Voting

Lecture 20
Requirements
Requirements

- Integrity/End-to-End verifiability
Requirements

- Integrity/End-to-End verifiability
 - Collected as cast: Each voter should be convinced that their vote was collected correctly
Requirements

- Integrity/End-to-End verifiability
 - Collected as cast: Each voter should be convinced that their vote was collected correctly
 - Counted as collected: Tallying is publicly verifiable
Requirements

- Integrity/End-to-End verifiability
 - Collected as cast: Each voter should be convinced that their vote was collected correctly
 - Counted as collected: Tallying is publicly verifiable
- Secrecy
Requirements

- **Integrity/End-to-End verifiability**
 - Collected as cast: Each voter should be convinced that their vote was collected correctly
 - Counted as collected: Tallying is publicly verifiable

- **Secrecy**
 - Honest voters’ votes are not revealed by the system (beyond what the tally reveals)
Requirements

- Integrity/End-to-End verifiability
 - Collected as cast: Each voter should be convinced that their vote was collected correctly
 - Counted as collected: Tallying is publicly verifiable

- Secrecy
 - Honest voters’ votes are not revealed by the system (beyond what the tally reveals)
 - Incoercibility: Even corrupt voters should not be able to convince an adversary about their vote (i.e., no vote-buying)
A Voting Architecture
A Voting Architecture

- Produce a public list which encodes all the votes cast
A Voting Architecture

- Produce a public list which encodes all the votes cast
- Individual voters can verify that their vote is correctly captured in this list
A Voting Architecture

- Produce a public list which encodes all the votes cast
- Individual voters can verify that their vote is correctly captured in this list
- Based on a receipt (and other knowledge) from the polling booth
A Voting Architecture

- Produce a public list which encodes all the votes cast
 - Individual voters can verify that their vote is correctly captured in this list
 - Based on a receipt (and other knowledge) from the polling booth
- Tallying is done on this list
A Voting Architecture

- Produce a public list which encodes all the votes cast
 - Individual voters can verify that their vote is correctly captured in this list
 - Based on a receipt (and other knowledge) from the polling booth
 - Tallying is done on this list
 - Publicly verifiable that the posted votes are correctly tabulated
A Voting Architecture

- Produce a public list which encodes all the votes cast
 - Individual voters can verify that their vote is correctly captured in this list
 - Based on a receipt (and other knowledge) from the polling booth
 - Tallying is done on this list
 - Publicly verifiable that the posted votes are correctly tabulated

Front-End
A Voting Architecture

- Produce a public list which encodes all the votes cast
 - Individual voters can verify that their vote is correctly captured in this list
 - Based on a receipt (and other knowledge) from the polling booth
 - Tallying is done on this list
 - Publicly verifiable that the posted votes are correctly tabulated

Front-End

Ballot Preparation
A Voting Architecture

- Produce a public list which encodes all the votes cast
 - Individual voters can verify that their vote is correctly captured in this list
 - Based on a receipt (and other knowledge) from the polling booth
 - Tallying is done on this list
 - Publicly verifiable that the posted votes are correctly tabulated

Front-End
- Ballot Preparation
- Vote capturing/Receipt issue
A Voting Architecture

- Produce a public list which encodes all the votes cast
 - Individual voters can verify that their vote is correctly captured in this list
 - Based on a receipt (and other knowledge) from the polling booth
 - Tallying is done on this list
 - Publicly verifiable that the posted votes are correctly tabulated

Front-End
- Ballot Preparation
- Vote capturing/Receipt issue
- Verification
A Voting Architecture

- Produce a public list which encodes all the votes cast
- Individual voters can verify that their vote is correctly captured in this list
- Based on a receipt (and other knowledge) from the polling booth
- Tallying is done on this list
- Publicly verifiable that the posted votes are correctly tabulated

Front-End
- Ballot Preparation
- Vote capturing/Receipt issue
- Verification

Back-End
A Voting Architecture

- Produce a public list which encodes all the votes cast
 - Individual voters can verify that their vote is correctly captured in this list
 - Based on a receipt (and other knowledge) from the polling booth
 - Tallying is done on this list
 - Publicly verifiable that the posted votes are correctly tabulated

- Front-End
 - Ballot Preparation
 - Vote capturing/Receipt issue

- Back-End
 - Verification
 - Tallying/Verification
Use MPC?
Use MPC?

