X,A) ... e(X,Y) = 1 (pairing product)

Xau ... Zbv = B (product)

a v + ... + b w = c

(where A,B∈G, integers a,b,c are known to both)

A NIZK For Statements
Involving Pairings

an e.g. statement

I know X,Y,Z ∈ G and integers u,v,w s.t.

e(X,A) ... e(X,Y) = 1 (pairing product)

Xau ... Zbv = B (product)

a v + ... + b w = c

(where A,B∈G, integers a,b,c are known to both)

Useful in proving statements like “these two commitments are
to the same value”, or “I have a signature for a message with
a certain property”, when appropriate commitment/signature
scheme is used

Applications

Applications

Fancy signature schemes

Applications

Fancy signature schemes

Short group/ring signatures

Applications

Fancy signature schemes

Short group/ring signatures

Short attribute-based signatures

Applications

Fancy signature schemes

Short group/ring signatures

Short attribute-based signatures

Efficient non-interactive proof of correctness of shuffle

Applications

Fancy signature schemes

Short group/ring signatures

Short attribute-based signatures

Efficient non-interactive proof of correctness of shuffle

Non-interactive anonymous credentials

Applications

Fancy signature schemes

Short group/ring signatures

Short attribute-based signatures

Efficient non-interactive proof of correctness of shuffle

Non-interactive anonymous credentials

...

Some More Assumptions

Some More Assumptions
C-BDH Assumption: For random (a,b,c), given (ga,gb,gc) infeasible
to compute gabc

Some More Assumptions
C-BDH Assumption: For random (a,b,c), given (ga,gb,gc) infeasible
to compute gabc

Strong DH Assumption: For random x, given (g,gx) infeasible to
find (y,g1/x+y). (But can check: e(gxgy, g1/x+y) = e(g,g).)

Some More Assumptions
C-BDH Assumption: For random (a,b,c), given (ga,gb,gc) infeasible
to compute gabc

Strong DH Assumption: For random x, given (g,gx) infeasible to
find (y,g1/x+y). (But can check: e(gxgy, g1/x+y) = e(g,g).)

q-SDH: Given (g,gx,...,gx^q), infeasible to find (y,g1/x+y)

Some More Assumptions
C-BDH Assumption: For random (a,b,c), given (ga,gb,gc) infeasible
to compute gabc

Strong DH Assumption: For random x, given (g,gx) infeasible to
find (y,g1/x+y). (But can check: e(gxgy, g1/x+y) = e(g,g).)

q-SDH: Given (g,gx,...,gx^q), infeasible to find (y,g1/x+y)

Decision-Linear Assumption: (g,ga,gb,gax,gby, gx+y) and
(g,ga,gb,gax,gby, gz) are indistinguishable

Some More Assumptions
C-BDH Assumption: For random (a,b,c), given (ga,gb,gc) infeasible
to compute gabc

Strong DH Assumption: For random x, given (g,gx) infeasible to
find (y,g1/x+y). (But can check: e(gxgy, g1/x+y) = e(g,g).)

q-SDH: Given (g,gx,...,gx^q), infeasible to find (y,g1/x+y)

Decision-Linear Assumption: (g,ga,gb,gax,gby, gx+y) and
(g,ga,gb,gax,gby, gz) are indistinguishable

Variants and other assumptions, in different settings

Some More Assumptions
C-BDH Assumption: For random (a,b,c), given (ga,gb,gc) infeasible
to compute gabc

Strong DH Assumption: For random x, given (g,gx) infeasible to
find (y,g1/x+y). (But can check: e(gxgy, g1/x+y) = e(g,g).)

q-SDH: Given (g,gx,...,gx^q), infeasible to find (y,g1/x+y)

Decision-Linear Assumption: (g,ga,gb,gax,gby, gx+y) and
(g,ga,gb,gax,gby, gz) are indistinguishable

Variants and other assumptions, in different settings
When e:G1xG2→GT: DDH in G1 and/or G2

Some More Assumptions
C-BDH Assumption: For random (a,b,c), given (ga,gb,gc) infeasible
to compute gabc

Strong DH Assumption: For random x, given (g,gx) infeasible to
find (y,g1/x+y). (But can check: e(gxgy, g1/x+y) = e(g,g).)

q-SDH: Given (g,gx,...,gx^q), infeasible to find (y,g1/x+y)

Decision-Linear Assumption: (g,ga,gb,gax,gby, gx+y) and
(g,ga,gb,gax,gby, gz) are indistinguishable

Variants and other assumptions, in different settings
When e:G1xG2→GT: DDH in G1 and/or G2

When G has composite order: Pseudorandomness of random
elements from a prime order subgroup of G.

