
Formal Methods and
Cryptography

Lecture 25

Formal Methods

Formal Methods
Logical foundations of computer science

Formal Methods
Logical foundations of computer science

A language that “machines can understand”

Formal Methods
Logical foundations of computer science

A language that “machines can understand”

To specify a computational procedure fully formally

Formal Methods
Logical foundations of computer science

A language that “machines can understand”

To specify a computational procedure fully formally

Don’t always need a computer: language abstracts away
details not relevant to properties of interest

Formal Methods
Logical foundations of computer science

A language that “machines can understand”

To specify a computational procedure fully formally

Don’t always need a computer: language abstracts away
details not relevant to properties of interest

Widely applied in practice

Formal Methods
Logical foundations of computer science

A language that “machines can understand”

To specify a computational procedure fully formally

Don’t always need a computer: language abstracts away
details not relevant to properties of interest

Widely applied in practice

Ensures that the procedures designed/analyzed and those
implemented are the same

Formal Methods
Logical foundations of computer science

A language that “machines can understand”

To specify a computational procedure fully formally

Don’t always need a computer: language abstracts away
details not relevant to properties of interest

Widely applied in practice

Ensures that the procedures designed/analyzed and those
implemented are the same

Can automate analysis of the designed procedures

Formal Methods in
Cryptography

Formal Methods in
Cryptography

Motivation: security bugs even in simple protocols, if system is
under-specified; exhaustive analysis by hand is error-prone

Formal Methods in
Cryptography

Motivation: security bugs even in simple protocols, if system is
under-specified; exhaustive analysis by hand is error-prone

A language to unambiguously specify cryptographic protocols and
the whole system (in terms of basic building blocks)

Formal Methods in
Cryptography

Motivation: security bugs even in simple protocols, if system is
under-specified; exhaustive analysis by hand is error-prone

A language to unambiguously specify cryptographic protocols and
the whole system (in terms of basic building blocks)

Automated analysis

Formal Methods in
Cryptography

Motivation: security bugs even in simple protocols, if system is
under-specified; exhaustive analysis by hand is error-prone

A language to unambiguously specify cryptographic protocols and
the whole system (in terms of basic building blocks)

Automated analysis

Security definitions for various tasks are (were) often a list
of intuitive high-level properties that must hold in
adversarial environments

Formal Methods in
Cryptography

Motivation: security bugs even in simple protocols, if system is
under-specified; exhaustive analysis by hand is error-prone

A language to unambiguously specify cryptographic protocols and
the whole system (in terms of basic building blocks)

Automated analysis

Security definitions for various tasks are (were) often a list
of intuitive high-level properties that must hold in
adversarial environments

Formal methods Goal: to be able to analyze any given
protocol and see if it satisfies these properties

Formal Methods in
Cryptography

Motivation: security bugs even in simple protocols, if system is
under-specified; exhaustive analysis by hand is error-prone

A language to unambiguously specify cryptographic protocols and
the whole system (in terms of basic building blocks)

Automated analysis

Security definitions for various tasks are (were) often a list
of intuitive high-level properties that must hold in
adversarial environments

Formal methods Goal: to be able to analyze any given
protocol and see if it satisfies these properties

As opposed to finding one protocol (by hand) that
satisfies the properties

Formal Methods in
Cryptography

Formal Methods in
Cryptography

Outline:

Formal Methods in
Cryptography

Outline:

Develop a formal language for modeling the entire system
(protocol, adversary, environment) and its evolution

Formal Methods in
Cryptography

Outline:

Develop a formal language for modeling the entire system
(protocol, adversary, environment) and its evolution

Use abstractions of cryptographic primitives like encryption

Formal Methods in
Cryptography

Outline:

Develop a formal language for modeling the entire system
(protocol, adversary, environment) and its evolution

Use abstractions of cryptographic primitives like encryption

Define security properties in this language

Formal Methods in
Cryptography

Outline:

Develop a formal language for modeling the entire system
(protocol, adversary, environment) and its evolution

Use abstractions of cryptographic primitives like encryption

Define security properties in this language

Given any concrete protocol, map it to the formal language,
and use standard formal method tools to automatically analyze
it for the security properties

Formal Methods in
Cryptography

Outline:

Develop a formal language for modeling the entire system
(protocol, adversary, environment) and its evolution

Use abstractions of cryptographic primitives like encryption

Define security properties in this language

Given any concrete protocol, map it to the formal language,
and use standard formal method tools to automatically analyze
it for the security properties

Ensure that security/insecurity in the formal model has useful
implications in a more realistic model

Modeling

Modeling
Typically, adversary controls the network

Modeling
Typically, adversary controls the network

A “process algebra” or a logic framework to describe what can
happen in the system

Modeling
Typically, adversary controls the network

A “process algebra” or a logic framework to describe what can
happen in the system

Dolev-Yao algebra: Parties can use keys to “encrypt” messages
to get opaque symbols that can be operated on only if key is
also provided. Deterministic encryption.

