Obfuscation

Lecture 25
Obfuscation
Obfuscation

The art & science of making programs “unintelligible”
Obfuscation

The art & science of making programs “unintelligible”

```
#define _ -F<00| |--F-00--;
int F=00,OO=00;main(){F_OO();printf("%1.3f\n",4.*-F/00/00);}F_OO()
{

}
```

from International Obfuscated C Code Contest 1988 (via Wikipedia)
Obfuscation

The art & science of making programs “unintelligible”

```c
#define _ -F<00| |--F-OO--;
int F=00,OO=00;main(){F_OO();printf("%1.3f\n",4.*-F/OO/00);}F_OO()
{

}
```

from International Obfuscated C Code Contest 1988 (via Wikipedia)

The program should be fully functional
Obfuscation

The art & science of making programs “unintelligible”

The program should be fully functional

It may contain secrets that shouldn’t be revealed to the users (e.g., signature keys) — any more than executing it reveals
Obfuscation
Obfuscation

- For protecting proprietary algorithms, for crippling functionality (until license bought), for hiding potential bugs, for reducing the need for interaction with a trusted server (say for auditing purposes), ...
Obfuscation

- For protecting proprietary algorithms, for crippling functionality (until license bought), for hiding potential bugs, for reducing the need for interaction with a trusted server (say for auditing purposes), ...

- Several heuristic approaches to obfuscation exist
Obfuscation

For protecting proprietary algorithms, for crippling functionality (until license bought), for hiding potential bugs, for reducing the need for interaction with a trusted server (say for auditing purposes), ...

Several heuristic approaches to obfuscation exist

All break down against serious program analysis
Cryptographic Obfuscation
Cryptographic Obfuscation

Obfuscation using cryptography?
Cryptographic Obfuscation

Obfuscation using cryptography?

Need to define a security notion
Cryptographic Obfuscation

Obfuscation using cryptography?

Need to define a security notion

Constructions which meet the definition under computational hardness assumptions
Cryptographic Obfuscation

Obfuscation using cryptography?

Need to define a security notion

Constructions which meet the definition under computational hardness assumptions

Cryptography using obfuscation
Cryptographic Obfuscation

Obfuscation using cryptography?

Need to define a security notion

Constructions which meet the definition under computational hardness assumptions

Cryptography using obfuscation

If realized, obfuscation can be used to instantiate various other powerful cryptographic primitives
Cryptographic Obfuscation

Obfuscation using cryptography?

Need to define a security notion

Constructions which meet the definition under computational hardness assumptions

Cryptography using obfuscation

If realized, obfuscation can be used to instantiate various other powerful cryptographic primitives

Toy example: PKE from SKE. Obfuscate the SKE encryption program with the key inside (and a PRF for generating randomness from the plaintext), and release as public-key
Cryptographic Obfuscation

- Obfuscation using cryptography?
 - Need to define a security notion
 - Constructions which meet the definition under computational hardness assumptions

- Cryptography using obfuscation
 - If realized, obfuscation can be used to instantiate various other powerful cryptographic primitives
 - Toy example: PKE from SKE. Obfuscate the SKE encryption program with the key inside (and a PRF for generating randomness from the plaintext), and release as public-key
 - Or IBE: Encryption also MACs (ID, ciphertext). Decryption key for ID is a program that checks ID/MAC before decrypting
Defining Obfuscation: First Try
Defining Obfuscation: First Try

Definition: Let $f \in \text{Family}$. In the ideal environment (IDEAL), f is securely communicated. In the real environment (REAL), f is exposed to potential adversarial influences.

Diagram:
- In IDEAL, f is securely transferred to the environment.
- In REAL, f is accessed under potential adversarial conditions.

