Interactive Proofs
Interactive Proofs

Prover wants to convince verifier that x has some property
Interactive Proofs

Prover wants to convince *verifier* that \(x \) has some property

i.e. \(x \) is in “language” \(L \)
Interactive Proofs

Prover wants to convince *verifier* that x has some property

i.e. x is in “language” L
Interactive Proofs

Prover wants to convince *verifier* that x has some property

i.e. x is in “language” L

$x \in L$

Prove to me!
Interactive Proofs

Prover wants to convince verifier that x has some property
i.e. x is in “language” L

Prove to me!

$x \in L$
Interactive Proofs

Prover wants to convince *verifier* that x has some property

i.e. x is in "language" L

$x \in L$

Prove to me!

OK
Interactive Proofs

Prover wants to convince *verifier* that \(x \) has some property

i.e. \(x \) is in “language” \(L \)

All powerful prover, computationally bounded verifier (for now)
Interactive Proofs
Interactive Proofs

Completeness
Interactive Proofs

Completeness

If $x \in L$, honest Prover will convince honest Verifier
Interactive Proofs

Completeness
- If x in L, honest Prover will convince honest Verifier

Soundness
Interactive Proofs

Completeness
- If x in L, honest Prover will convince honest Verifier

Soundness
- If x not in L, honest Verifier won’t accept any purported proof
Interactive Proofs

Completeness
- If x in L, honest Prover will convince honest Verifier

Soundness
- If x not in L, honest Verifier won’t accept any purported proof
Interactive Proofs

Completeness
- If \(x \in L \), honest Prover will convince honest Verifier

Soundness
- If \(x \not\in L \), honest Verifier won’t accept any purported proof
Interactive Proofs

Completeness
- If $x \in L$, honest Prover will convince honest Verifier

Soundness
- If $x \not\in L$, honest Verifier won’t accept any purported proof
Interactive Proofs

Completeness
- If $x \in L$, honest Prover will convince honest Verifier

Soundness
- If $x \not\in L$, honest Verifier won’t accept any purported proof

$\ x \in L$

yeah right!
Interactive Proofs

Completeness
- If $x \in L$, honest Prover will convince honest Verifier

Soundness
- If $x \not\in L$, honest Verifier won’t accept any purported proof

\[x \in L \]

yeah right!

Reject!
An Example
An Example

Coke in bottle or can
An Example

Coke in bottle or can

Prover claims: coke in bottle and coke in can are different
An Example

Coke in bottle or can

- Prover claims: coke in bottle and coke in can are different

IP protocol:
An Example

Coke in bottle or can

- Prover claims: coke in bottle and coke in can are different

IP protocol:

Pour into from can or bottle
An Example

Coke in bottle or can

- Prover claims: coke in bottle and coke in can are different

IP protocol:

Pour into from can or bottle
An Example

Coke in bottle or can

- Prover claims: coke in bottle and coke in can are different

IP protocol:

- prover tells whether cup was filled from can or bottle

Pour into from can or bottle
An Example

Coke in bottle or can

- Prover claims: coke in bottle and coke in can are different

IP protocol:
- prover tells whether cup was filled from can or bottle

Pour into from can or bottle

Can/bottle
An Example

Coke in bottle or can

- Prover claims: coke in bottle and coke in can are different

IP protocol:

- Prover tells whether cup was filled from can or bottle
- Repeat till verifier is convinced

Pour into from can or bottle

can/bottle
An Example

Graph Non-Isomorphism

- Prover claims: G_0 not isomorphic to G_1

IP protocol:

- prover tells whether G^* is an isomorphism of G_0 or G_1
- repeat till verifier is convinced

Set G^* to be $\pi(G_0)$ or $\pi(G_1)$ (π random)
Graph Non-Isomorphism

Prover claims: G_0 \textit{not} isomorphic to G_1

IP protocol:
- prover tells whether G^* is an isomorphism of G_0 or G_1
- repeat till verifier is convinced

Isomorphism: Same graph can be represented as a matrix in different ways:

\[
\begin{pmatrix}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
\end{pmatrix}
\quad \begin{pmatrix}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 \\
\end{pmatrix}
\]

both are isomorphic to the graph represented by the drawing
An Example

Graph Non-Isomorphism

Prover claims: G_0 not isomorphic to G_1

IP protocol:

