Pairing-Based Cryptography & Generic Groups
Lecture 22
Bilinear Pairing
Bilinear Pairing

Two (or three) groups with an efficient pairing operation, $e: G \times G \rightarrow G_T$ that is "bilinear"
Bilinear Pairing

- Two (or three) groups with an efficient pairing operation, $e: G \times G \rightarrow G_T$ that is "bilinear"
- Typically, prime order (cyclic) groups
Bilinear Pairing

- Two (or three) groups with an efficient pairing operation, $e: G \times G \rightarrow G_T$ that is “bilinear”
- Typically, prime order (cyclic) groups
- $e(g^a, g^b) = e(g,g)^{ab}$
Bilinear Pairing

Two (or three) groups with an efficient pairing operation, $e: G \times G \rightarrow G_T$ that is “bilinear”

Typically, prime order (cyclic) groups

$e(g^a, g^b) = e(g,g)^{ab}$

Multiplication (once) in the exponent!
Bilinear Pairing

Two (or three) groups with an efficient pairing operation,
\(e: G \times G \rightarrow G_T \) that is “bilinear”

- Typically, prime order (cyclic) groups

- \(e(g^a, g^b) = e(g, g)^{ab} \)

- Multiplication (once) in the exponent!

- \(e(g^a g^a', g^b) = e(g^a, g^b) e(g^a', g^b) \);
 \(e(g^a, g^{bc}) = e(g^{ac}, g^b) \); ...
Bilinear Pairing

- Two (or three) groups with an efficient pairing operation, $e: G \times G \rightarrow G_T$ that is “bilinear”

- Typically, prime order (cyclic) groups

- $e(g^a, g^b) = e(g, g)^{ab}$

- Multiplication (once) in the exponent!

 - $e(g^ag^a', g^b) = e(g^a, g^b) e(g^a', g^b)$; $e(g^a, g^{bc}) = e(g^{ac}, g^b)$; ...

- Not degenerate: $e(g, g,) \neq 1$
Bilinear Pairing

- Two (or three) groups with an efficient pairing operation, \(e: G \times G \rightarrow G_T\) that is “bilinear”

- Typically, prime order (cyclic) groups

- \(e(g^a, g^b) = e(g, g)^{ab}\)

- Multiplication (once) in the exponent!

- \(e(g^a g^a', g^b) = e(g^a, g^b) \cdot e(g^a', g^b) ; \quad e(g^a, g^{bc}) = e(g^{ac}, g^b) \ldots\)

- Not degenerate: \(e(g, g, \ldots) \neq 1\)

- D–BDH Assumption: For random \((a, b, c, z)\), the distributions of \((g^a, g^b, g^c, g^{abc})\) and \((g^a, g^b, g^c, g^z)\) are indistinguishable
3-Party Key Exchange
3-Party Key Exchange

- A single round 3-party key-exchange protocol secure against passive eavesdroppers (under D-BDH assumption)
3-Party Key Exchange

- A single round 3-party key-exchange protocol secure against passive eavesdroppers (under D-BDH assumption)
- Generalizes Diffie-Hellman key-exchange
3-Party Key Exchange

- A single round 3-party key-exchange protocol secure against passive eavesdroppers (under D-BDH assumption)
 - Generalizes Diffie-Hellman key-exchange
 - Let $e : G \times G \rightarrow G_T$ be bilinear and g a generator of G
3-Party Key Exchange

- A single round 3-party key-exchange protocol secure against passive eavesdroppers (under D-BDH assumption)

- Generalizes Diffie-Hellman key-exchange

Let \(e: G \times G \rightarrow G_T \) be bilinear and \(g \) a generator of \(G \)

- Alice broadcasts \(g^a \), Bob broadcasts \(g^b \), and Carol broadcasts \(g^c \)
3-Party Key Exchange

- A single round 3-party key-exchange protocol secure against passive eavesdroppers (under D-BDH assumption)