- Impractical
Use MPC?

- Impractical
- In the front-end, want voters not to have to do crypto, and arrive/leave one by one
Use MPC?

- Impractical
 - In the front-end, want voters not to have to do crypto, and arrive/leave one by one
 - OK in the back-end, but needs to be very efficient if a large election
Use MPC?

- Impractical
 - In the front-end, want voters not to have to do crypto, and arrive/leave one by one
 - OK in the back-end, but needs to be very efficient if a large election
- Doesn’t account for incoercibility (unless security requirement augmented)
Incoercibility
Incoercibility

Coercion: voters can get rewards from adversary by following adversary’s instructions in a detectable fashion
Incoercibility

- Coercion: voters can get rewards from adversary by following adversary's instructions in a detectable fashion
- What is not coercion?
Incoercibility

- Coercion: voters can get rewards from adversary by following adversary’s instructions in a detectable fashion

- What is not coercion?
 - e.g. Adversary rewards the entire set of voters if all votes are for candidate A
Incoercibility

Coercion: voters can get rewards from adversary by following adversary’s instructions in a detectable fashion

What is not coercion?

- e.g. Adversary rewards the entire set of voters if all votes are for candidate A

- Voters cannot follow arbitrary instructions from the environment and still collect the reward
Incoercibility

- Coercion: voters can get rewards from adversary by following adversary’s instructions in a detectable fashion.

- What is not coercion?
 - e.g. Adversary rewards the entire set of voters if all votes are for candidate A.
 - Voters cannot follow arbitrary instructions from the environment and still collect the reward.
 - Unavoidable coercion (even in the Ideal world).
Incoercibility

- Coercion: voters can get rewards from adversary by following adversary’s instructions in a detectable fashion.

- What is not coercion?
 - e.g. Adversary rewards the entire set of voters if all votes are for candidate A.
 - Voters cannot follow arbitrary instructions from the environment and still collect the reward.
 - Unavoidable coercion (even in the Ideal world).

- We need to protect against further coercion than is possible in the Ideal world.
Defining Incoercibility

Real as incoercible (and secure) as Ideal if:
Defining Incoercibility

Real as incoercible (and secure) as Ideal if:
Defining Incoercibility

Real as incoercible (and secure) as Ideal if:
Defining Incoercibility

Real as incoercible (and secure) as Ideal if:

∀ and
∃ and s.t.
∀ IDEAL/c ≈ REAL/c and
IDEAL/u ≈ REAL/u
Defining Incoercibility

Real as incoercible (and secure) as Ideal if:

∀ and
∃ and s.t.
IDEAL/c \approx REAL/c
and
IDEAL/u \approx REAL/u

Hence REAL/c and REAL/u only as distinguishable as IDEAL/c and IDEAL/u
Defining Incoercibility

Real as incoercible (and secure) as Ideal if:

∀ and ∃ and s.t.

IDEAL/c \approx REAL/c
and
IDEAL/u \approx REAL/u

Hence REAL/c and REAL/u only as distinguishable as IDEAL/c and IDEAL/u i.e., if coercion can be simulated in Ideal, it can be simulated in Real too.
Defining Incoercibility

Real as incoercible (and secure) as Ideal if:
\[\forall \text{ and } \exists \text{ and } \text{s.t.} \]
\[\forall \text{ and } \text{IDEAL/c} \approx \text{REAL/c} \text{ and } \text{IDEAL/u} \approx \text{REAL/u} \]

Hence REAL/c and REAL/u only as distinguishable as IDEAL/c and IDEAL/u
i.e., if coercion can be simulated in Ideal, it can be simulated in Real too
Definition says nothing about the existence/choice of the Ideal coercion simulator