- prover tells whether G^* is an isomorphism of G_0 or G_1
- repeat till verifier is convinced

Isomorphism: Same graph can be represented as a matrix in different ways:

\[
\begin{pmatrix}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}
\]

\[
\begin{pmatrix}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{pmatrix}
\]

both are isomorphic to the graph represented by the drawing
An Example

Graph Non-Isomorphism

- Prover claims: G_0 *not* isomorphic to G_1

IP protocol:
- prover tells whether G^* is an isomorphism of G_0 or G_1
- repeat till verifier is convinced

Isomorphism: Same graph can be represented as a matrix in different ways:

\[
\begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}
\quad \begin{pmatrix}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0
\end{pmatrix}
\]

Both are isomorphic to the graph represented by the drawing

Set G^* to be $\pi(G_0)$ or $\pi(G_1)$ (π random)
Proofs for NP languages

\[x \in L \]

Prove to me!
Prove to me!

$x \in L$

Prove to me!
Proving membership in an NP language L

$x \in L$ iff $\exists w \ R(x,w)=1$ (for R in P)
Proofs for NP languages

Proving membership in an **NP** language L

$x \in L$ iff $\exists w \ R(x,w)=1$ (for R in P)

- e.g. Graph Isomorphism
Proving membership in an NP language L

$x \in L$ iff $\exists w \ R(x, w) = 1$ (for R in P)

e.g. Graph Isomorphism

IP protocol:

- $x \in L$
- Prove to me!
- w
Proofs for NP languages

Proving membership in an NP language L

$x \in L$ iff $\exists w \ R(x,w)=1$ (for R in P)

- e.g. Graph Isomorphism

IP protocol:

- Prove to me!
- $x \in L$
- $R(x,w)=1$?

w
Proofs for NP languages

Proving membership in an NP language L

$x \in L$ iff $\exists w \ R(x,w)=1$ (for R in P)

e.g. Graph Isomorphism

IP protocol:

Proofs for NP languages

$x \in L$ Prove to me!

w R(x,w)=1? OK

w
Proofs for NP languages

Proving membership in an NP language L

$x \in L$ iff $\exists w \ R(x,w)=1$ (for R in P)

- e.g. Graph Isomorphism

IP protocol:
- prover sends w (non-interactive)

$x \in L$

Prove to me!

$R(x,w)=1$?

OK

w
Proofs for NP languages

Proving membership in an NP language L

\[x \in L \iff \exists w \ R(x,w)=1 \text{ (for } R \text{ in } P) \]

- e.g. Graph Isomorphism

IP protocol:
- prover sends \(w \)
 - (non-interactive)

What if prover doesn’t want to reveal \(w \)?

Prove to me!

\[R(x,w)=1? \]

OK

\(x \in L \)
Proving membership in an NP language L

- $x \in L$ iff $\exists w \; R(x,w) = 1$ (for R in P)
- e.g. Graph Isomorphism

IP protocol:
- prover sends w (non-interactive)

What if the prover doesn’t want to reveal w?

NP is the class of languages which have non-interactive and deterministic proof-systems
Zero-Knowledge Proofs
Zero-Knowledge Proofs

Verifier should not gain \textit{any} knowledge from the honest prover
Verifier should not gain *any* knowledge from the honest prover except whether x is in L
Zero-Knowledge Proofs

Verifier should not gain \textit{any} knowledge from the honest prover except whether \(x \) is in \(L \).
Zero-Knowledge Proofs

Verifier should not gain *any* knowledge from the honest prover except whether \(x \in L \).
Zero-Knowledge Proofs

Verifier should not gain *any* knowledge from the honest prover except whether x is in L

$x \in L$

Prove to me!
Zero-Knowledge Proofs

Verifier should not gain *any* knowledge from the honest prover except whether \(x \) is in \(L \)

Prove to me!
Zero-Knowledge Proofs

Verifier should not gain \textit{any} knowledge from the honest prover except whether x is in L.

Prove to me!

w

$x \in L$
Zero-Knowledge Proofs

Verifier should not gain *any* knowledge from the honest prover except whether x is in L.

$x \in L$

Prove to me!

wonder what $f(w)$ is...
Zero-Knowledge Proofs

Verifier should not gain *any* knowledge from the honest prover except whether \(x \) is in \(L \).