- Generalizes Diffie-Hellman key-exchange

Let $e: G \times G \rightarrow G_T$ be bilinear and g a generator of G

- Alice broadcasts g^a, Bob broadcasts g^b, and Carol broadcasts g^c

- Each party computes $e(g,g)^{abc}$
3-Party Key Exchange

- A single round 3-party key-exchange protocol secure against passive eavesdroppers (under D-BDH assumption)
 - Generalizes Diffie-Hellman key-exchange

Let \(e: G \times G \rightarrow G_T \) be bilinear and \(g \) a generator of \(G \)

- Alice broadcasts \(g^a \), Bob broadcasts \(g^b \), and Carol broadcasts \(g^c \)
- Each party computes \(e(g,g)^{abc} \)
 - e.g. Alice computes \(e(g,g)^{abc} = e(g^b,g^c)^a \)
3-Party Key Exchange

- A single round 3-party key-exchange protocol secure against passive eavesdroppers (under D-BDH assumption)
- Generalizes Diffie-Hellman key-exchange

Let $e: G \times G \rightarrow G_T$ be bilinear and g a generator of G

- Alice broadcasts g^a, Bob broadcasts g^b, and Carol broadcasts g^c

Each party computes $e(g,g)^{abc}$

- e.g. Alice computes $e(g,g)^{abc} = e(g^b,g^c)^a$

By D-BDH the key $e(g,g)^{abc} = e(g,g^{abc})$ is pseudorandom given eavesdropper's view (g^a,g^b,g^c)
NIZK Proofs
NIZK Proofs

Recall: ZK proofs to enforce honest behavior in a basic protocol (without compromising secrecy properties of the basic protocol)
NIZK Proofs

- Recall: ZK proofs to enforce honest behavior in a basic protocol (without compromising secrecy properties of the basic protocol)
- Non-interactive ZK, using a common random/reference string (CRS)
NIZK Proofs

Recall: ZK proofs to enforce honest behavior in a basic protocol (without compromising secrecy properties of the basic protocol)

Non-interactive ZK, using a common random/reference string (CRS)

Can forge proofs or extract knowledge if a trapdoor for the CRS is available (used by the simulator)
NIZK Proofs

- Recall: ZK proofs to enforce honest behavior in a basic protocol (without compromising secrecy properties of the basic protocol)
- Non-interactive ZK, using a common random/reference string (CRS)
 - Can forge proofs or extract knowledge if a trapdoor for the CRS is available (used by the simulator)
- NIZK useful in (non-interactive) public-key schemes
NIZK Proofs

- Recall: ZK proofs to enforce honest behavior in a basic protocol (without compromising secrecy properties of the basic protocol)
- Non-interactive ZK, using a common random/reference string (CRS)
 - Can forge proofs or extract knowledge if a trapdoor for the CRS is available (used by the simulator)
- NIZK useful in (non-interactive) public-key schemes
 - CRS can be part of the public key: when no security needed against the party generating CRS (e.g. signer of a message, receiver in an encryption scheme)
NIZK Proofs

- Recall: ZK proofs to enforce honest behavior in a basic protocol (without compromising secrecy properties of the basic protocol)
- Non-interactive ZK, using a common random/reference string (CRS)
 - Can forge proofs or extract knowledge if a trapdoor for the CRS is available (used by the simulator)
- NIZK useful in (non-interactive) public-key schemes
 - CRS can be part of the public key: when no security needed against the party generating CRS (e.g. signer of a message, receiver in an encryption scheme)
- Often “witness-indistinguishability” (NIWI or NIWI PoK) sufficient: can’t distinguish proofs using different witnesses
NIZK Proofs

- Recall: ZK proofs to enforce honest behavior in a basic protocol (without compromising secrecy properties of the basic protocol)
- Non-interactive ZK, using a common random/reference string (CRS)
 - Can forge proofs or extract knowledge if a trapdoor for the CRS is available (used by the simulator)
- NIZK useful in (non-interactive) public-key schemes
 - CRS can be part of the public key: when no security needed against the party generating CRS (e.g. signer of a message, receiver in an encryption scheme)
- Often “witness-indistinguishability” (NIWI or NIWI PoK) sufficient: can’t distinguish proofs using different witnesses
 - Trivial if only one witness. Very useful when two kinds of witnesses
NIZK Proofs
NIZK Proofs

NIZK proof/proof of knowledge systems exist for all “NP statements” (i.e., “there exists/I know a witness for the relation...”) under fairly standard general assumptions.
NIZK Proofs

NIZK proof/proof of knowledge systems exist for all "NP statements" (i.e., "there exists/I know a witness for the relation...") under fairly standard general assumptions.