IDEAL/coerced

IDEAL/uncoerced

REAL/coerced

REAL/uncoerced
Defining Incoercibility

Real as incoercible (and secure) as Ideal if:

\[\forall \text{ and } \exists \text{ and } \text{s.t.} \]

\[\forall \text{ IDEAL/c } \approx \text{ REAL/c} \text{ and } \text{ IDEAL/u } \approx \text{ REAL/u} \]

Hence REAL/c and REAL/u only as distinguishable as IDEAL/c and IDEAL/u

i.e., if coercion can be simulated in Ideal, it can be simulated in Real too

Definition says nothing about the existence/choice of the Ideal coercion simulator

Meaningful only if Real/u simulator is credible
Defining Incoercibility

Real as incoercible (and secure) as Ideal if:

\[\forall \text{ and } \exists \text{ and s.t. } \]

\[\text{IDEAL/c} \approx \text{REAL/c} \]
and

\[\text{IDEAL/u} \approx \text{REAL/u} \]

Hence REAL/c and REAL/u only as distinguishable as IDEAL/c and IDEAL/u

i.e., if coercion can be simulated in Ideal, it can be simulated in Real too

Definition says nothing about the existence/choice of the Ideal coercion simulator

Meaningful only if Real/u simulator is credible
e-Voting: First Try
e-Voting: First Try

Front-end:
e-Voting: First Try

Front-end:

- Voters encrypt their votes using a threshold encryption scheme, and submit the vote; receives a receipt showing the ciphertext
e-Voting:
First Try

Front-end:
- Voters encrypt their votes using a threshold encryption scheme, and submit the vote; receives a receipt showing the ciphertext
- The encrypted vote is publicly posted
e-Voting: First Try

Front-end:
- Voters encrypt their votes using a threshold encryption scheme, and submit the vote; receives a receipt showing the ciphertext
- The encrypted vote is publicly posted

Back-end:
e-Voting: First Try

Front-end:
- Voters encrypt their votes using a threshold encryption scheme, and submit the vote; receives a receipt showing the ciphertext
- The encrypted vote is publicly posted

Back-end:
- A mix-net shuffles, decrypts the set of votes. Publicly tallied
e-Voting: First Try

Front-end:
- Voters encrypt their votes using a threshold encryption scheme, and submit the vote; receives a receipt showing the ciphertext
- The encrypted vote is publicly posted

Back-end:
- A mix-net shuffles, decrypts the set of votes. Publicly tallied
 - Each candidate/observer can have a mix-net server
e-Voting: First Try

Front-end:
- Voters encrypt their votes using a threshold encryption scheme, and submit the vote; receives a receipt showing the ciphertext.
- The encrypted vote is publicly posted.

Back-end:
- A mix-net shuffles, decrypts the set of votes. Publicly tallied.
 - Each candidate/observer can have a mix-net server.
 - Public proofs given to each other (or to the public at large, using Fiat-Shamir heuristics).
e-Voting: First Try

Front-end:
- Voters encrypt their votes using a threshold encryption scheme, and submit the vote; receives a receipt showing the ciphertext.
- The encrypted vote is publicly posted.

Back-end:
- A mix-net shuffles, decrypts the set of votes. Publicly tallied.
 - Each candidate/observer can have a mix-net server.
 - Public proofs given to each other (or to the public at large, using Fiat-Shamir heuristics).

Requires voters to use/trust computational devices
e-Voting: First Try

Front-end:
- Voters encrypt their votes using a threshold encryption scheme, and submit the vote; receives a receipt showing the ciphertext.
- The encrypted vote is publicly posted.

Back-end:
- A mix-net shuffles, decrypts the set of votes. Publicly tallied.
 - Each candidate/observer can have a mix-net server.
 - Public proofs given to each other (or to the public at large, using Fiat-Shamir heuristics).

Requires voters to use/trust computational devices.