Modeling
Typically, adversary controls the network

A “process algebra” or a logic framework to describe what can
happen in the system

Dolev-Yao algebra: Parties can use keys to “encrypt” messages
to get opaque symbols that can be operated on only if key is
also provided. Deterministic encryption.

BAN logic [Burrows-Abadi-Needham]: principals (parties) can
“say” or “see” messages, and “believe” statements like
“A said M” or “A believes B said M”. Includes a notion of
symmetric keys and public/private keys used for
“encryption” (or rather, signcryption)

Modeling
Typically, adversary controls the network

A “process algebra” or a logic framework to describe what can
happen in the system

Dolev-Yao algebra: Parties can use keys to “encrypt” messages
to get opaque symbols that can be operated on only if key is
also provided. Deterministic encryption.

BAN logic [Burrows-Abadi-Needham]: principals (parties) can
“say” or “see” messages, and “believe” statements like
“A said M” or “A believes B said M”. Includes a notion of
symmetric keys and public/private keys used for
“encryption” (or rather, signcryption)

spi calculus: incorporates an “encryption” primitive into
pi calculus which is used to model concurrent, communicating
systems

Modeling

Modeling
e.g. Dolev-Yao

Modeling
e.g. Dolev-Yao

Term-rewriting algebra: operations that can lead to new
events are defined by rules for writing new terms

Modeling
e.g. Dolev-Yao

Term-rewriting algebra: operations that can lead to new
events are defined by rules for writing new terms

Operations: send/receive terms; pick “nonces”; pair/separate;
“encrypt”/“decrypt”

Modeling
e.g. Dolev-Yao

Term-rewriting algebra: operations that can lead to new
events are defined by rules for writing new terms

Operations: send/receive terms; pick “nonces”; pair/separate;
“encrypt”/“decrypt”

For each user X, public operation EX and private
operation DX

Modeling
e.g. Dolev-Yao

Term-rewriting algebra: operations that can lead to new
events are defined by rules for writing new terms

Operations: send/receive terms; pick “nonces”; pair/separate;
“encrypt”/“decrypt”

For each user X, public operation EX and private
operation DX

DX (EX(m)) can be rewritten as m

Modeling
e.g. Dolev-Yao

Term-rewriting algebra: operations that can lead to new
events are defined by rules for writing new terms

Operations: send/receive terms; pick “nonces”; pair/separate;
“encrypt”/“decrypt”

For each user X, public operation EX and private
operation DX

DX (EX(m)) can be rewritten as m

Separate(Pair(a,b)) gives a,b

Modeling
e.g. Dolev-Yao

Term-rewriting algebra: operations that can lead to new
events are defined by rules for writing new terms

Operations: send/receive terms; pick “nonces”; pair/separate;
“encrypt”/“decrypt”

For each user X, public operation EX and private
operation DX

DX (EX(m)) can be rewritten as m

Separate(Pair(a,b)) gives a,b

No other rewritings; each party can use terms it
received and rewrite them (according to the protocol);
adversary can obtain the closure of all terms sent out in
the network

Security Properties - 1

Security Properties - 1
Valid trace of a system: a sequence of events possible in the
system (for the given protocol and an arbitrary adversary)

Security Properties - 1
Valid trace of a system: a sequence of events possible in the
system (for the given protocol and an arbitrary adversary)

Event: input/output/communication by parties or adversary

Security Properties - 1
Valid trace of a system: a sequence of events possible in the
system (for the given protocol and an arbitrary adversary)

Event: input/output/communication by parties or adversary

Security property is defined for a trace, and a protocol is called
secure if all valid traces satisfy the security property

Security Properties - 1
Valid trace of a system: a sequence of events possible in the
system (for the given protocol and an arbitrary adversary)

Event: input/output/communication by parties or adversary

Security property is defined for a trace, and a protocol is called
secure if all valid traces satisfy the security property

e.g.: For a key-agreement protocol, a trace is insecure if it
has Alice outputting a nonce R (i.e., event [Alice:(output,R)])
and the adversary also outputting R (event [Eve:(output,R)])