However, involves reduction to an NP-complete relation (e.g. graph Hamiltonicity): considered impractical.
NIZK Proofs

NIZK proof/proof of knowledge systems exist for all “NP statements” (i.e., “there exists/I know a witness for the relation...”) under fairly standard general assumptions.

However, involves reduction to an NP-complete relation (e.g. graph Hamiltonicity) : considered impractical.

Special purpose proof for statements that arise in specific schemes, under specific assumptions.
NIZK Proofs

NIZK proof/proof of knowledge systems exist for all “NP statements” (i.e., “there exists/I know a witness for the relation...”) under fairly standard general assumptions.

- However, involves reduction to an NP-complete relation (e.g. graph Hamiltonicity): considered impractical.

- Special purpose proof for statements that arise in specific schemes, under specific assumptions.

- Much more efficient: no NP-completeness reductions.
NIZK Proofs

- NIZK proof/proof of knowledge systems exist for all “NP statements” (i.e., “there exists/I know a witness for the relation…”) under fairly standard general assumptions

- However, involves reduction to an NP-complete relation (e.g. graph Hamiltonicity): considered impractical

- Special purpose proof for statements that arise in specific schemes, under specific assumptions

- Much more efficient: no NP-completeness reductions

 - e.g. Chaum-Pedersen Honest-Verifier ZK PoK of discrete log
NIZK Proofs

- NIZK proof/proof of knowledge systems exist for all "NP statements" (i.e., "there exists/I know a witness for the relation..."") under fairly standard general assumptions

- However, involves reduction to an NP-complete relation (e.g. graph Hamiltonicity): considered impractical

- Special purpose proof for statements that arise in specific schemes, under specific assumptions

- Much more efficient: no NP-completeness reductions

 - e.g. Chaum-Pedersen Honest-Verifier ZK PoK of discrete log

- May exploit similar assumptions as used in the basic scheme
A NIZK For Statements Involving Pairings
A NIZK For Statements Involving Pairings

Groth–Sahai proofs (2008)
A NIZK For Statements Involving Pairings

- Groth-Sahai proofs (2008)
- Very useful in constructions using bilinear pairings
A NIZK For Statements Involving Pairings

- Groth-Sahai proofs (2008)
- Very useful in constructions using bilinear pairings
- Can get “perfect” witness-indistinguishability or zero-knowledge
A NIZK For Statements Involving Pairings

- Groth-Sahai proofs (2008)
- Very useful in constructions using bilinear pairings
- Can get “perfect” witness-indistinguishability or zero-knowledge
- Then, soundness will be under certain computational assumptions
A NIZK For Statements Involving Pairings
A NIZK For Statements Involving Pairings

an e.g. statement
A NIZK For Statements Involving Pairings

an e.g. statement

I know $X,Y,Z \in G$ and integers u,v,w s.t.
A NIZK For Statements Involving Pairings

an e.g. statement

I know $X, Y, Z \in G$ and integers u, v, w s.t.

$e(X, A) \cdots e(X, Y) = 1$ (pairing product)
A NIZK For Statements Involving Pairings

an e.g. statement

I know \(X,Y,Z \in G\) and integers \(u,v,w\) s.t.

\[
e(X,A) \ldots e(X,Y) = 1 \quad \text{(pairing product)}
\]

\[
X^{au} \ldots Z^{bv} = B \quad \text{(product)}
\]
A NIZK For Statements Involving Pairings

an e.g. statement

I know $X,Y,Z \in G$ and integers u,v,w s.t.