How to formalize this?

Prove to me! wonder what \(f(w) \) is...
Zero-Knowledge Proofs

Verifier should not gain *any* knowledge from the honest prover except whether x is in L.

How to formalize this?

Simulation!

Prove to me!

wonder what $f(w)$ is...

$x \in L$
An Example
An Example

Graph Isomorphism
An Example

Graph Isomorphism

\((G_0, G_1)\) in L iff there exists an isomorphism \(\sigma\) such that \(\sigma(G_0) = G_1\)
An Example

Graph Isomorphism

\((G_0, G_1) \text{ in } L \text{ iff there exists an isomorphism } \sigma \text{ such that } \sigma(G_0) = G_1\)

IP protocol: send \(\sigma\)
An Example

Graph Isomorphism

\((G_0, G_1) \text{ in } L \text{ iff there exists an isomorphism } \sigma \text{ such that } \sigma(G_0) = G_1\)

IP protocol: send \(\sigma\)

ZK protocol?
An Example

Graph Isomorphism

\((G_0, G_1)\) in \(L\) iff there exists an isomorphism \(\sigma\) such that \(\sigma(G_0) = G_1\)

\(G^* := \pi(G_1)\) (random \(\pi\))

IP protocol: send \(\sigma\)

ZK protocol?
An Example

Graph Isomorphism

\((G_0, G_1)\) in L iff there exists an isomorphism \(\sigma\) such that \(\sigma(G_0) = G_1\)

IP protocol: send \(\sigma\)

ZK protocol?

\(G^*:\) random π

\(G^* := \pi(G_1)\)
An Example

- Graph Isomorphism
 - (G_0, G_1) in L iff there exists an isomorphism σ such that $\sigma(G_0) = G_1$
- IP protocol: send σ
- ZK protocol?

$G^* := \pi(G_1)$ (random π)

random bit b
An Example

Graph Isomorphism

\((G_0, G_1) \text{ in } L \iff \text{there exists an isomorphism } \sigma \text{ such that } \sigma(G_0) = G_1\)

IP protocol: send \(\sigma\)

ZK protocol?

\(G^* := \pi(G_1)\) (random \(\pi\))

\(b\)

random bit \(b\)
An Example

Graph Isomorphism

(G_0, G_1) in L iff there exists an isomorphism σ such that $\sigma(G_0) = G_1$

IP protocol: send σ

ZK protocol?

$G^* := \pi(G_1)$ (random π)

if $b=1$, $\pi^* := \pi$
if $b=0$, $\pi^* := \pi \circ \sigma$

random bit b
An Example

Graph Isomorphism

(G_0, G_1) in \mathbf{L} iff there exists an isomorphism σ such that $\sigma(G_0) = G_1$

IP protocol: send σ

ZK protocol?

$G^* := \pi(G_1)$ (random π)

if $b=1$, $\pi^* := \pi$
if $b=0$, $\pi^* := \pi \circ \sigma$

random bit b
An Example

Graph Isomorphism

\((G_0, G_1)\) in L iff there exists an isomorphism \(\sigma\) such that \(\sigma(G_0) = G_1\)

IP protocol: send \(\sigma\)

ZK protocol?

\[G^* := \pi(G_1)\mbox{ (random \(\pi\))}\]

if \(b=1\), \(\pi^* := \pi\)
if \(b=0\), \(\pi^* := \pi \circ \sigma\)

\(G^* = \pi^*(G_b)\)?
An Example

\[G^* := \pi(G_1) \]
(random \(\pi \))

if \(b = 1 \), \(\pi^* := \pi \)
if \(b = 0 \), \(\pi^* := \pi \circ \sigma \)
An Example

Why is this convincing?
An Example

Why is this convincing?

If prover can answer both b’s for the same G^* then $G_0 \sim G_1$
An Example

Why is this convincing?

- If prover can answer both b’s for the same G* then G₀~G₁
- Otherwise, testing on a random b will leave prover stuck w.p. 1/2
An Example

Why is this convincing?

- If prover can answer both b’s for the same G^* then $G_0 \sim G_1$
- Otherwise, testing on a random b will leave prover stuck w.p. $1/2$

Why ZK?