Cheap Crypto

Cheap Crypto
A significant amount of effort/expertise required to
reduce the security to (standard) hardness assumptions

Cheap Crypto
A significant amount of effort/expertise required to
reduce the security to (standard) hardness assumptions

Or even to new “simple” assumptions

Cheap Crypto
A significant amount of effort/expertise required to
reduce the security to (standard) hardness assumptions

Or even to new “simple” assumptions

New assumptions may not have been actively attacked

Cheap Crypto
A significant amount of effort/expertise required to
reduce the security to (standard) hardness assumptions

Or even to new “simple” assumptions

New assumptions may not have been actively attacked

Sometimes the resulting schemes may be quite complicated
and relatively inefficient

Cheap Crypto
A significant amount of effort/expertise required to
reduce the security to (standard) hardness assumptions

Or even to new “simple” assumptions

New assumptions may not have been actively attacked

Sometimes the resulting schemes may be quite complicated
and relatively inefficient

Quicker/cheaper alternative: Use heuristic idealizations

Cheap Crypto
A significant amount of effort/expertise required to
reduce the security to (standard) hardness assumptions

Or even to new “simple” assumptions

New assumptions may not have been actively attacked

Sometimes the resulting schemes may be quite complicated
and relatively inefficient

Quicker/cheaper alternative: Use heuristic idealizations

Random Oracle Model

Cheap Crypto
A significant amount of effort/expertise required to
reduce the security to (standard) hardness assumptions

Or even to new “simple” assumptions

New assumptions may not have been actively attacked

Sometimes the resulting schemes may be quite complicated
and relatively inefficient

Quicker/cheaper alternative: Use heuristic idealizations

Random Oracle Model

Generic Group Model

Cheap Crypto
A significant amount of effort/expertise required to
reduce the security to (standard) hardness assumptions

Or even to new “simple” assumptions

New assumptions may not have been actively attacked

Sometimes the resulting schemes may be quite complicated
and relatively inefficient

Quicker/cheaper alternative: Use heuristic idealizations

Random Oracle Model

Generic Group Model

Useful in at least “prototyping” new primitives (e.g. IBE)

Generic Group Model

Generic Group Model
A group is modeled as an oracle, which uses “handles” to represent
group elements

Generic Group Model
A group is modeled as an oracle, which uses “handles” to represent
group elements

The oracle maintains an internal table mapping group elements
to handles one-to-one. Handles are generated arbitrarily in
response to queries (say, randomly, or “symbolically”)

Generic Group Model
A group is modeled as an oracle, which uses “handles” to represent
group elements

The oracle maintains an internal table mapping group elements
to handles one-to-one. Handles are generated arbitrarily in
response to queries (say, randomly, or “symbolically”)
Provides the following operations:

Generic Group Model
A group is modeled as an oracle, which uses “handles” to represent
group elements

The oracle maintains an internal table mapping group elements
to handles one-to-one. Handles are generated arbitrarily in
response to queries (say, randomly, or “symbolically”)
Provides the following operations:

Sample: pick random x and return Handle(x)

Generic Group Model
A group is modeled as an oracle, which uses “handles” to represent
group elements

The oracle maintains an internal table mapping group elements
to handles one-to-one. Handles are generated arbitrarily in
response to queries (say, randomly, or “symbolically”)
Provides the following operations:

Sample: pick random x and return Handle(x)
Multiply: On input two handles h1 and h2, return
Handle(Elem(h1).Elem(h2))

Generic Group Model
A group is modeled as an oracle, which uses “handles” to represent
group elements

The oracle maintains an internal table mapping group elements
to handles one-to-one. Handles are generated arbitrarily in
response to queries (say, randomly, or “symbolically”)
Provides the following operations:

Sample: pick random x and return Handle(x)
Multiply: On input two handles h1 and h2, return
Handle(Elem(h1).Elem(h2))
Raise: On input a handle h and integer a (can be negative),
return Handle(Elem(h)a)

