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Logical foundations of computer science

A language that “machines can understand”

To specify a computational procedure fully formally

Don’t always need a computer: language abstracts away 
details not relevant to properties of interest

Widely applied in practice

Ensures that the procedures designed/analyzed and those 
implemented are the same

Can automate analysis of the designed procedures
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Motivation: security bugs even in simple protocols, if system is 
under-specified; exhaustive analysis by hand is error-prone

A language to unambiguously specify cryptographic protocols and 
the whole system (in terms of basic building blocks)

Automated analysis

Security definitions for various tasks are (were) often a list 
of intuitive high-level properties that must hold in 
adversarial environments

Formal methods Goal: to be able to analyze any given 
protocol and see if it satisfies these properties

As opposed to finding one protocol (by hand) that 
satisfies the properties
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Outline:

Develop a formal language for modeling the entire system 
(protocol, adversary, environment) and its evolution

Use abstractions of cryptographic primitives like encryption

Define security properties in this language

Given any concrete protocol, map it to the formal language, 
and use standard formal method tools to automatically analyze 
it for the security properties

Ensure that security/insecurity in the formal model has useful 
implications in a more realistic model
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Modeling
Typically, adversary controls the network

A “process algebra” or a logic framework to describe what can 
happen in the system

Dolev-Yao algebra: Parties can use keys to “encrypt” messages 
to get opaque symbols that can be operated on only if key is 
also provided. Deterministic encryption.

BAN logic [Burrows-Abadi-Needham]: principals (parties) can 
“say” or “see” messages, and “believe” statements like          
“A said M” or “A believes B said M”. Includes a notion of 
symmetric keys and public/private keys used for 
“encryption” (or rather, signcryption)

spi calculus: incorporates an “encryption” primitive into           
pi calculus which is used to model concurrent, communicating 
systems
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Modeling
e.g. Dolev-Yao 

Term-rewriting algebra: operations that can lead to new 
events are defined by rules for writing new terms

Operations: send/receive terms; pick “nonces”; pair/separate; 
“encrypt”/“decrypt”

For each user X, public operation EX and private 
operation DX  

DX (EX(m)) can be rewritten as m

Separate(Pair(a,b)) gives a,b

No other rewritings; each party can use terms it 
received and rewrite them (according to the protocol); 
adversary can obtain the closure of all terms sent out in 
the network
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Event: input/output/communication by parties or adversary

Security property is defined for a trace, and a protocol is called 
secure if all valid traces satisfy the security property

e.g.: For a key-agreement protocol, a trace is insecure if it 
has Alice outputting a nonce R (i.e., event [Alice:(output,R)] ) 
and the adversary also outputting R (event [Eve:(output,R)] )

e.g.: (in BAN logic) “(A believes B said X) at some point ⇒    

(B said X) before that point”
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Security Properties - 2
Security in spi calculus (inherited from pi calculus) essentially 
same as simulation-based security

Observational Equivalence: Two systems P, Q are 
observationally equivalent if for all systems (environments) Z, 
the systems (Z|P) and (Z|Q) produce the same outputs

To define security of a protocol, define an ideal protocol (think 
as ideal functionality, combined with a simulator for the 
“dummy adversary”) and require that the two systems are 
observationally equivalent

Limitation: original spi calculus incorporated an ideal shared-key 
encryption and no other cryptographic features; extensions 
typically limited to secure communication tasks
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An Example
Needham-Schroeder-Lowe (public-key) protocol

For “mutual authentication”

Or, for “key agreement”

Uses an ideal encryption (or signcryption) to let two parties 
exchange nonces so that each should know that the nonce came 
from the other party (whose public-key it already has)

The nonce should be useful as a secret shared-key

Most formal frameworks use this example, to show that they can 
find the bug in the original Needham-Schroeder protocol (1978) 

Or new bugs in extended settings



Initiator (Minit):

initialize(self, other);
newrandom(na);
pair(self, na, a na);
encrypt(other, a na, a na enc);
send(a na enc);
receive(b na nb enc);
decrypt(self, b na nb enc, b na nb);
separate(b na nb, b, na nb);
test(b == other);
separate(na nb, na2, nb);
test(na == na2);
encrypt(other, nb, nb enc);
send(nb enc);
pair(self, other, a b);
pair(a b, x , a b x);
pair(Finished , a b x, out);
output(out);
done;

Responder (Mresp):

initialize(self, other);
receive(a na enc);
decrypt(self, a na enc, a na);
separate(a na, a, na);
test(a == other);
newrandom(nb);
pair(other, na, b na);
pair(b na, nb, b na nb);
encrypt(other, b na nb, b na nb enc);
send(b na nb enc);
receive(nb enc);
decrypt(self, nb enc, nb2);
test(nb == nb2);
pair(self, x , b a x);
pair(Finished , b a x, out);
output(out);
done;

Version 1: x=na (Initiator’s nonce output as secret key)
Version 2: x=nb (Responder’s nonce output as secret key)

[NSL protocol, from Canetti-Herzog 2006]
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Automated Analysis
Not necessarily very efficient

Often NP-hard (or even P-SPACE hard). Typical algorithms 
are exponential in the size of the system

Typically undecidable when allowing an unbounded number 
of concurrent sessions

Popular models (Dolev-Yao, BAN logic, spi calculus) have 
reasonably efficient algorithms for analyzing a variety of 
security properties, if the system is small (e.g., single session)

Sometimes state-exploration (using model-checking tools) 
can be used to discover (some) flaws, but does not prove 
security
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“Encryption” as proposed in most of the formal models 
attributes message secrecy, key-anonymity, non-malleability, 
circular-encryption security, MAC/signature properties and 
much more (while requiring it to be deterministic)

Possibly achievable in random-oracle model or generic-group 
model

Security guarantee similar in spirit to these heuristic models

Security against adversaries who use only operations 
permitted by the formal model
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What does Security in a 
Formal Model mean?