$G^* := \pi(G_1)$ (random π)

If $b=1$, $\pi^* := \pi$
If $b=0$, $\pi^* := \pi \circ \sigma$

$G^* = \pi^*(G_b)$?
An Example

Why is this convincing?
- If prover can answer both b’s for the same G* then G₀ ~ G₁
- Otherwise, testing on a random b will leave prover stuck w.p. 1/2

Why ZK?
- Verifier’s view: random b and π* s.t. G* = π*(Gᵇ)

G* := π(G₁) (random π)
if b=1, π* := π
if b=0, π* := ποσ

G* = π*(Gᵇ)?
An Example

Why is this convincing?

- If prover can answer both b’s for the same G* then G₀~G₁
- Otherwise, testing on a random b will leave prover stuck w.p. 1/2

Why ZK?

- Verifier’s view: random b and π* s.t. G* = π*(G₀) and π* s.t. G* = π*(G₁)
- Which he could have generated by himself (whether G₀~G₁ or not)
Zero-Knowledge Proofs
Zero-Knowledge Proofs

Interactive Proof
Zero-Knowledge Proofs

- Interactive Proof
- Complete and Sound
Zero-Knowledge Proofs

- Interactive Proof
- Complete and Sound
- ZK Property:
Zero-Knowledge Proofs

- Interactive Proof
- Complete and Sound
- ZK Property:
Zero-Knowledge Proofs

- Interactive Proof
- Complete and Sound

ZK Property:
Zero-Knowledge Proofs

- Interactive Proof
- Complete and Sound
- ZK Property:
Zero-Knowledge Proofs

- Interactive Proof
- Complete and Sound

ZK Property:
Zero-Knowledge Proofs

- Interactive Proof
 - Complete and Sound

ZK Property:
- Verifier’s view could have been “simulated”
Zero-Knowledge Proofs

Interactive Proof

Complete and Sound

ZK Property:

Verifier’s view could have been “simulated”
Zero-Knowledge Proofs

Interactive Proof

- Complete and Sound

ZK Property:

- Verifier’s view could have been “simulated”
Zero-Knowledge Proofs

Interactive Proof
- Complete and Sound

ZK Property:
- Verifier’s view could have been “simulated”
Zero-Knowledge Proofs

Interactive Proof

Complete and Sound

ZK Property:

Verifier’s view could have been “simulated”
Zero-Knowledge Proofs

Interactive Proof

Complete and Sound

ZK Property:

Verifier’s view could have been “simulated”

For every adversarial strategy, there exists a simulation strategy.
ZK Property (in other pict's)

Secure (and correct) if:

\[\forall x, w \quad \exists s.t. \quad \forall \text{output of} \quad \text{is distributed identically in REAL and IDEAL} \]
ZK Property (in other pict’s)

Secure (and correct) if:

∀ ∃ s.t.

output of is distributed identically in REAL and IDEAL
ZK Property (in other pict’s)

Secure (and correct) if:
\(\forall x, w \) s.t.

\(\forall \) output of is distributed identically in REAL and IDEAL

IDEAL

REAL
ZK Property (in other pict’s)

Classical definition uses simulation only for corrupt receiver;

Secure (and correct) if:

∀ x, w

∃ s.t.

∀ output of is distributed identically in REAL and IDEAL
ZK Property (in other pict’s)

Classical definition uses simulation only for corrupt receiver; and uses only standalone security: Environment gets only a transcript at the end.

Secure (and correct) if:

∀ s.t.

output of is distributed identically in REAL and IDEAL.
Secure (and correct) if:

∀ ∈ s.t. ∀ output of is distributed identically in REAL and IDEAL
SIM ZK

- SIM-ZK would require simulation also when prover is corrupt

Secure (and correct) if:

\[\forall \exists \text{ s.t.} \forall \text{ output of is distributed identically in REAL and IDEAL} \]
SIM ZK

- SIM-ZK would require simulation also when prover is corrupt
- Then simulator is a witness extractor

Secure (and correct) if:
\[
\forall x, w \cdot \exists s.t. \forall output of is distributed identically in REAL and IDEAL
\]
SIM ZK

- SIM-ZK would require simulation also when prover is corrupt
- Then simulator is a witness extractor
- Adding this (in standalone setting) makes it a *Proof of Knowledge*