Generic Group Model
A group is modeled as an oracle, which uses “handles” to represent
group elements

The oracle maintains an internal table mapping group elements
to handles one-to-one. Handles are generated arbitrarily in
response to queries (say, randomly, or “symbolically”)
Provides the following operations:

Sample: pick random x and return Handle(x)
Multiply: On input two handles h1 and h2, return
Handle(Elem(h1).Elem(h2))
Raise: On input a handle h and integer a (can be negative),
return Handle(Elem(h)a)

In addition, if modeling a group with bilinear pairing, also provides
the pairing operation and operations for the target group

Generic Group Model
A group is modeled as an oracle, which uses “handles” to represent
group elements

The oracle maintains an internal table mapping group elements
to handles one-to-one. Handles are generated arbitrarily in
response to queries (say, randomly, or “symbolically”)
Provides the following operations:

Sample: pick random x and return Handle(x)
Multiply: On input two handles h1 and h2, return
Handle(Elem(h1).Elem(h2))
Raise: On input a handle h and integer a (can be negative),
return Handle(Elem(h)a)

In addition, if modeling a group with bilinear pairing, also provides
the pairing operation and operations for the target group

Discrete-log assumption, DDH (or B-DDH), DLin etc. are true in GGM

Generic Group Model

Generic Group Model
Cryptographic scheme will be defined in the generic group model

Generic Group Model
Cryptographic scheme will be defined in the generic group model
Typically an underlying group of exponentially large order

Generic Group Model
Cryptographic scheme will be defined in the generic group model
Typically an underlying group of exponentially large order
Adversary knows the underlying group structure, and may
perform unlimited computations, but is allowed to query the
oracle only a polynomial number of times over all

Generic Group Model
Cryptographic scheme will be defined in the generic group model
Typically an underlying group of exponentially large order
Adversary knows the underlying group structure, and may
perform unlimited computations, but is allowed to query the
oracle only a polynomial number of times over all
Can write the discrete log of every handle as a linear polynomial
(or a quadratic polynomial, if allowing pairing) in variables
corresponding to the sampling operation. An “accidental collision”
if two formally different polynomials give same value

Generic Group Model
Cryptographic scheme will be defined in the generic group model
Typically an underlying group of exponentially large order
Adversary knows the underlying group structure, and may
perform unlimited computations, but is allowed to query the
oracle only a polynomial number of times over all
Can write the discrete log of every handle as a linear polynomial
(or a quadratic polynomial, if allowing pairing) in variables
corresponding to the sampling operation. An “accidental collision”
if two formally different polynomials give same value

Negligible probability of accidental collision: by “Schwartz-
Zippel Lemma”, number of zeroes of a (non-zero) low-degree
multi-variate polynomial is bounded

Generic Group Model
Cryptographic scheme will be defined in the generic group model
Typically an underlying group of exponentially large order
Adversary knows the underlying group structure, and may
perform unlimited computations, but is allowed to query the
oracle only a polynomial number of times over all
Can write the discrete log of every handle as a linear polynomial
(or a quadratic polynomial, if allowing pairing) in variables
corresponding to the sampling operation. An “accidental collision”
if two formally different polynomials give same value

Negligible probability of accidental collision: by “Schwartz-
Zippel Lemma”, number of zeroes of a (non-zero) low-degree
multi-variate polynomial is bounded
And an exhaustive analysis in terms of formal polynomials to
show requisite security properties

Generic Group Model

Generic Group Model
What does security in GGM mean?

Generic Group Model
What does security in GGM mean?

Secure against adversaries who do not “look inside” the group

Generic Group Model
What does security in GGM mean?

Secure against adversaries who do not “look inside” the group

Risk: There maybe a simple attack against our construction
because of some specific (otherwise benign) structure in the
group

Generic Group Model
What does security in GGM mean?

Secure against adversaries who do not “look inside” the group

Risk: There maybe a simple attack against our construction
because of some specific (otherwise benign) structure in the
group

No “if this scheme is broken, so are many others” guarantee

Generic Group Model
What does security in GGM mean?