- $e(X,A) \ldots e(X,Y) = 1$ (pairing product)
- $X^{au} \ldots Z^{bv} = B$ (product)
- $a \cdot v + \ldots + b \cdot w = c$
A NIZK For Statements Involving Pairings

an e.g. statement

I know $X,Y,Z \in G$ and integers u,v,w s.t.

- $e(X,A) \cdots e(X,Y) = 1$ (pairing product)
- $X^{au} \cdots Z^{bv} = B$ (product)
- $av + \cdots + bw = c$

(where $A,B \in G$, integers a,b,c are known to both)
A NIZK For Statements Involving Pairings

an e.g. statement

I know $X,Y,Z \in G$ and integers u,v,w s.t.

- $e(X,A) \ldots e(X,Y) = 1$ (pairing product)
- $X^{au} \ldots Z^{bv} = B$ (product)
- $a v + \ldots + b w = c$

(where $A,B \in G$, integers a,b,c are known to both)

Useful in proving statements like “these two commitments are to the same value”, or “I have a signature for a message with a certain property”, when appropriate commitment/signature scheme is used
Applications
Applications

- Fancy signature schemes
Applications

- Fancy signature schemes
- Short group/ring signatures
Applications

- Fancy signature schemes
- Short group/ring signatures
- Short attribute-based signatures
Applications

- Fancy signature schemes
- Short group/ring signatures
- Short attribute-based signatures
- Efficient non-interactive proof of correctness of shuffle
Applications

- Fancy signature schemes
- Short group/ring signatures
- Short attribute-based signatures
- Efficient non-interactive proof of correctness of shuffle
- Non-interactive anonymous credentials
Applications

- Fancy signature schemes
 - Short group/ring signatures
 - Short attribute-based signatures
- Efficient non-interactive proof of correctness of shuffle
- Non-interactive anonymous credentials
- ...

...
Some More Assumptions
Some More Assumptions

- C-BDH Assumption: For random (a,b,c), given \((g^a,g^b,g^c)\) infeasible to compute \(g^{abc}\)
Some More Assumptions

- C-BDH Assumption: For random \((a,b,c)\), given \((g^a, g^b, g^c)\) infeasible to compute \(g^{abc}\)

- Strong DH Assumption: For random \(x\), given \((g, g^x)\) infeasible to find \((y, g^{1/x+y})\). (But can check: \(e(g^x g^y, g^{1/x+y}) = e(g, g)\).)
Some More Assumptions

- **C-BDH Assumption**: For random \((a,b,c)\), given \((g^a, g^b, g^c)\) infeasible to compute \(g^{abc}\)

- **Strong DH Assumption**: For random \(x\), given \((g, g^x)\) infeasible to find \((y, g^{1/x+y})\). (But can check: \(e(g^xg^y, g^{1/x+y}) = e(g,g)\).)

- **q-SDH**: Given \((g, g^x, ..., g^{x^q})\), infeasible to find \((y, g^{1/x+y})\)
Some More Assumptions

- C-BDH Assumption: For random \((a,b,c)\), given \((g^a, g^b, g^c)\) infeasible to compute \(g^{abc}\)

- Strong DH Assumption: For random \(x\), given \((g, g^x)\) infeasible to find \((y, g^{1/x+y})\). (But can check: \(e(g^x g^y, g^{1/x+y}) = e(g, g)\).)

- \(q\)-SDH: Given \((g, g^x, \ldots, g^{x^q})\), infeasible to find \((y, g^{1/x+y})\)

- Decision-Linear Assumption: \((g, g^a, g^b, g^{ax}, g^{by}, g^{x+y})\) and \((g, g^a, g^b, g^{ax}, g^{by}, g^z)\) are indistinguishable
Some More Assumptions

- **C-BDH Assumption**: For random \((a,b,c)\), given \((g^a,g^b,g^c)\) infeasible to compute \(g^{abc}\)

- **Strong DH Assumption**: For random \(x\), given \((g,g^x)\) infeasible to find \((y,g^{1/x+y})\). (But can check: \(e(g^yg^y, g^{1/x+y}) = e(g,g)\).)