Secure (and correct) if:

\[
\forall \exists \text{ s.t. } \forall \text{ output of is distributed identically in REAL and IDEAL}
\]
Results
Results

IP and ZK defined [GMR’85]
Results

- IP and ZK defined [GMR’85]
- ZK for all NP languages [GMW’86]
Results

- IP and ZK defined [GMR’85]
- ZK for all NP languages [GMW’86]
- Assuming one-way functions exist
Results

- IP and ZK defined [GMR’85]
- ZK for all NP languages [GMW’86]
 Assuming one-way functions exist
- ZK for all of IP [BGGHKMR’88]
Results

- IP and ZK defined \([\text{GMR’85}]\)
- ZK for all NP languages \([\text{GMW’86}]\)
 - Assuming one-way functions exist
- ZK for all of IP \([\text{BGGHKMR’88}]\)
 - Everything that can be proven can be proven in zero-knowledge! (Assuming OWF)
Results

- IP and ZK defined [GMR’85]
- ZK for all NP languages [GMW’86]
 - Assuming one-way functions exist
- ZK for all of IP [BGGHKMR’88]
 - Everything that can be proven can be proven in zero-knowledge! (Assuming OWF)
- Variants (for NP)
Results

- IP and ZK defined [GMR’85]
- ZK for all NP languages [GMW’86]
 - Assuming one-way functions exist
- ZK for all of IP [BGGHKMR’88]
 - Everything that can be proven can be proven in zero-knowledge! (Assuming OWF)
- Variants (for NP)
 - ZKPoK, Statistical ZK Arguments, O(1)-round ZK, ...
A ZK Proof for Graph Colorability
A ZK Proof for Graph Colorability
A ZK Proof for Graph Colorability

Uses a commitment protocol as a subroutine
A ZK Proof for Graph Colorability

Uses a commitment protocol as a subroutine

Use random colors
A ZK Proof for Graph Colorability

Uses a commitment protocol as a subroutine

Use random colors $G, \text{coloring}$
A ZK Proof for Graph Colorability

Uses a commitment protocol as a subroutine
A ZK Proof for Graph Colorability

Uses a commitment protocol as a subroutine

G, coloring

Use random colors

reveal edge

committed

pick random edge

edge
A ZK Proof for Graph Colorability

Uses a commitment protocol as a subroutine
A ZK Proof for Graph Colorability

Uses a commitment protocol as a subroutine

Uses random colors on \(G, \text{coloring} \)

reveal edge

committed

pick random edge

distinct colors?

edge

OK
A ZK Proof for Graph Colorability

- Uses a commitment protocol as a subroutine
- At least $1/m$ probability of catching a wrong proof
A ZK Proof for Graph Colorability

- Uses a commitment protocol as a subroutine
- At least $1/m$ probability of catching a wrong proof
- Soundness amplification: Repeat say mk times (with independent color permutations)
A Commitment Protocol

Using a OWP f and a hardcore predicate for it B
A Commitment Protocol

Using a OWP f and a hardcore predicate for it B
Satisfies only classical (IND) security, in terms of hiding and binding
A Commitment Protocol

Using a OWP \(f \) and a hardcore predicate for it \(B \)

Satisfies only classical (IND) security, in terms of hiding and binding
A Commitment Protocol

Using a OWP f and a hardcore predicate for it B
Satisfies only classical (IND) security, in terms of hiding and binding
A Commitment Protocol

Using a OWP f and a hardcore predicate for it B

Satisfies only classical (IND) security, in terms of hiding and binding

\[f(x), b \oplus B(x) \]
A Commitment Protocol

Using a OWP f and a hardcore predicate for it B

Satisfies only classical (IND) security, in terms of hiding and binding
A Commitment Protocol

Using an OWP f and a hardcore predicate for it B

Satisfies only classical (IND) security, in terms of hiding and binding

\[f(x), b \oplus B(x) \]

committed
Using a OWP f and a hardcore predicate for it B

Satisfies only classical (IND) security, in terms of hiding and binding

A Commitment Protocol

- Random x
- $f(x), b \oplus B(x)$
- Committed
- Reveal
A Commitment Protocol

Using a OWP f and a hardcore predicate for it B

Satisfies only classical (IND) security, in terms of hiding and binding.
A Commitment Protocol