Secure against adversaries who do not “look inside” the group

Risk: There maybe a simple attack against our construction
because of some specific (otherwise benign) structure in the
group

No “if this scheme is broken, so are many others” guarantee

Better practice: when possible identify simple (new) assumptions
sufficient for the security of the scheme. Then prove the
assumption in the generic group model

“Knowledge” Assumptions

“Knowledge” Assumptions
KEA-1: Given (g,ga) for a random generator g and random a, if a
PPT adversary extends it to a DDH tuple (g,ga,gb,gab) then it
“must know” b

“Knowledge” Assumptions
KEA-1: Given (g,ga) for a random generator g and random a, if a
PPT adversary extends it to a DDH tuple (g,ga,gb,gab) then it
“must know” b

KEA-3: Given (g,ga,gb,gab) for random g,a,b, if a PPT adversary
outputs (h,hb), then it “must know” c1, c2 such that h=gc1 (ga)c2
(and hb=(gb)c1 (gab)c2)

“Knowledge” Assumptions
KEA-1: Given (g,ga) for a random generator g and random a, if a
PPT adversary extends it to a DDH tuple (g,ga,gb,gab) then it
“must know” b

KEA-3: Given (g,ga,gb,gab) for random g,a,b, if a PPT adversary
outputs (h,hb), then it “must know” c1, c2 such that h=gc1 (ga)c2
(and hb=(gb)c1 (gab)c2)

By “fixing” KEA-2 (which forgot to consider c1)

“Knowledge” Assumptions
KEA-1: Given (g,ga) for a random generator g and random a, if a
PPT adversary extends it to a DDH tuple (g,ga,gb,gab) then it
“must know” b

KEA-3: Given (g,ga,gb,gab) for random g,a,b, if a PPT adversary
outputs (h,hb), then it “must know” c1, c2 such that h=gc1 (ga)c2
(and hb=(gb)c1 (gab)c2)

By “fixing” KEA-2 (which forgot to consider c1)

KEA-DH: Given g, if a PPT adversary extends it to a DDH tuple
(g,ga,gb,gab) then it “must know” either a or b

“Knowledge” Assumptions
KEA-1: Given (g,ga) for a random generator g and random a, if a
PPT adversary extends it to a DDH tuple (g,ga,gb,gab) then it
“must know” b

KEA-3: Given (g,ga,gb,gab) for random g,a,b, if a PPT adversary
outputs (h,hb), then it “must know” c1, c2 such that h=gc1 (ga)c2
(and hb=(gb)c1 (gab)c2)

By “fixing” KEA-2 (which forgot to consider c1)

KEA-DH: Given g, if a PPT adversary extends it to a DDH tuple
(g,ga,gb,gab) then it “must know” either a or b

All provable in the generic group model (for g with large order)

“Knowledge” Assumptions
KEA-1: Given (g,ga) for a random generator g and random a, if a
PPT adversary extends it to a DDH tuple (g,ga,gb,gab) then it
“must know” b

KEA-3: Given (g,ga,gb,gab) for random g,a,b, if a PPT adversary
outputs (h,hb), then it “must know” c1, c2 such that h=gc1 (ga)c2
(and hb=(gb)c1 (gab)c2)

By “fixing” KEA-2 (which forgot to consider c1)

KEA-DH: Given g, if a PPT adversary extends it to a DDH tuple
(g,ga,gb,gab) then it “must know” either a or b

All provable in the generic group model (for g with large order)

Even if the group has a bilinear pairing operation

Today

Today

Bilinear Pairings

Today

Bilinear Pairings

D-BDH and Joux’s 3-party key-exchange

Today

Bilinear Pairings

D-BDH and Joux’s 3-party key-exchange

Groth-Sahai NIZK/NIWI proofs/PoKs

Today

Bilinear Pairings

D-BDH and Joux’s 3-party key-exchange

Groth-Sahai NIZK/NIWI proofs/PoKs

Various recent assumptions used

Today

Bilinear Pairings

D-BDH and Joux’s 3-party key-exchange

Groth-Sahai NIZK/NIWI proofs/PoKs

Various recent assumptions used

Generic Group Model

Today

Bilinear Pairings

D-BDH and Joux’s 3-party key-exchange

Groth-Sahai NIZK/NIWI proofs/PoKs

Various recent assumptions used

Generic Group Model

Knowledge-of-Exponent Assumptions