Provide encryption devices that have been “verified” by the public? (Perception of) threats: difficulty in verifying devices, substituting devices...
Challenge
Challenge

- Keep it simple for the voter
Challenge

- Keep it simple for the voter
- No crypto to ensure vote collected as cast
Challenge

- Keep it simple for the voter
 - No crypto to ensure vote collected as cast
- Public list will contain information that proves to the voter that the vote collected is as cast
Challenge

- Keep it simple for the voter
 - No crypto to ensure vote collected as cast
- Public list will contain information that proves to the voter that the vote collected is as cast
- Should not allow voter to prove to a vote-buyer how the vote was cast
Prêt à Voter
Prêt à Voter

- Ballot has two parts
Prêt à Voter

Ballot has two parts

| Carol | |
|-------------------|
| Alice | |
| Barack | X |
| ahdf87 | |
Prêt à Voter

Ballot has two parts

Left-hand side: Candidate list
Prêt à Voter

- Ballot has two parts
 - Left-hand side: Candidate list
 - Right-hand side: Vote-mark and encrypted candidate list (and a serial number)
Prêt à Voter

- Ballot has two parts
 - Left-hand side: Candidate list
 - Right-hand side: Vote-mark and encrypted candidate list (and a serial number)

- Right-hand part has enough information for tallying. Will be posted publicly. Also serves as receipt.
Prêt à Voter

Ballot has two parts

- Left-hand side: Candidate list
- Right-hand side: Vote-mark and encrypted candidate list (and a serial number)

Right-hand part has enough information for tallying. Will be posted publicly. Also serves as receipt.

Auditing assures that w.h.p the two parts are consistent
Prêt à Voter

- Ballot has two parts
 - Left-hand side: Candidate list
 - Right-hand side: Vote-mark and encrypted candidate list (and a serial number)

- Right-hand part has enough information for tallying. Will be posted publicly. Also serves as receipt.

- Auditing assures that w.h.p the two parts are consistent

- Voter retains a copy of the right-hand part (possibly with a digital signature, verified by helpers outside the booth, to prevent false claims) as a receipt to verify the publicly posted vote. Left-hand part must be destroyed before leaving the polling-booth.
<table>
<thead>
<tr>
<th>Prêt à Voter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carol</td>
</tr>
<tr>
<td>Alice</td>
</tr>
<tr>
<td>Barack</td>
</tr>
<tr>
<td>ahdf87</td>
</tr>
</tbody>
</table>

| Carol |
| Alice |
| Barack | X |
| ahdf87 |
Prêt à Voter

- Tallying: combine vote-mark and encrypted candidate list into an encrypted vote
Prêt à Voter

- Tallying: combine vote-mark and encrypted candidate list into an encrypted vote

- Candidate list is cyclically permuted by s positions
Prêt à Voter

- Tallying: combine vote-mark and encrypted candidate list into an encrypted vote
- Candidate list is cyclically permuted by s positions
- Encryption encodes s

<table>
<thead>
<tr>
<th></th>
<th>Carol</th>
<th>Alice</th>
<th>Barack</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ahdf87</td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Prêt à Voter

- Tallying: combine vote-mark and encrypted candidate list into an encrypted vote
 - Candidate list is cyclically permuted by s positions
 - Encryption encodes s
 - Homomorphically add vote-mark position to encryption of s, to get encryption of candidate's index
Prêt à Voter

- Tallying: combine vote-mark and encrypted candidate list into an encrypted vote
 - Candidate list is cyclically permuted by s positions
 - Encryption encodes s
 - Homomorphically add vote-mark position to encryption of s, to get encryption of candidate’s index
 - Additive homomorphism: Use Paillier, or El Gamal with messages in the exponent (since only a few messages possible)
Prêt à Voter

<table>
<thead>
<tr>
<th></th>
<th>Carol</th>
<th>Alice</th>
<th>Barack</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ahd8f7</td>
</tr>
</tbody>
</table>
Prêt à Voter