- **q-SDH**: Given \((g,g^x,\ldots,g^{x^q})\), infeasible to find \((y,g^{1/x+y})\)

- **Decision-Linear Assumption**: \((g,g^a,g^b,g^{ax},g^{by}, g^{x+y})\) and \((g,g^a,g^b,g^{ax},g^{by}, g^z)\) are indistinguishable

- Variants and other assumptions, in different settings
Some More Assumptions

- **C-BDH Assumption**: For random \((a,b,c) \), given \((g^a,g^b,g^c) \) infeasible to compute \(g^{abc} \)

- **Strong DH Assumption**: For random \(x \), given \((g,g^x) \) infeasible to find \((y,g^{1/x+y}) \). (But can check: \(e(g^xg^y, g^{1/x+y}) = e(g,g) \).)

- **q-SDH**: Given \((g,g^x,...,g^{x^q}) \), infeasible to find \((y,g^{1/x+y}) \)

- **Decision-Linear Assumption**: \((g,g^a,g^b,g^{ax},g^{by}, g^{x+y}) \) and \((g,g^a,g^b,g^{ax},g^{by}, g^z) \) are indistinguishable

- **Variants and other assumptions, in different settings**
 - When \(e:G_1 \times G_2 \rightarrow G_T \): DDH in \(G_1 \) and/or \(G_2 \)
Some More Assumptions

- **C-BDH Assumption**: For random \((a,b,c)\), given \((g^a, g^b, g^c)\) infeasible to compute \(g^{abc}\)

- **Strong DH Assumption**: For random \(x\), given \((g, g^x)\) infeasible to find \((y, g^{1/x+y})\). (But can check: \(e(g^x g^y, g^{1/x+y}) = e(g, g)\).)

- **q-SDH**: Given \((g, g^x, \ldots, g^{x^q})\), infeasible to find \((y, g^{1/x+y})\)

- **Decision-Linear Assumption**: \((g, g^a, g^b, g^{ax}, g^{by}, g^{x+y})\) and \((g, g^a, g^b, g^{ax}, g^{by}, g^z)\) are indistinguishable

- **Variants and other assumptions, in different settings**
 - When \(e: G_1 \times G_2 \to G_T\): DDH in \(G_1\) and/or \(G_2\)
 - When \(G\) has composite order: Pseudorandomness of random elements from a prime order subgroup of \(G\).
Cheap Crypto
Cheap Crypto

- A significant amount of effort/expertise required to reduce the security to (standard) hardness assumptions
Cheap Crypto

- A significant amount of effort/expertise required to reduce the security to (standard) hardness assumptions
- Or even to new “simple” assumptions
Cheap Crypto

- A significant amount of effort/expertise required to reduce the security to (standard) hardness assumptions
- Or even to new “simple” assumptions
- New assumptions may not have been actively attacked
Cheap Crypto

- A significant amount of effort/expertise required to reduce the security to (standard) hardness assumptions
 - Or even to new “simple” assumptions
 - New assumptions may not have been actively attacked
 - Sometimes the resulting schemes may be quite complicated and relatively inefficient
Cheap Crypto

- A significant amount of effort/expertise required to reduce the security to (standard) hardness assumptions
 - Or even to new “simple” assumptions
 - New assumptions may not have been actively attacked
- Sometimes the resulting schemes may be quite complicated and relatively inefficient
- Quicker/cheaper alternative: Use heuristic idealizations
Cheap Crypto

- A significant amount of effort/expertise required to reduce the security to (standard) hardness assumptions
 - Or even to new “simple” assumptions
- New assumptions may not have been actively attacked
- Sometimes the resulting schemes may be quite complicated and relatively inefficient
- Quicker/cheaper alternative: Use heuristic idealizations
 - Random Oracle Model
Cheap Crypto

- A significant amount of effort/expertise required to reduce the security to (standard) hardness assumptions
 - Or even to new “simple” assumptions
- New assumptions may not have been actively attacked
- Sometimes the resulting schemes may be quite complicated and relatively inefficient
- Quicker/cheaper alternative: Use heuristic idealizations
 - Random Oracle Model
 - Generic Group Model
Cheap Crypto