Using a OWP f and a hardcore predicate for it B

Satisfies only classical (IND) security, in terms of hiding and binding
A Commitment Protocol

Using a OWP f and a hardcore predicate for it B

Satisfies only classical (IND) security, in terms of hiding and binding
A Commitment Protocol

Using a OWP f and a hardcore predicate for it B

Satisfies only classical (IND) security, in terms of hiding and binding

Perfectly binding because f is a permutation
A Commitment Protocol

Using an OWP f and a hardcore predicate for it B

Satisfies only classical (IND) security, in terms of hiding and binding

Perfectly binding because f is a permutation

Hiding because $B(x)$ is pseudorandom given $f(x)$
ZK Proofs: What for?
ZK Proofs: What for?

Authentication
ZK Proofs: What for?

- Authentication
 - Using ZK Proof of Knowledge
ZK Proofs: What for?

- Authentication
- Using ZK Proof of Knowledge
- Canonical use: As a tool in larger protocols
ZK Proofs: What for?

- Authentication
- Using ZK Proof of Knowledge
- Canonical use: As a tool in larger protocols
- To enforce “honest behavior” in protocols
ZK Proofs: What for?

- Authentication
- Using ZK Proof of Knowledge
- Canonical use: As a tool in larger protocols
- To enforce "honest behavior" in protocols
- At each step prove in ZK it was done as prescribed
ZK Proofs: What for?

- Authentication
 - Using ZK Proof of Knowledge
- Canonical use: As a tool in larger protocols
 - To enforce “honest behavior” in protocols
 - At each step prove in ZK it was done as prescribed
ZK Proofs: What for?

- Authentication
- Using ZK Proof of Knowledge
- Canonical use: As a tool in larger protocols
 - To enforce “honest behavior” in protocols
 - At each step prove in ZK it was done as prescribed

Prove to me x_1 is what you should have sent me now.
ZK Proofs: What for?

- Authentication
- Using ZK Proof of Knowledge

Canonical use: As a tool in larger protocols
- To enforce “honest behavior” in protocols
- At each step prove in ZK it was done as prescribed

Prove to me \(x_1 \) is what you should have sent me now
ZK Proofs: What for?

- Authentication
- Using ZK Proof of Knowledge
- Canonical use: As a tool in larger protocols
- To enforce "honest behavior" in protocols
- At each step prove in ZK it was done as prescribed

Prove to me x_1 is what you should have sent me now

OK
ZK Proofs: What for?

- Authentication
 - Using ZK Proof of Knowledge
- Canonical use: As a tool in larger protocols
 - To enforce “honest behavior” in protocols
 - At each step prove in ZK it was done as prescribed

Prove to me x_1 is what you should have sent me now

OK
ZK Proofs: What for?

- Authentication
- Using ZK Proof of Knowledge

Canonical use: As a tool in larger protocols

To enforce “honest behavior” in protocols

At each step prove in ZK it was done as prescribed

Prove to me x_1 is what you should have sent me now

Prove y_1 is what...
ZK Proofs: What for?

Authentication
- Using ZK Proof of Knowledge

Canonical use: As a tool in larger protocols
- To enforce “honest behavior” in protocols
- At each step prove in ZK it was done as prescribed

Prove to me x_1 is what you should have sent me now

Prove y_1 is what...
ZK Proofs: What for?

- Authentication
- Using ZK Proof of Knowledge

Canonical use: As a tool in larger protocols

To enforce “honest behavior” in protocols

At each step prove in ZK it was done as prescribed

Prove to me x_1 is what you should have sent me now

OK

Prove y_1 is what...

OK
ZK Proofs: What for?

Authentication

Using ZK Proof of Knowledge

Canonical use: As a tool in larger protocols

To enforce “honest behavior” in protocols

At each step prove in ZK it was done as prescribed

Prove to me x_1 is what you should have sent me now

Prove y_1 is what...

OK

Prove y_1 is what...
ZK Proofs: What for?

- **Authentication**
 - Using ZK Proof of Knowledge
- **Canonical use:** As a tool in larger protocols
- To enforce “honest behavior” in protocols
- At each step prove in ZK it was done as prescribed

Prove y_1 is what...

Prove to me x_1 is what you should have sent me now

Prove y_1 is what...

Prove x_2 is what...

OK

OK