Counted as collected: ensured by the mix-net

<table>
<thead>
<tr>
<th></th>
<th>Carol</th>
<th>Alice</th>
<th>Barack</th>
<th>ahdf87</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>
Prêt à Voter

- Counted as collected: ensured by the mix-net
- To ensure collected as cast, need to ensure that the ballot papers are correctly formed
Prêt à Voter

- Counted as collected: ensured by the mix-net
- To ensure collected as cast, need to ensure that the ballot papers are correctly formed
- Auditing: before voting, select a random subset of ballots and have them decrypted

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carol</td>
<td>Alice</td>
<td>Barack</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ahdf87</td>
</tr>
</tbody>
</table>
Prêt à Voter

- Counted as collected: ensured by the mix-net
- To ensure collected as cast, need to ensure that the ballot papers are correctly formed
- Auditing: before voting, select a random subset of ballots and have them decrypted
- If no errors found in a large random sample (say half the ballots) probability of more than a few bad ballots is very small (say, 2^{-t} probability that more than t bad)

| Carol |
| Alice |
| Barack | x
| ahdf87 |

Prêt à Voter

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carol</td>
<td></td>
</tr>
<tr>
<td>Alice</td>
<td></td>
</tr>
<tr>
<td>Barack</td>
<td>a hdf87</td>
</tr>
</tbody>
</table>
Prêt à Voter

For secrecy, need to ensure LHS of ballot-paper remains secret (till voting) and encryption in the RHS is honest (i.e., randomly generated)
Prêt à Voter

For secrecy, need to ensure LHS of ballot-paper remains secret (till voting) and encryption in the RHS is honest (i.e., randomly generated)
Prêt à Voter

- For secrecy, need to ensure LHS of ballot-paper remains secret (till voting) and encryption in the RHS is honest (i.e., randomly generated)

- A trusted/audited ballot-sheet printer with an encryption key pair
Prêt à Voter

For secrecy, need to ensure LHS of ballot-paper remains secret (till voting) and encryption in the RHS is honest (i.e., randomly generated)

- A trusted/audited ballot-sheet printer with an encryption key pair
- Use MPC (among candidates/trustees) to encrypt a random rotation twice: one ciphertext using printer’s PK (in the left-hand side) and one using the mix-net’s PK
For secrecy, need to ensure LHS of ballot-paper remains secret (till voting) and encryption in the RHS is honest (i.e., randomly generated)

- A trusted/audited ballot-sheet printer with an encryption key pair
- Use MPC (among candidates/trustees) to encrypt a random rotation twice: one ciphertext using printer’s PK (in the left-hand side) and one using the mix-net’s PK
- At the polling-booth the printer decrypts the left-hand ciphertext, and prints the candidate names in order
For secrecy, need to ensure LHS of ballot-paper remains secret (till voting) and encryption in the RHS is honest (i.e., randomly generated)

A trusted/audited ballot-sheet printer with an encryption key pair

Use MPC (among candidates/trustees) to encrypt a random rotation twice: one ciphertext using printer’s PK (in the left-hand side) and one using the mix-net’s PK

At the polling-booth the printer decrypts the left-hand ciphertext, and prints the candidate names in order

Can be audited by the voter: choose one of (say) two ballot sheets for auditing later; printer’s key kept shared among auditors who can audit sheets selected by the voters
Prêt à Voter

- For secrecy, need to ensure LHS of ballot-paper remains secret (till voting) and encryption in the RHS is honest (i.e., randomly generated)

- A trusted/audited ballot-sheet printer with an encryption key pair

- Use MPC (among candidates/trustees) to encrypt a random rotation twice: one ciphertext using printer’s PK (in the left-hand side) and one using the mix-net’s PK

- At the polling-booth the printer decrypts the left-hand ciphertext, and prints the candidate names in order

- Can be audited by the voter: choose one of (say) two ballot sheets for auditing later; printer’s key kept shared among auditors who can audit sheets selected by the voters
For secrecy, need to ensure LHS of ballot-paper remains secret (till voting) and encryption in the RHS is honest (i.e., randomly generated)