Key:
- $f \in \text{Family}$
- B
Defining Obfuscation: First Try

IDEAL

Env

f ∈ Family

REAL

Env

O(f)
Defining Obfuscation: First Try

IDEAL

Env

REAL

Env

$f \in \text{Family}$

O(f)

f \in \text{Family}

O(f)
Defining Obfuscation: First Try

Note: Considers only corrupt receiver
Defining Obfuscation: First Try

Note: Considers only corrupt receiver

$f \in \text{Family}$

$O(f)$
Defining Obfuscation: First Try

Note: Considers only corrupt receiver
Defining Obfuscation: First Try

Note: Considers only corrupt receiver
Defining Obfuscation: First Try

Note: Considers only corrupt receiver

$\text{Env}_{\text{REAL}} \xrightarrow{O(f)} \text{Env}_{\text{IDEAL}}$

$f \in \text{Family}$

$\begin{array}{c}
\text{IDI}\quad f \quad B \quad f(x_1) \quad x_1 \quad f(x_2) \quad x_2 \\
\text{f} \quad \text{f} \quad \text{f} \quad \text{f} \quad \text{f} \quad \text{f} \quad \text{f} \\
\end{array}$
Defining Obfuscation: First Try

Note: Considers only corrupt receiver

$f \in \text{Family}$

$\begin{align*}
 f(x_1) &\quad \leftrightarrow \quad x_1 \\
 f(x_2) &\quad \leftrightarrow \quad x_2 \\
 \end{align*}$

$O(f) \in \text{Family}$
Defining Obfuscation: First Try

Note: Considers only corrupt receiver

\[f \in \text{Family} \]

IDEAL

\[f(x_1) \]

\[f(x_2) \]

\[O(f) \in \text{Family} \]

REAL

Secured (and correct) if:

\[\forall \exists \text{ s.t.} \]

output of is distributed identically in REAL and IDEAL
Defining Obfuscation: First Try

Note: Considers only corrupt receiver
Too strong! Requires family to be learnable from black-box access

Secure (and correct) if:
∀ output of is distributed identically in REAL and IDEAL
∃ s.t.
∀ f ∈ Family

IDEAL O(f) REAL

B

f(x_1) X_1
f(x_2) X_2
Defining Obfuscation: First Try

Note: Considers only corrupt receiver

Secure (and correct) if:
\[\forall x_1 \exists s.t. \exists f(x_1) \in \text{Family} \]

Output of is distributed identically in REAL and IDEAL
Defining Obfuscation: First Try

Note: Considers only corrupt receiver

Secure (and correct) if:

∀ output of is distributed identically in REAL and IDEAL

∀ s.t.

∃ b s.t.

A single bit

IDEAL

REAL
Defining Obfuscation: First Try

Note: Considers only corrupt receiver

Virtual Black-Box (VBB) Obfuscation

Secure (and correct) if:
∀ output of is distributed identically in REAL and IDEAL

A single bit

∀ ∃ s.t.
Impossibility of Obfuscation
Impossibility of Obfuscation

VBB obfuscation is impossible in general
Impossibility of Obfuscation

- VBB obfuscation is impossible in general
- Explicit example of an unobfuscatable function family
Impossibility of Obfuscation

- VBB obfuscation is impossible in general
- Explicit example of an unobfuscatable function family
 - Idea: program which when fed its own code (even obfuscated) as input, outputs secrets
Impossibility of Obfuscation

- VBB obfuscation is impossible in general
- Explicit example of an unobfuscatable function family
 - Idea: program which when fed its own code (even obfuscated) as input, outputs secrets
 - Programs $P_{\alpha, \beta}$ with secret strings α and β:
Impossibility of Obfuscation

- VBB obfuscation is impossible in general

- Explicit example of an unobfuscatable function family

 Idea: program which when fed its own code (even obfuscated) as input, outputs secrets

 Programs $P_{\alpha,\beta}$ with secret strings α and β:
 - If input is of the form $(0,\alpha)$ output β
Impossibility of Obfuscation

- VBB obfuscation is impossible in general
- Explicit example of an unobfuscatable function family

 Idea: program which when fed its own code (even obfuscated) as input, outputs secrets

 Programs $P_{\alpha,\beta}$ with secret strings α and β:
 - If input is of the form $(0,\alpha)$ output β
 - If input is of the form $(1,P)$ for a program P, run P with input $(0,\alpha)$ and if it outputs β, output (α,β)
Impossibility of Obfuscation

- VBB obfuscation is impossible in general
- Explicit example of an unobfuscatable function family
 - Idea: program which when fed its own code (even obfuscated) as input, outputs secrets
 - Programs $P_{\alpha,\beta}$ with secret strings α and β:
 - If input is of the form $(0,\alpha)$ output β
 - If input is of the form $(1,P)$ for a program P, run P with input $(0,\alpha)$ and if it outputs β, output (α,β)
 - When $P_{\alpha,\beta}$ is run on its own (obfuscated) code, it outputs (α,β). Can learn, e.g., first bit of α. In the ideal world, need to guess!
Possibility of Obfuscation
Possibility of Obfuscation