- A significant amount of effort/expertise required to reduce the security to (standard) hardness assumptions
 - Or even to new “simple” assumptions
- New assumptions may not have been actively attacked
- Sometimes the resulting schemes may be quite complicated and relatively inefficient
- Quicker/cheaper alternative: Use heuristic idealizations
 - Random Oracle Model
 - Generic Group Model
- Useful in at least “prototyping” new primitives (e.g. IBE)
Generic Group Model
Generic Group Model

A group is modeled as an oracle, which uses “handles” to represent group elements.
Generic Group Model

- A group is modeled as an oracle, which uses “handles” to represent group elements.
- The oracle maintains an internal table mapping group elements to handles one-to-one. Handles are generated arbitrarily in response to queries (say, randomly, or “symbolically”)

A group is modeled as an oracle, which uses “handles” to represent group elements.

The oracle maintains an internal table mapping group elements to handles one-to-one. Handles are generated arbitrarily in response to queries (say, randomly, or “symbolically”)

Provides the following operations:
Generic Group Model

- A group is modeled as an oracle, which uses “handles” to represent group elements.
- The oracle maintains an internal table mapping group elements to handles one-to-one. Handles are generated arbitrarily in response to queries (say, randomly, or “symbolically”)
- Provides the following operations:
 - Sample: pick random x and return Handle(x)
A group is modeled as an oracle, which uses “handles” to represent group elements.

The oracle maintains an internal table mapping group elements to handles one-to-one. Handles are generated arbitrarily in response to queries (say, randomly, or “symbolically”).

Provides the following operations:

Sample: pick random x and return $\text{Handle}(x)$

Multiply: On input two handles h_1 and h_2, return $\text{Handle}(\text{Elem}(h_1).\text{Elem}(h_2))$
A group is modeled as an oracle, which uses “handles” to represent group elements.

The oracle maintains an internal table mapping group elements to handles one-to-one. Handles are generated arbitrarily in response to queries (say, randomly, or “symbolically”).

Provides the following operations:

- Sample: pick random x and return Handle(x)
- Multiply: On input two handles h_1 and h_2, return Handle(Elem(h_1).Elem(h_2))
- Raise: On input a handle h and integer a (can be negative), return Handle(Elem(h)a)
Generic Group Model

- A group is modeled as an oracle, which uses “handles” to represent group elements.
- The oracle maintains an internal table mapping group elements to handles one-to-one. Handles are generated arbitrarily in response to queries (say, randomly, or “symbolically”).
- Provides the following operations:
 - Sample: pick random x and return Handle(x)
 - Multiply: On input two handles \(h_1 \) and \(h_2 \), return Handle(Elem(h_1).Elem(h_2))
 - Raise: On input a handle h and integer a (can be negative), return Handle(Elem(h)^a)
- In addition, if modeling a group with bilinear pairing, also provides the pairing operation and operations for the target group.
Generic Group Model

- A group is modeled as an oracle, which uses “handles” to represent group elements.
- The oracle maintains an internal table mapping group elements to handles one-to-one. Handles are generated arbitrarily in response to queries (say, randomly, or “symbolically”).
- Provides the following operations:
 - Sample: pick random \(x \) and return \(\text{Handle}(x) \)
 - Multiply: On input two handles \(h_1 \) and \(h_2 \), return \(\text{Handle}(\text{Elem}(h_1).\text{Elem}(h_2)) \)
 - Raise: On input a handle \(h \) and integer \(a \) (can be negative), return \(\text{Handle}(\text{Elem}(h)^a) \)
- In addition, if modeling a group with bilinear pairing, also provides the pairing operation and operations for the target group.
- Discrete-log assumption, DDH (or B-DDH), DLin etc. are true in GGM.
Generic Group Model
Generic Group Model

Cryptographic scheme will be defined in the generic group model
Generic Group Model

- Cryptographic scheme will be defined in the generic group model.
- Typically an underlying group of exponentially large order.
Generic Group Model

Cryptographic scheme will be defined in the generic group model.