Security Properties - 1
Valid trace of a system: a sequence of events possible in the
system (for the given protocol and an arbitrary adversary)

Event: input/output/communication by parties or adversary

Security property is defined for a trace, and a protocol is called
secure if all valid traces satisfy the security property

e.g.: For a key-agreement protocol, a trace is insecure if it
has Alice outputting a nonce R (i.e., event [Alice:(output,R)])
and the adversary also outputting R (event [Eve:(output,R)])

e.g.: (in BAN logic) “(A believes B said X) at some point ⇒

(B said X) before that point”

Security Properties - 2

Security Properties - 2
Security in spi calculus (inherited from pi calculus) essentially
same as simulation-based security

Security Properties - 2
Security in spi calculus (inherited from pi calculus) essentially
same as simulation-based security

Observational Equivalence: Two systems P, Q are
observationally equivalent if for all systems (environments) Z,
the systems (Z|P) and (Z|Q) produce the same outputs

Security Properties - 2
Security in spi calculus (inherited from pi calculus) essentially
same as simulation-based security

Observational Equivalence: Two systems P, Q are
observationally equivalent if for all systems (environments) Z,
the systems (Z|P) and (Z|Q) produce the same outputs

To define security of a protocol, define an ideal protocol (think
as ideal functionality, combined with a simulator for the
“dummy adversary”) and require that the two systems are
observationally equivalent

Security Properties - 2
Security in spi calculus (inherited from pi calculus) essentially
same as simulation-based security

Observational Equivalence: Two systems P, Q are
observationally equivalent if for all systems (environments) Z,
the systems (Z|P) and (Z|Q) produce the same outputs

To define security of a protocol, define an ideal protocol (think
as ideal functionality, combined with a simulator for the
“dummy adversary”) and require that the two systems are
observationally equivalent

Limitation: original spi calculus incorporated an ideal shared-key
encryption and no other cryptographic features; extensions
typically limited to secure communication tasks

An Example

An Example
Needham-Schroeder-Lowe (public-key) protocol

An Example
Needham-Schroeder-Lowe (public-key) protocol

For “mutual authentication”

An Example
Needham-Schroeder-Lowe (public-key) protocol

For “mutual authentication”

Or, for “key agreement”

An Example
Needham-Schroeder-Lowe (public-key) protocol

For “mutual authentication”

Or, for “key agreement”

Uses an ideal encryption (or signcryption) to let two parties
exchange nonces so that each should know that the nonce came
from the other party (whose public-key it already has)

An Example
Needham-Schroeder-Lowe (public-key) protocol

For “mutual authentication”

Or, for “key agreement”

Uses an ideal encryption (or signcryption) to let two parties
exchange nonces so that each should know that the nonce came
from the other party (whose public-key it already has)

The nonce should be useful as a secret shared-key

An Example
Needham-Schroeder-Lowe (public-key) protocol

For “mutual authentication”

Or, for “key agreement”

Uses an ideal encryption (or signcryption) to let two parties
exchange nonces so that each should know that the nonce came
from the other party (whose public-key it already has)

The nonce should be useful as a secret shared-key

Most formal frameworks use this example, to show that they can
find the bug in the original Needham-Schroeder protocol (1978)

An Example
Needham-Schroeder-Lowe (public-key) protocol

For “mutual authentication”

Or, for “key agreement”

Uses an ideal encryption (or signcryption) to let two parties
exchange nonces so that each should know that the nonce came
from the other party (whose public-key it already has)

The nonce should be useful as a secret shared-key

Most formal frameworks use this example, to show that they can
find the bug in the original Needham-Schroeder protocol (1978)

Or new bugs in extended settings

Initiator (Minit):

initialize(self, other);
newrandom(na);
pair(self, na, a na);
encrypt(other, a na, a na enc);
send(a na enc);
receive(b na nb enc);
decrypt(self, b na nb enc, b na nb);
separate(b na nb, b, na nb);
test(b == other);
separate(na nb, na2, nb);
test(na == na2);
encrypt(other, nb, nb enc);
send(nb enc);
pair(self, other, a b);
pair(a b, x , a b x);
pair(Finished , a b x, out);
output(out);
done;