Hardware assisted
Possibility of Obfuscation

- Hardware assisted
- For simple function families
Possibility of Obfuscation

- Hardware assisted
- For simple function families
 - e.g., Point functions (from perfectly one-way permutations)
Possibility of Obfuscation

- Hardware assisted
- For simple function families
 - e.g., Point functions (from perfectly one-way permutations)
 - But general "low complexity classes" are still unobfuscatable (under cryptographic assumptions)
Possibility of Obfuscation

- Hardware assisted
- For simple function families
 - e.g., Point functions (from perfectly one-way permutations)
 - But general “low complexity classes” are still unobfuscatable (under cryptographic assumptions)
- For weaker definitions
Possibility of Obfuscation

- Hardware assisted
- For simple function families
 - e.g., Point functions (from perfectly one-way permutations)
- But general “low complexity classes” are still unobfuscatable (under cryptographic assumptions)
- For weaker definitions
- In idealized models (random oracle model, generic group model, etc.)
Possibility of Obfuscation

- Hardware assisted
- For simple function families
 - e.g., Point functions (from perfectly one-way permutations)
 - But general “low complexity classes” are still unobfuscable (under cryptographic assumptions)
- For weaker definitions
- In idealized models (random oracle model, generic group model, etc.)
- Need a suitable representation of the function
Matrix Programs
Matrix Programs

\[f : \{0,1\}^n \rightarrow \{0,1\} \text{ using a set of } 2N \times w \text{ matrices } (N = \text{poly}(n)) \]
Matrix Programs

- $f : \{0,1\}^n \rightarrow \{0,1\}$ using a set of $2N$ $w \times w$ matrices ($N = \text{poly}(n)$)
Matrix Programs

\[f : \{0,1\}^n \rightarrow \{0,1\} \text{ using a set of } 2N \times w \text{ matrices (} N = \text{poly}(n) \) \]
Matrix Programs

\[f : \{0,1\}^n \rightarrow \{0,1\} \text{ using a set of } 2N \times w \text{ matrices (} N = \text{poly}(n) \) \]
Matrix Programs

\(f : \{0,1\}^n \rightarrow \{0,1\} \) using a set of \(2N \times w \times w \) matrices (\(N = \text{poly}(n) \))
Matrix Programs

\[f : \{0,1\}^n \rightarrow \{0,1\} \text{ using a set of } 2N \times \times \text{ matrices (} N = \text{ poly}(n) \) \]
Matrix Programs

$f : \{0,1\}^n \rightarrow \{0,1\}$ using a set of $2N$ $w \times w$ matrices ($N = \text{poly}(n)$)
Matrix Programs

\[f : \{0,1\}^n \rightarrow \{0,1\} \text{ using a set of } 2N \times w \text{ matrices } (N = \text{poly}(n)) \]
Matrix Programs

- $f : \{0,1\}^n \rightarrow \{0,1\}$ using a set of $2N$ $w \times w$ matrices ($N = \text{poly}(n)$)
- Family F: all f in F have the same N, w, matrix A and "wiring"

Product = I or A?
Matrix Programs

To obfuscate, encode matrices s.t. only valid matrix multiplications and final check can be carried out (for any x)

Product = I or A?
Matrix Programs

- To obfuscate, encode matrices s.t. only valid matrix multiplications and final check can be carried out (for any x).
- No other information about the 2N matrices should be deducible.