Typically an underlying group of exponentially large order.

Adversary knows the underlying group structure, and may perform unlimited computations, but is allowed to query the oracle only a polynomial number of times over all.
Generic Group Model

- Cryptographic scheme will be defined in the generic group model.
- Typically an underlying group of exponentially large order.
- Adversary knows the underlying group structure, and may perform unlimited computations, but is allowed to query the oracle only a polynomial number of times over all.
- Can write the discrete log of every handle as a linear polynomial (or a quadratic polynomial, if allowing pairing) in variables corresponding to the sampling operation. An “accidental collision” if two formally different polynomials give same value.
Generic Group Model

Cryptographic scheme will be defined in the generic group model.

Typically an underlying group of exponentially large order.

Adversary knows the underlying group structure, and may perform unlimited computations, but is allowed to query the oracle only a polynomial number of times over all.

Can write the discrete log of every handle as a linear polynomial (or a quadratic polynomial, if allowing pairing) in variables corresponding to the sampling operation. An “accidental collision” if two formally different polynomials give same value.

Negligible probability of accidental collision: by “Schwartz-Zippel Lemma”, number of zeroes of a (non-zero) low-degree multi-variate polynomial is bounded.
Cryptographic scheme will be defined in the generic group model.

Typically an underlying group of exponentially large order.

Adversary knows the underlying group structure, and may perform unlimited computations, but is allowed to query the oracle only a polynomial number of times over all.

Can write the discrete log of every handle as a linear polynomial (or a quadratic polynomial, if allowing pairing) in variables corresponding to the sampling operation. An “accidental collision” if two formally different polynomials give same value.

Negligible probability of accidental collision: by “Schwartz-Zippel Lemma”, number of zeroes of a (non-zero) low-degree multi-variate polynomial is bounded.

And an exhaustive analysis in terms of formal polynomials to show requisite security properties.
Generic Group Model
Generic Group Model

What does security in GGM mean?
Generic Group Model

What does security in GGM mean?

Secure against adversaries who do not “look inside” the group
Generic Group Model

- What does security in GGM mean?
- Secure against adversaries who do not “look inside” the group
- Risk: There maybe a simple attack against our construction because of some specific (otherwise benign) structure in the group
What does security in GGM mean?

Secure against adversaries who do not “look inside” the group

Risk: There maybe a simple attack against our construction because of some specific (otherwise benign) structure in the group

No “if this scheme is broken, so are many others” guarantee
Generic Group Model

What does security in GGM mean?

Secure against adversaries who do not “look inside” the group

Risk: There maybe a simple attack against our construction because of some specific (otherwise benign) structure in the group

No “if this scheme is broken, so are many others” guarantee

Better practice: when possible identify simple (new) assumptions sufficient for the security of the scheme. Then prove the assumption in the generic group model
“Knowledge” Assumptions
“Knowledge” Assumptions

KEA-1: Given \((g, g^a)\) for a random generator \(g\) and random \(a\), if a PPT adversary extends it to a DDH tuple \((g, g^a, g^b, g^{ab})\) then it “must know” \(b\)
“Knowledge” Assumptions

KEA-1: Given \((g, g^a)\) for a random generator \(g\) and random \(a\), if a PPT adversary extends it to a DDH tuple \((g, g^a, g^b, g^{ab})\) then it “must know” \(b\)

KEA-3: Given \((g, g^a, g^b, g^{ab})\) for random \(g, a, b\), if a PPT adversary outputs \((h, h^b)\), then it “must know” \(c_1, c_2\) such that
\[h = g^{c_1} (g^a)^{c_2} \] and
\[h^b = (g^b)^{c_1} (g^{ab})^{c_2} \]
"Knowledge" Assumptions

KEA-1: Given \((g, g^a)\) for a random generator \(g\) and random \(a\), if a PPT adversary extends it to a DDH tuple \((g, g^a, g^b, g^{ab})\) then it "must know" \(b\)