Responder (Mresp):

initialize(self, other);
receive(a na enc);
decrypt(self, a na enc, a na);
separate(a na, a, na);
test(a == other);
newrandom(nb);
pair(other, na, b na);
pair(b na, nb, b na nb);
encrypt(other, b na nb, b na nb enc);
send(b na nb enc);
receive(nb enc);
decrypt(self, nb enc, nb2);
test(nb == nb2);
pair(self, x , b a x);
pair(Finished , b a x, out);
output(out);
done;

Version 1: x=na (Initiator’s nonce output as secret key)
Version 2: x=nb (Responder’s nonce output as secret key)

[NSL protocol, from Canetti-Herzog 2006]

Automated Analysis

Automated Analysis
Not necessarily very efficient

Automated Analysis
Not necessarily very efficient

Often NP-hard (or even P-SPACE hard). Typical algorithms
are exponential in the size of the system

Automated Analysis
Not necessarily very efficient

Often NP-hard (or even P-SPACE hard). Typical algorithms
are exponential in the size of the system

Typically undecidable when allowing an unbounded number
of concurrent sessions

Automated Analysis
Not necessarily very efficient

Often NP-hard (or even P-SPACE hard). Typical algorithms
are exponential in the size of the system

Typically undecidable when allowing an unbounded number
of concurrent sessions

Popular models (Dolev-Yao, BAN logic, spi calculus) have
reasonably efficient algorithms for analyzing a variety of
security properties, if the system is small (e.g., single session)

Automated Analysis
Not necessarily very efficient

Often NP-hard (or even P-SPACE hard). Typical algorithms
are exponential in the size of the system

Typically undecidable when allowing an unbounded number
of concurrent sessions

Popular models (Dolev-Yao, BAN logic, spi calculus) have
reasonably efficient algorithms for analyzing a variety of
security properties, if the system is small (e.g., single session)

Sometimes state-exploration (using model-checking tools)
can be used to discover (some) flaws, but does not prove
security

What does Security in a
Formal Model mean?

What does Security in a
Formal Model mean?

“Encryption” as proposed in most of the formal models
attributes message secrecy, key-anonymity, non-malleability,
circular-encryption security, MAC/signature properties and
much more (while requiring it to be deterministic)

What does Security in a
Formal Model mean?

“Encryption” as proposed in most of the formal models
attributes message secrecy, key-anonymity, non-malleability,
circular-encryption security, MAC/signature properties and
much more (while requiring it to be deterministic)

Possibly achievable in random-oracle model or generic-group
model

What does Security in a
Formal Model mean?

“Encryption” as proposed in most of the formal models
attributes message secrecy, key-anonymity, non-malleability,
circular-encryption security, MAC/signature properties and
much more (while requiring it to be deterministic)

Possibly achievable in random-oracle model or generic-group
model

Security guarantee similar in spirit to these heuristic models

What does Security in a
Formal Model mean?

“Encryption” as proposed in most of the formal models
attributes message secrecy, key-anonymity, non-malleability,
circular-encryption security, MAC/signature properties and
much more (while requiring it to be deterministic)

Possibly achievable in random-oracle model or generic-group
model

Security guarantee similar in spirit to these heuristic models

Security against adversaries who use only operations
permitted by the formal model

What does Security in a
Formal Model mean?

What does Security in a
Formal Model mean?

Can we develop strong underlying crypto primitives to implement
the “encryption” as used in these formal models?

What does Security in a
Formal Model mean?

Can we develop strong underlying crypto primitives to implement
the “encryption” as used in these formal models?

Not quite, but maybe strong enough to translate the
formal-model guarantees to security guarantees in the
computational model

What does Security in a
Formal Model mean?

Can we develop strong underlying crypto primitives to implement
the “encryption” as used in these formal models?

Not quite, but maybe strong enough to translate the
formal-model guarantees to security guarantees in the
computational model

A formal model is “sound” if we can do the following:

What does Security in a
Formal Model mean?

Can we develop strong underlying crypto primitives to implement
the “encryption” as used in these formal models?

Not quite, but maybe strong enough to translate the
formal-model guarantees to security guarantees in the
computational model

A formal model is “sound” if we can do the following:

Translate protocol in computational model to formal
model. Get security guarantee for it in formal model.
This should imply security of the original protocol in the
computational model

What does Security in a
Formal Model mean?

Can we develop strong underlying crypto primitives to implement
the “encryption” as used in these formal models?