Can we develop strong underlying crypto primitives to implement 
the “encryption” as used in these formal models?

Not quite, but maybe strong enough to translate the   
formal-model guarantees to security guarantees in the 
computational model

A formal model is “sound” if we can do the following:

Translate protocol in computational model to formal 
model. Get security guarantee for it in formal model. 
This should imply security of the original protocol in the 
computational model

Soundness of the formal model and formal security 
property for the computational task and primitive used

In a specific 
format, using  
only specific 
primitives

If primitives 
satisfy 
certain 
security 

definitions
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Initiated by Abadi-Rogaway (2001)

Shows soundness for a class of protocols/tasks: protocol 
secure for the task, if formal protocol has a certain security 
property in the formal model, and protocol uses CCA secure 
encryption in place of ideal encryptions in the formal model

Since then extended to various authentication/key-agreement-like 
tasks (and some computation tasks), against passive and active 
adversaries, using different formal models (algebras, spi-calculus)

Recent works incorporate signatures, NIZK proofs etc.

Typically each work considers a specific task, develops a security 
criterion in a specific formal model, and establishes soundness for 
protocols using specific crypto primitives (like CCA2 encryption)

Somewhat general frameworks: e.g., Backes et al. (CCS 2009)
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Soundness of Formal Models
Several challenges

Traditional models usually deterministic (except for picking 
nonces, and possibly within the encryption operation), but 
for many interesting tasks cryptographic protocols typically 
use more randomness

If model is too general, becomes hard/intractable to 
automatically reason

Promising approach: Universal Composition -- require 
stronger per-session security that will allow 
decomposing the analysis to be per-session

Only a few security properties have been considered 
(related to authentication and secure communication). Need 
to identify automatically verifiable (and sufficient) criteria 
for each new task



Universal Composition



Universal Composition
Recall: security guarantee (in computational model) in terms of an 
ideal functionality (can be used in a formal model)



Universal Composition
Recall: security guarantee (in computational model) in terms of an 
ideal functionality (can be used in a formal model)

From [GMW’87]. Used by [Pfitzmann-Waidner’01] and 
[Canetti’01]



Universal Composition
Recall: security guarantee (in computational model) in terms of an 
ideal functionality (can be used in a formal model)

From [GMW’87]. Used by [Pfitzmann-Waidner’01] and 
[Canetti’01]

UC Security [Canetti’01]:  security is defined for one session of 
the protocol, in the presence of an arbitrary environment



Universal Composition
Recall: security guarantee (in computational model) in terms of an 
ideal functionality (can be used in a formal model)

From [GMW’87]. Used by [Pfitzmann-Waidner’01] and 
[Canetti’01]

UC Security [Canetti’01]:  security is defined for one session of 
the protocol, in the presence of an arbitrary environment

Composition Theorem: UC security of individual sessions 
automatically implies UC security of multiple concurrent sessions



Universal Composition
Recall: security guarantee (in computational model) in terms of an 
ideal functionality (can be used in a formal model)

From [GMW’87]. Used by [Pfitzmann-Waidner’01] and 
[Canetti’01]

UC Security [Canetti’01]:  security is defined for one session of 
the protocol, in the presence of an arbitrary environment

Composition Theorem: UC security of individual sessions 
automatically implies UC security of multiple concurrent sessions

Drawback: a strong security requirement that is more 
“expensive” to realize



Universal Composition
Recall: security guarantee (in computational model) in terms of an 
ideal functionality (can be used in a formal model)

From [GMW’87]. Used by [Pfitzmann-Waidner’01] and 
[Canetti’01]

UC Security [Canetti’01]:  security is defined for one session of 
the protocol, in the presence of an arbitrary environment

Composition Theorem: UC security of individual sessions 
automatically implies UC security of multiple concurrent sessions

Drawback: a strong security requirement that is more 
“expensive” to realize

Advantages: 1. Security for concurrent sessions. 2. Easy to use 
as a sub-module in higher level protocols and analyze 
security. Analysis of higher level protocols often “automatable”
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Ongoing research

Protocol Composition Logic of Mitchell et al.

Formal model and soundness theorems by Canetti-Herzog

Task-Structured Probabilistic I/O Automata

...
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Secure Computation?

Most tasks formally analyzed relate to secure communication

UC framework in principle allows arbitrary functionalities

Also, possibility of modeling certain homomorphic encryption 
schemes algebraically (and in a sound manner) if implemented 
using “non-malleable” homomorphic encryption

Challenge: Efficient automated analysis in the resulting 
formal model
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Formal models are used to analyze higher level protocols, 
reducing their security to the security of underlying 
cryptographic primitives

Crypto primitives themselves designed and security reduced to 
computational complexity assumptions by hand

Can this be automated?

Plausible, if a formal model of complexity assumptions

Likely, for generic group model (which is a formal model)

Recent developments in machine verifiable, machine-
assisted proofs: EasyCrypt/CertiCrypt
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Use of formal methods in cryptography

Prior to 2000 (or Abadi-Rogaway), separate communities

Dolev-Yao, spi calculus, BAN logic

Security in formal model had little bearing as a security 
guarantee in the computational model (but attacks in the 
formal model give real attacks)

Soundness guarantees

Security in formal models that can be translated to 
security in computational models

Composition: to make analysis of complex protocols feasible; 
also to obtain security in arbitrary environments

Ongoing work: Probabilistic models (e.g. Task PIOA), more 
tasks, more tools for formal analysis