Product = I or A?

f(x)
Multi-Linear Map
Multi-Linear Map

- Recall groups with bilinear pairing:
Multi-Linear Map

Recall groups with bilinear pairing:

\[e: G_1 \times G_2 \rightarrow G_T \] such that \[e(g_1^a, g_2^b) = g_T^{ab} \]
Multi-Linear Map

- Recall groups with bilinear pairing:
 - $e: G_1 \times G_2 \rightarrow G_T$ such that $e(g_1^a, g_2^b) = g_T^{ab}$
 - Also group operations in G_i
Multi-Linear Map

Recall groups with bilinear pairing:

\[e: G_1 \times G_2 \rightarrow G_T \text{ such that } e(g_1^a, g_2^b) = g_T^{ab} \]

Also group operations in \(G_i \)

I.e., one multiplication and several additions (in the exponent)
Multi-Linear Map

- Recall groups with bilinear pairing:
 - \(e: G_1 \times G_2 \rightarrow G_T \) such that \(e(g_1^a, g_2^b) = g_T^{ab} \)
 - Also group operations in \(G_i \)
 - I.e., one multiplication and several additions (in the exponent)
 - Assumption: Hard to carry out other operations like \((g_1^a, g_1^b) \mapsto g_T^{ab}\). Heuristic: the Generic Group Model
Multi-Linear Map

- Recall groups with bilinear pairing:
 \[e : G_1 \times G_2 \to G_T \text{ such that } e(g_1^a, g_2^b) = g_T^{ab} \]

- Also group operations in \(G_i \)

- I.e., one multiplication and several additions (in the exponent)

- Assumption: Hard to carry out other operations like \((g_1^a, g_1^b) \mapsto g_T^{ab}\). Heuristic: the Generic Group Model

- Extension to more than 2 groups?
Multi-Linear Map

Recall groups with bilinear pairing:

\[e : G_1 \times G_2 \rightarrow G_T \text{ such that } e(g_1^a, g_2^b) = g_T^{ab} \]

Also group operations in \(G_i \)

I.e., one multiplication and several additions (in the exponent)

Assumption: Hard to carry out other operations like \((g_1^a, g_1^b) \mapsto g_T^{ab}\). Heuristic: the Generic Group Model

Extension to more than 2 groups?

Let \(T = \{1, \ldots, k\} \). For each non-empty subset \(S \subseteq T \), a group \(G_S \).
Multi-Linear Map

- Recall groups with bilinear pairing:
 - \(e: G_1 \times G_2 \rightarrow G_T \) such that \(e(g_1^a, g_2^b) = g_T^{ab} \)

- Also group operations in \(G_i \)
 - I.e., one multiplication and several additions (in the exponent)

- Assumption: Hard to carry out other operations like \((g_1^a, g_1^b) \mapsto g_T^{ab} \). Heuristic: the Generic Group Model

- Extension to more than 2 groups?
 - Let \(T = \{1, \ldots, k\} \). For each non-empty subset \(S \subseteq T \), a group \(G_S \).
 - \(e(g_{S_1}^a, g_{S_2}^b) = g_{S_3}^{ab} \), where \(S_1 \cap S_2 = \emptyset \) and \(S_3 = S_1 \cup S_2 \)
Multi-Linear Map
Multi-Linear Map

Let \(T = \{1, \ldots, k\} \). For each non-empty subset \(S \subseteq T \), a group \(G_S \).
Multi-Linear Map

Let \(T = \{1, \ldots, k\} \). For each non-empty subset \(S \subseteq T \), a group \(G_S \).

An element \(a \) encoded in \(G_S \): \([a]_S\) (think \(g_S^a \))
Multi-Linear Map

Let $T = \{1, \ldots, k\}$. For each non-empty subset $S \subseteq T$, a group G_S.

An element a encoded in G_S: $[a]_S$ (think g^a_S)

Need a private key for encoding (think of keeping g^a_S secret)
Multi-Linear Map

Let $T = \{1, \ldots, k\}$. For each non-empty subset $S \subseteq T$, a group G_S.

An element a encoded in G_S: $[a]_S$ (think g_S^a)

Need a private key for encoding (think of keeping g_S secret)

Allowed to learn the set S from $[a]_S$
Multi-Linear Map

Let \(T = \{1, \ldots, k\} \). For each non-empty subset \(S \subseteq T \), a group \(G_S \).

An element \(a \) encoded in \(G_S \): \([a]_S\) (think \(g_S^a\))

Need a private key for encoding (think of keeping \(g_S \) secret)

Allowed to learn the set \(S \) from \([a]_S\)

Following public operations:
Multi-Linear Map

Let $T = \{1, \ldots, k\}$. For each non-empty subset $S \subseteq T$, a group G_S.