KEA-3: Given \((g, g^a, g^b, g^{ab})\) for random \(g, a, b\), if a PPT adversary outputs \((h, h^b)\), then it "must know" \(c_1, c_2\) such that \(h = g^{c_1} (g^a)^{c_2}\) (and \(h^b = (g^b)^{c_1} (g^{ab})^{c_2}\))

By "fixing" KEA-2 (which forgot to consider \(c_1\))
“Knowledge” Assumptions

 KEA-1: Given \((g,g^a)\) for a random generator \(g\) and random \(a\), if a PPT adversary extends it to a DDH tuple \((g,g^a,g^b,g^{ab})\) then it “must know” \(b\)

 KEA-3: Given \((g,g^a,g^b,g^{ab})\) for random \(g,a,b\), if a PPT adversary outputs \((h,h^b)\), then it “must know” \(c_1, c_2\) such that \(h=g^{c_1} (g^a)^{c_2}\) (and \(h^b=(g^b)^{c_1} (g^{ab})^{c_2}\))

 By “fixing” KEA-2 (which forgot to consider \(c_1\))

 KEA-DH: Given \(g\), if a PPT adversary extends it to a DDH tuple \((g,g^a,g^b,g^{ab})\) then it “must know” either \(a\) or \(b\)
"Knowledge" Assumptions

KEA-1: Given \((g,g^a)\) for a random generator \(g\) and random \(a\), if a PPT adversary extends it to a DDH tuple \((g,g^a,g^b,g^{ab})\) then it "must know" \(b\)

KEA-3: Given \((g,g^a,g^b,g^{ab})\) for random \(g,a,b\), if a PPT adversary outputs \((h,h^b)\), then it "must know" \(c_1, c_2\) such that \(h=g^{c_1}(g^a)^{c_2}\) (and \(h^b=(g^b)^{c_1}(g^{ab})^{c_2}\))

By "fixing" KEA-2 (which forgot to consider \(c_1\))

KEA-DH: Given \(g\), if a PPT adversary extends it to a DDH tuple \((g,g^a,g^b,g^{ab})\) then it "must know" either \(a\) or \(b\)

All provable in the generic group model (for \(g\) with large order)
“Knowledge” Assumptions

KEA-1: Given \((g, g^a)\) for a random generator \(g\) and random \(a\), if a PPT adversary extends it to a DDH tuple \((g, g^a, g^b, g^{ab})\) then it “must know” \(b\)

KEA-3: Given \((g, g^a, g^b, g^{ab})\) for random \(g, a, b\), if a PPT adversary outputs \((h, h^b)\), then it “must know” \(c_1, c_2\) such that \(h = g^{c_1} (g^a)^{c_2}\) (and \(h^b = (g^b)^{c_1} (g^{ab})^{c_2}\))

By “fixing” KEA-2 (which forgot to consider \(c_1\))

KEA-DH: Given \(g\), if a PPT adversary extends it to a DDH tuple \((g, g^a, g^b, g^{ab})\) then it “must know” either \(a\) or \(b\)

All provable in the generic group model (for \(g\) with large order)

Even if the group has a bilinear pairing operation
Today
Today

- Bilinear Pairings
Today

- Bilinear Pairings
- D-BDH and Joux's 3-party key-exchange
Today

- Bilinear Pairings
- D-BDH and Joux’s 3-party key-exchange
- Groth-Sahai NIZK/NIWI proofs/PoKs
Today

- Bilinear Pairings
 - D-BDH and Joux’s 3-party key-exchange
 - Groth-Sahai NIZK/NIWI proofs/PoKs
 - Various recent assumptions used
Today

- Bilinear Pairings
 - D-BDH and Joux’s 3-party key-exchange
 - Groth-Sahai NIZK/NIWI proofs/PoKs
 - Various recent assumptions used
- Generic Group Model
Today

- Bilinear Pairings
 - D-BDH and Joux’s 3-party key-exchange
 - Groth-Sahai NIZK/NIWI proofs/PoKs
 - Various recent assumptions used
- Generic Group Model
- Knowledge-of-Exponent Assumptions