Not quite, but maybe strong enough to translate the
formal-model guarantees to security guarantees in the
computational model

A formal model is “sound” if we can do the following:

Translate protocol in computational model to formal
model. Get security guarantee for it in formal model.
This should imply security of the original protocol in the
computational model

In a specific
format, using
only specific
primitives

What does Security in a
Formal Model mean?

Can we develop strong underlying crypto primitives to implement
the “encryption” as used in these formal models?

Not quite, but maybe strong enough to translate the
formal-model guarantees to security guarantees in the
computational model

A formal model is “sound” if we can do the following:

Translate protocol in computational model to formal
model. Get security guarantee for it in formal model.
This should imply security of the original protocol in the
computational model

In a specific
format, using
only specific
primitives

If primitives
satisfy
certain
security

definitions

What does Security in a
Formal Model mean?

Can we develop strong underlying crypto primitives to implement
the “encryption” as used in these formal models?

Not quite, but maybe strong enough to translate the
formal-model guarantees to security guarantees in the
computational model

A formal model is “sound” if we can do the following:

Translate protocol in computational model to formal
model. Get security guarantee for it in formal model.
This should imply security of the original protocol in the
computational model

Soundness of the formal model and formal security
property for the computational task and primitive used

In a specific
format, using
only specific
primitives

If primitives
satisfy
certain
security

definitions

Soundness of Formal Models

Soundness of Formal Models
Initiated by Abadi-Rogaway (2001)

Soundness of Formal Models
Initiated by Abadi-Rogaway (2001)

Shows soundness for a class of protocols/tasks: protocol
secure for the task, if formal protocol has a certain security
property in the formal model, and protocol uses CCA secure
encryption in place of ideal encryptions in the formal model

Soundness of Formal Models
Initiated by Abadi-Rogaway (2001)

Shows soundness for a class of protocols/tasks: protocol
secure for the task, if formal protocol has a certain security
property in the formal model, and protocol uses CCA secure
encryption in place of ideal encryptions in the formal model

Since then extended to various authentication/key-agreement-like
tasks (and some computation tasks), against passive and active
adversaries, using different formal models (algebras, spi-calculus)

Soundness of Formal Models
Initiated by Abadi-Rogaway (2001)

Shows soundness for a class of protocols/tasks: protocol
secure for the task, if formal protocol has a certain security
property in the formal model, and protocol uses CCA secure
encryption in place of ideal encryptions in the formal model

Since then extended to various authentication/key-agreement-like
tasks (and some computation tasks), against passive and active
adversaries, using different formal models (algebras, spi-calculus)

Recent works incorporate signatures, NIZK proofs etc.

Soundness of Formal Models
Initiated by Abadi-Rogaway (2001)

Shows soundness for a class of protocols/tasks: protocol
secure for the task, if formal protocol has a certain security
property in the formal model, and protocol uses CCA secure
encryption in place of ideal encryptions in the formal model

Since then extended to various authentication/key-agreement-like
tasks (and some computation tasks), against passive and active
adversaries, using different formal models (algebras, spi-calculus)

Recent works incorporate signatures, NIZK proofs etc.

Typically each work considers a specific task, develops a security
criterion in a specific formal model, and establishes soundness for
protocols using specific crypto primitives (like CCA2 encryption)

Soundness of Formal Models
Initiated by Abadi-Rogaway (2001)

Shows soundness for a class of protocols/tasks: protocol
secure for the task, if formal protocol has a certain security
property in the formal model, and protocol uses CCA secure
encryption in place of ideal encryptions in the formal model

Since then extended to various authentication/key-agreement-like
tasks (and some computation tasks), against passive and active
adversaries, using different formal models (algebras, spi-calculus)

Recent works incorporate signatures, NIZK proofs etc.

Typically each work considers a specific task, develops a security
criterion in a specific formal model, and establishes soundness for
protocols using specific crypto primitives (like CCA2 encryption)

Somewhat general frameworks: e.g., Backes et al. (CCS 2009)

Soundness of Formal Models

Soundness of Formal Models
Several challenges

Soundness of Formal Models
Several challenges

Traditional models usually deterministic (except for picking
nonces, and possibly within the encryption operation), but
for many interesting tasks cryptographic protocols typically
use more randomness

Soundness of Formal Models
Several challenges

Traditional models usually deterministic (except for picking
nonces, and possibly within the encryption operation), but
for many interesting tasks cryptographic protocols typically
use more randomness

If model is too general, becomes hard/intractable to
automatically reason

Soundness of Formal Models
Several challenges

Traditional models usually deterministic (except for picking
nonces, and possibly within the encryption operation), but
for many interesting tasks cryptographic protocols typically
use more randomness