An element a encoded in G_S: $[a]_S$ (think g_S^a)

Need a private key for encoding (think of keeping g_S secret)

Allowed to learn the set S from $[a]_S$

Following public operations:

$[a]_S + [b]_S \rightarrow [a+b]_S$ (note that S is the same for all)
Multi-Linear Map

Let $T = \{1, \ldots, k\}$. For each non-empty subset $S \subseteq T$, a group G_S.

An element a encoded in G_S: $[a]_S$ (think g_S^a)

Need a private key for encoding (think of keeping g_S secret)

Allowed to learn the set S from $[a]_S$

Following public operations:

$[a]_S + [b]_S \rightarrow [a+b]_S$ (note that S is the same for all)

$[a]_{S_1} \times [b]_{S_2} \rightarrow [ab]_{S_1 \cup S_2}$ where $S_1 \cap S_2 = \emptyset$ and $S_3 = S_1 \cup S_2$
Multi-Linear Map

- Let $T = \{1, \ldots, k\}$. For each non-empty subset $S \subseteq T$, a group G_S.
- An element a encoded in G_S: $[a]_S$ (think g_S^a)
- Need a private key for encoding (think of keeping g_S^a secret)
- Allowed to learn the set S from $[a]_S$

Following public operations:

- $[a]_S + [b]_S \rightarrow [a+b]_S$ (note that S is the same for all)
- $[a]_{S_1} \ast [b]_{S_2} \rightarrow [ab]_{S_1 \cup S_2}$ where $S_1 \cap S_2 = \emptyset$ and $S_3 = S_1 \cup S_2$
- Zero-Test($[a]_T$) checks if $a=0$ or not (note: only for set T)
Multi-Linear Map

Let $T = \{1,...,k\}$. For each non-empty subset $S \subseteq T$, a group G_S.

An element a encoded in G_S: $[a]_S$ (think g_S^a)

Need a private key for encoding (think of keeping g_S secret)

Allowed to learn the set S from $[a]_S$

Following public operations:

$[a]_S + [b]_S \rightarrow [a+b]_S$ (note that S is the same for all)

$[a]_{S_1} \times [b]_{S_2} \rightarrow [ab]_{S_1 \cup S_2}$ where $S_1 \cap S_2 = \emptyset$ and $S_3 = S_1 \cup S_2$

Zero-Test($[a]_T$) checks if $a=0$ or not (note: only for set T)

Generic Group Model heuristic: No other operation possible!
Obfuscation from Multi-Linear Map
Obfuscation from Multi-Linear Map

Matrix elements are encoded using the multi-linear map, so that matrix product can be carried out on encoded elements.
Obfuscation from Multi-Linear Map

- Matrix elements are encoded using the multi-linear map, so that matrix product can be carried out on encoded elements.
- Final outcome checked as $[a]_T = [v]_T$, where $[a]_T$ is computed and $[v]_T$ is included as part of the obfuscation.
Obfuscation from Multi-Linear Map

Matrix elements are encoded using the multi-linear map, so that matrix product can be carried out on encoded elements.

Final outcome checked as $[a]_T = [v]_T$, where $[a]_T$ is computed and $[v]_T$ is included as part of the obfuscation.

Each matrix encoded using an associated set S.
Obfuscation from Multi-Linear Map

Matrix elements are encoded using the multi-linear map, so that matrix product can be carried out on encoded elements.

Final outcome checked as $[a]_T = [v]_T$, where $[a]_T$ is computed and $[v]_T$ is included as part of the obfuscation.

Each matrix encoded using an associated set S.

Sets chosen so as to prevent invalid combinations.
Obfuscation from Multi-Linear Map

- Matrix elements are encoded using the multi-linear map, so that matrix product can be carried out on encoded elements.
 - Final outcome checked as $[a]_T = [v]_T$, where $[a]_T$ is computed and $[v]_T$ is included as part of the obfuscation.
- Each matrix encoded using an associated set S.
 - Sets chosen so as to prevent invalid combinations.
 - Matrices randomized (while preserving product) to ensure that the matrices cannot be reordered/tampered with.
Obfuscation from Multi-Linear Map