A trusted/audited ballot-sheet printer with an encryption key pair

Use MPC (among candidates/trustees) to encrypt a random rotation twice: one ciphertext using printer’s PK (in the left-hand side) and one using the mix-net’s PK

At the polling-booth the printer decrypts the left-hand ciphertext, and prints the candidate names in order

Can be audited by the voter: choose one of (say) two ballot sheets for auditing later; printer’s key kept shared among auditors who can audit sheets selected by the voters
Threats/Remedies
Threats/Remedies

Chain voting: One ballot-sheet smuggled out and marked. Then repeatedly coerce voters to use the marked ballot-sheet and return with a blank ballot-sheet
Threats/Remedies

Chain voting: One ballot-sheet smuggled out and marked. Then repeatedly coerce voters to use the marked ballot-sheet and return with a blank ballot-sheet

Officials should ensure ballot-sheet turned in is the same as ballot-sheet given
Threats/Remedies

- **Chain voting:** One ballot-sheet smuggled out and marked. Then repeatedly coerce voters to use the marked ballot-sheet and return with a blank ballot-sheet.

 - Officials should ensure ballot-sheet turned in is the same as ballot-sheet given.

- **Randomization attack:** Coercer can ask voters to mark the first candidate, thereby ensuring they vote randomly.
Threats/Remedies

Chain voting: One ballot-sheet smuggled out and marked. Then repeatedly coerce voters to use the marked ballot-sheet and return with a blank ballot-sheet

- Officials should ensure ballot-sheet turned in is the same as ballot-sheet given

Randomization attack: Coercer can ask voters to mark the first candidate, thereby ensuring they vote randomly

- Comparable to coercing to not cast a vote (allowed in Ideal)
Threats/Remedies

Chain voting: One ballot-sheet smuggled out and marked. Then repeatedly coerce voters to use the marked ballot-sheet and return with a blank ballot-sheet.

- Officials should ensure ballot-sheet turned in is the same as ballot-sheet given.

Randomization attack: Coercer can ask voters to mark the first candidate, thereby ensuring they vote randomly.

- Comparable to coercing to not cast a vote (allowed in Ideal).

Discarded receipt attack: If corrupt election authority learns that a receipt was discarded, can safely change the collected vote.
Threats/Remedies

- **Chain voting:** One ballot-sheet smuggled out and marked. Then repeatedly coerce voters to use the marked ballot-sheet and return with a blank ballot-sheet.
 - Officials should ensure ballot-sheet turned in is the same as ballot-sheet given.

- **Randomization attack:** Coercer can ask voters to mark the first candidate, thereby ensuring they vote randomly.
 - Comparable to coercing to not cast a vote (allowed in Ideal).

- **Discarded receipt attack:** If corrupt election authority learns that a receipt was discarded, can safely change the collected vote.

- **Retained left-hand part:** can be used to sell votes.
Threats/Remedies

- **Chain voting:** One ballot-sheet smuggled out and marked. Then repeatedly coerce voters to use the marked ballot-sheet and return with a blank ballot-sheet.
 - Officials should ensure ballot-sheet turned in is the same as ballot-sheet given.

- **Randomization attack:** Coercer can ask voters to mark the first candidate, thereby ensuring they vote randomly.
 - Comparable to coercing to not cast a vote (allowed in Ideal).

- **Discarded receipt attack:** If corrupt election authority learns that a receipt was discarded, can safely change the collected vote.