- Matrix elements are encoded using the multi-linear map, so that matrix product can be carried out on encoded elements.
 - Final outcome checked as \([a]_T = [v]_T\), where \([a]_T\) is computed and \([v]_T\) is included as part of the obfuscation.
- Each matrix encoded using an associated set \(S\).
 - Sets chosen so as to prevent invalid combinations.
 - Matrices randomized (while preserving product) to ensure that the matrices cannot be reordered/tampered with.
 - Any tampering will result (w.h.p.) in \([a]_T\) being random (and independent each time).
Obfuscating Matrix Programs

Promising invalid combinations: entries in $M^{i_0/1}$ encoded for set $S^{i_0/1}$ so that invalid combinations result in intersecting sets, or sets not covering T

Zero ($\bar{S} (\text{Product-I}) \bar{t}^T$)?
Obfuscating Matrix Programs

Preventing invalid combinations: entries in $M_{i0/1}^i$ encoded for set $S_{i0/1}^i$ so that invalid combinations result in intersecting sets, or sets not covering T

Zero ($\bar{S} \ (\text{Product-I}) \ \bar{T}^T$)?

f(x)
Obfuscating Matrix Programs

Preventing invalid combinations: entries in $M_{i0/1}^i$ encoded for set $S_{i0/1}$ so that invalid combinations result in intersecting sets, or sets not covering T

Zero ($\bar{S} (\text{Product-}I) \bar{T}$)?
Obfuscating Matrix Programs

Preventing invalid combinations: entries in $M^i_{0/1}$ encoded for set $S^i_{0/1}$ so that invalid combinations result in intersecting sets, or sets not covering T

Zero ($\bar{S} (\text{Product-I}) \bar{T}^T$)?
Obfuscating Matrix Programs

Ensure no information by reordering/tampering with the matrices

Zero \((\bar{S} (\text{Product-I}) \bar{t}^T)\)?
Obfuscating Matrix Programs

Ensure no information by reordering/tampering with the matrices

Let $Q^i_b = R_{i-1} M^i_b R^{-1}_i (R_i \text{ random, } R_0 = R_N = I)$: $\prod_i Q^i_{bi} = \prod_i M^i_{bi}$

while $\{Q^i_{bi}\}$ has no information about $\{M^i_{bi}\}$ than its product

$\begin{array}{cccc}
[Q^1_0]_{s10} & [Q^2_0]_{s20} & [Q^3_0]_{s30} & \cdots \\
[Q^1_1]_{s11} & [Q^2_1]_{s21} & [Q^3_1]_{s31} & \cdots \\
[Q^N_0]_{sN0} & [Q^N_1]_{sN1} & & \\
[Q^1_0]_{s10} & [Q^2_0]_{s20} & [Q^3_0]_{s30} & [Q^N_1]_{sN1}
\end{array}$

Zero ($\bar{S} \ (\text{Product-}I) \ \bar{t}^T$)?

$f(x)$
Obfuscating Matrix Programs

Ensure no information by reordering/tampering with the matrices

Let $Q^i_b = R_{i-1} M^i_b R_i^{-1}$ (R_i random, $R_0=R_N=I$): $\Pi_i Q^i_{bi} = \Pi_i M^i_{bi}$
while $\{Q^i_{bi}\}$ has no information about $\{M^i_{bi}\}$ than its product

Zero (\bar{S} (Product-I) \bar{t}^T)?

Some more randomisation used, e.g., to allow safe subtraction of I here
Obfuscating Matrix Programs
Obfuscating Matrix Programs

Using generic multi-linear map, can obfuscate polynomial-sized matrix programs: yields Virtual Black-Box obfuscation
Obfuscating Matrix Programs

Using generic multi-linear map, can obfuscate polynomial-sized matrix programs: yields Virtual Black-Box obfuscation

Barrington’s Theorem: “Shallow” circuits (NC1 functions) have polynomial-sized matrix programs (with 5x5 matrices)
Obfuscating Matrix Programs

- Using generic multi-linear map, can obfuscate polynomial-sized matrix programs: yields Virtual Black-Box obfuscation

- **Barrington’s Theorem**: “Shallow” circuits (NC\(^1\) functions) have polynomial-sized matrix programs (with 5x5 matrices)

- Can “bootstrap” from this to all polynomial-sized circuits/polynomial-time computable functions, assuming “Fully Homomorphic Encryption” (with decryption in NC\(^1\))
Obfuscating Matrix Programs