- **Retained left-hand part:** can be used to sell votes.
 - Ensure it is destroyed. Also make decoys available.
Threats/Remedies

Chain voting: One ballot-sheet smuggled out and marked. Then repeatedly coerce voters to use the marked ballot-sheet and return with a blank ballot-sheet

Officials should ensure ballot-sheet turned in is the same as ballot-sheet given

Randomization attack: Coercer can ask voters to mark the first candidate, thereby ensuring they vote randomly

Comparable to coercing to not cast a vote (allowed in Ideal)

Discarded receipt attack: If corrupt election authority learns that a receipt was discarded, can safely change the collected vote

Retained left-hand part: can be used to sell votes

Ensure it is destroyed. Also make decoys available

Printer’s key known: Attack if also (LHS,RHS) pairing known
Some Other Schemes
Some Other Schemes

Several schemes recently
Some Other Schemes

- Several schemes recently
- Few security definitions/proofs
Some Other Schemes

- Several schemes recently
- Few security definitions/proofs
- Punchscan
Some Other Schemes

- Several schemes recently
- Few security definitions/proofs
- Punchscan
- Two-layer ballot-sheet
Some Other Schemes

- Several schemes recently
- Few security definitions/proofs
- Punchscan
- Two-layer ballot-sheet
Some Other Schemes

- Several schemes recently
- Few security definitions/proofs
- Punchscan
- Two-layer ballot-sheet
- Scratch-and-Vote
Some Other Schemes

- Several schemes recently
- Few security definitions/proofs
- Punchscan
- Two-layer ballot-sheet
- Scratch-and-Vote
- Punchscan variant
Some Other Schemes

- Several schemes recently
- Few security definitions/proofs
- Punchscan
- Two-layer ballot-sheet
- Scratch-and-Vote
- Punchscan variant
- To audit a ballot-sheet, scratch off and obtain randomness used in encryption
Some Other Schemes

- Several schemes recently
- Few security definitions/proofs
- Punchscan
- Two-layer ballot-sheet
- Scratch-and-Vote
 - Punchscan variant
 - To audit a ballot-sheet, scratch off and obtain randomness used in encryption
Back-Ends
Back-Ends

- Efficient (and publicly verifiable) MPC for tallying encrypted votes
Back-Ends

- Efficient (and publicly verifiable) MPC for tallying encrypted votes
- Using mix-nets: Shuffle, decrypt and tally
Back-Ends

- Efficient (and publicly verifiable) MPC for tallying encrypted votes
- Using mix-nets: Shuffle, decrypt and tally
- Using homomorphic counters: Tally and decrypt
Back-Ends

- Efficient (and publicly verifiable) MPC for tallying encrypted votes
- Using mix-nets: Shuffle, decrypt and tally
- Using homomorphic counters: Tally and decrypt
- A single counter that is the concatenation of counters for each candidate
Back-Ends

- Efficient (and publicly verifiable) MPC for tallying encrypted votes
- Using mix-nets: Shuffle, decrypt and tally
- Using homomorphic counters: Tally and decrypt
 - A single counter that is the concatenation of counters for each candidate
 - To add to a counter for a candidate, must add after appropriately shifting
Back-Ends

- Efficient (and publicly verifiable) MPC for tallying encrypted votes
- Using mix-nets: Shuffle, decrypt and tally
- Using homomorphic counters: Tally and decrypt
 - A single counter that is the concatenation of counters for each candidate
 - To add to a counter for a candidate, must add after appropriately shifting
 - In Prêt à Voter, information on RHS: encryptions of the shifted value to be added for each possible mark
Other Issues
Other Issues

- Dispute resolution (without compromising voter’s privacy)
Other Issues

- Dispute resolution (without compromising voter’s privacy)
- Subliminal channels from polling booth to the adversary that facilitate coercion
Other Issues

- Dispute resolution (without compromising voter's privacy)
- Subliminal channels from polling booth to the adversary that facilitate coercion
 - Coerced voters could be asked to bring along a "verifier" (implemented as scratch cards etc.) to which they should "prove" that they are voting as promised
Other Issues

- Dispute resolution (without compromising voter's privacy)
- Subliminal channels from polling booth to the adversary that facilitate coercion
 - Coerced voters could be asked to bring along a “verifier” (implemented as scratch cards etc.) to which they should “prove” that they are voting as promised
- Aggravated by allowing voters to audit at the polling-booth
Other Issues