- Using generic multi-linear map, can obfuscate polynomial-sized matrix programs: yields Virtual Black-Box obfuscation

- **Barrington’s Theorem**: “Shallow” circuits (NC\(^1\) functions) have polynomial-sized matrix programs (with 5x5 matrices)

- Can “bootstrap” from this to all polynomial-sized circuits/polynomial-time computable functions, assuming “Fully Homomorphic Encryption” (with decryption in NC\(^1\))

- Do multi-linear maps exist?
Obfuscating Matrix Programs

- Using generic multi-linear map, can obfuscate polynomial-sized matrix programs: yields Virtual Black-Box obfuscation

- **Barrington's Theorem**: "Shallow" circuits (NC^1 functions) have polynomial-sized matrix programs (with 5x5 matrices)

 - Can “bootstrap” from this to all polynomial-sized circuits/polynomial-time computable functions, assuming “Fully Homomorphic Encryption” (with decryption in NC^1)

- Do multi-linear maps exist?

 - **Generic** multi-linear map model is an unrealizable model (because VBB obfuscation for NC^1 is impossible!)
Obfuscating Matrix Programs

- Using generic multi-linear map, can obfuscate polynomial-sized matrix programs: yields Virtual Black-Box obfuscation

Barrington’s Theorem: “Shallow” circuits (NC\(^1\) functions) have polynomial-sized matrix programs (with 5x5 matrices)

- Can “bootstrap” from this to all polynomial-sized circuits/polynomial-time computable functions, assuming “Fully Homomorphic Encryption” (with decryption in NC\(^1\))

- Do multi-linear maps exist?

 - **Generic** multi-linear map model is an unrealizable model (because VBB obfuscation for NC\(^1\) is impossible!)

- Weaker multi-linear maps?
Obfuscating Matrix Programs
Obfuscating Matrix Programs

Recently, candidate multi-linear maps [GGH’13, CLT’13,...]
Obfuscating Matrix Programs

Recently, candidate multi-linear maps [GGH’13, CLT’13,...]

Have noisy, randomized encoding
Obfuscating Matrix Programs

Recently, candidate multi-linear maps [GGH’13, CLT’13,...]

Have noisy, randomized encoding

Initial candidates already broken...
Obfuscating Matrix Programs

- Recently, candidate multi-linear maps [GGH’13, CLT’13,...]
 - Have noisy, randomized encoding
 - Initial candidates already broken...
- Instantiating obfuscation constructions using these candidates yield weaker forms of obfuscation (in standard model)
Obfuscating Matrix Programs

Recently, candidate multi-linear maps [GGH’13, CLT’13,...]

- Have noisy, randomized encoding
- Initial candidates already broken...

Instantiating obfuscation constructions using these candidates yield weaker forms of obfuscation (in standard model)

- Indistinguishability Obfuscation (iO), Differing-Inputs Obfuscation (DIO), etc.
Obfuscating Matrix Programs

Recently, candidate multi-linear maps [GGH’13, CLT’13,...]

- Have noisy, randomized encoding
- Initial candidates already broken...

Instantiating obfuscation constructions using these candidates yield weaker forms of obfuscation (in standard model)

- Indistinguishability Obfuscation (iO), Differing-Inputs Obfuscation (DIO), etc.

- Weaker, but still useful in many applications
Recently, candidate multi-linear maps [GGH’13, CLT’13,...]

- Have noisy, randomized encoding
- Initial candidates already broken...

Instantiating obfuscation constructions using these candidates yield weaker forms of obfuscation (in standard model)

- Indistinguishability Obfuscation (iO), Differing-Inputs Obfuscation (DIO), etc.

- Weaker, but still useful in many applications
- Underlying security notion: “Indistinguishability-Preserving”
IND-PRE Obfuscation

No simulation of the obfuscated program!
If sampler s.t. b is not hidden in REAL, it must be because b is not hidden in IDEAL
i.e., Hiding in IDEAL \Rightarrow Hiding in REAL

Secure (and correct) if:

\[
\forall \exists \text{ s.t. if } b \text{ learns } b' \text{ so does } b.
\]

IDEAL

REAL
Today

- Obfuscation
- Strong definitions are provably impossible to achieve
- Recent breakthroughs (for weaker definitions)
 - Using Multi-linear Maps
- Still being cryptanalyzed