- Dispute resolution (without compromising voter’s privacy)
- Subliminal channels from polling booth to the adversary that facilitate coercion
 - Coerced voters could be asked to bring along a “verifier” (implemented as scratch cards etc.) to which they should “prove” that they are voting as promised
 - Aggravated by allowing voters to audit at the polling-booth

- Internet voting?
Other Issues

- Dispute resolution (without compromising voter’s privacy)

- Subliminal channels from polling booth to the adversary that facilitate coercion
 - Coerced voters could be asked to bring along a “verifier” (implemented as scratch cards etc.) to which they should “prove” that they are voting as promised

- Aggravated by allowing voters to audit at the polling-booth

- Internet voting?
 - Coercion is hard to prevent, but can be mitigated by allowing voters to change votes any time
Voting Schemes
Voting Schemes

“Standard” (a.k.a plurality rule or First Past the Pole): each voter has a single vote and candidate with most votes win
Voting Schemes

- "Standard" (a.k.a plurality rule or First Past the Pole): each voter has a single vote and candidate with most votes win
- Approval voting: a voter can vote for arbitrary number of candidates; candidate with most votes win
Voting Schemes

- “Standard” (a.k.a plurality rule or First Past the Pole): each voter has a single vote and candidate with most votes win

- Approval voting: a voter can vote for arbitrary number of candidates; candidate with most votes win

- Condorcet voting: voters provide a full-ranking; defines a “tournament” between candidates, so that A beats B if A appears above B in more rankings than vice versa. If the tournament has a champion who beats everyone else, that candidate wins. Several special rules for handling cycles.
Voting Schemes

- "Standard" (a.k.a. plurality rule or First Past the Pole): each voter has a single vote and candidate with most votes wins.

- Approval voting: a voter can vote for arbitrary number of candidates; candidate with most votes wins.

- Condorcet voting: voters provide a full-ranking; defines a "tournament" between candidates, so that A beats B if A appears above B in more rankings than vice versa. If the tournament has a champion who beats everyone else, that candidate wins. Several special rules for handling cycles.

- Multiple round tallying: Supplementary vote, Instant Run-off elections, Single Transferable Vote.
Voting Schemes

- "Standard" (a.k.a plurality rule or First Past the Pole): each voter has a single vote and candidate with most votes win.
- Approval voting: a voter can vote for arbitrary number of candidates; candidate with most votes win.
- Condorcet voting: voters provide a full-ranking; defines a "tournament" between candidates, so that A beats B if A appears above B in more rankings than vice versa. If the tournament has a champion who beats everyone else, that candidate wins. Several special rules for handling cycles.
- Multiple round tallying: Supplementary vote, Instant Run-off elections, Single Transferable Vote.
- Front-end and back-end need to be modified.
Summary
Summary

Several recent proposals for electronic voting
Summary

- Several recent proposals for electronic voting
- Crypto tools based on homomorphic encryption
Summary

Several recent proposals for electronic voting

- Crypto tools based on homomorphic encryption
- Aims to get unprecedented level of confidence from individual voters and public auditors (E2E security)
Summary

- Several recent proposals for electronic voting
 - Crypto tools based on homomorphic encryption
 - Aims to get unprecedented level of confidence from individual voters and public auditors (E2E security)
 - Challenge: Increases risk of coercion
Summary

- Several recent proposals for electronic voting
 - Crypto tools based on homomorphic encryption
 - Aims to get unprecedented level of confidence from individual voters and public auditors (E2E security)
 - Challenge: Increases risk of coercion
- A cyber-physical system with avenue for new protocol techniques and attacks
Summary

- Several recent proposals for electronic voting
 - Crypto tools based on homomorphic encryption
 - Aims to get unprecedented level of confidence from individual voters and public auditors (E2E security)
 - Challenge: Increases risk of coercion
- A cyber-physical system with avenue for new protocol techniques and attacks
- Few satisfactory security definitions yet (let alone proofs)