If model is too general, becomes hard/intractable to
automatically reason

Promising approach: Universal Composition -- require
stronger per-session security that will allow
decomposing the analysis to be per-session

Soundness of Formal Models
Several challenges

Traditional models usually deterministic (except for picking
nonces, and possibly within the encryption operation), but
for many interesting tasks cryptographic protocols typically
use more randomness

If model is too general, becomes hard/intractable to
automatically reason

Promising approach: Universal Composition -- require
stronger per-session security that will allow
decomposing the analysis to be per-session

Only a few security properties have been considered
(related to authentication and secure communication). Need
to identify automatically verifiable (and sufficient) criteria
for each new task

Universal Composition

Universal Composition
Recall: security guarantee (in computational model) in terms of an
ideal functionality (can be used in a formal model)

Universal Composition
Recall: security guarantee (in computational model) in terms of an
ideal functionality (can be used in a formal model)

From [GMW’87]. Used by [Pfitzmann-Waidner’01] and
[Canetti’01]

Universal Composition
Recall: security guarantee (in computational model) in terms of an
ideal functionality (can be used in a formal model)

From [GMW’87]. Used by [Pfitzmann-Waidner’01] and
[Canetti’01]

UC Security [Canetti’01]: security is defined for one session of
the protocol, in the presence of an arbitrary environment

Universal Composition
Recall: security guarantee (in computational model) in terms of an
ideal functionality (can be used in a formal model)

From [GMW’87]. Used by [Pfitzmann-Waidner’01] and
[Canetti’01]

UC Security [Canetti’01]: security is defined for one session of
the protocol, in the presence of an arbitrary environment

Composition Theorem: UC security of individual sessions
automatically implies UC security of multiple concurrent sessions

Universal Composition
Recall: security guarantee (in computational model) in terms of an
ideal functionality (can be used in a formal model)

From [GMW’87]. Used by [Pfitzmann-Waidner’01] and
[Canetti’01]

UC Security [Canetti’01]: security is defined for one session of
the protocol, in the presence of an arbitrary environment

Composition Theorem: UC security of individual sessions
automatically implies UC security of multiple concurrent sessions

Drawback: a strong security requirement that is more
“expensive” to realize

Universal Composition
Recall: security guarantee (in computational model) in terms of an
ideal functionality (can be used in a formal model)

From [GMW’87]. Used by [Pfitzmann-Waidner’01] and
[Canetti’01]

UC Security [Canetti’01]: security is defined for one session of
the protocol, in the presence of an arbitrary environment

Composition Theorem: UC security of individual sessions
automatically implies UC security of multiple concurrent sessions

Drawback: a strong security requirement that is more
“expensive” to realize

Advantages: 1. Security for concurrent sessions. 2. Easy to use
as a sub-module in higher level protocols and analyze
security. Analysis of higher level protocols often “automatable”

Composition Logic

Composition Logic

Ongoing research

Composition Logic

Ongoing research

Protocol Composition Logic of Mitchell et al.

Composition Logic

Ongoing research

Protocol Composition Logic of Mitchell et al.

Formal model and soundness theorems by Canetti-Herzog

Composition Logic

Ongoing research

Protocol Composition Logic of Mitchell et al.

Formal model and soundness theorems by Canetti-Herzog

Task-Structured Probabilistic I/O Automata

Composition Logic

Ongoing research

Protocol Composition Logic of Mitchell et al.

Formal model and soundness theorems by Canetti-Herzog

Task-Structured Probabilistic I/O Automata

...

Secure Computation?

Secure Computation?

Most tasks formally analyzed relate to secure communication

Secure Computation?

Most tasks formally analyzed relate to secure communication

UC framework in principle allows arbitrary functionalities

Secure Computation?

Most tasks formally analyzed relate to secure communication

UC framework in principle allows arbitrary functionalities

Also, possibility of modeling certain homomorphic encryption
schemes algebraically (and in a sound manner) if implemented
using “non-malleable” homomorphic encryption

Secure Computation?

Most tasks formally analyzed relate to secure communication

UC framework in principle allows arbitrary functionalities

Also, possibility of modeling certain homomorphic encryption
schemes algebraically (and in a sound manner) if implemented
using “non-malleable” homomorphic encryption

Challenge: Efficient automated analysis in the resulting
formal model

More Automation?

More Automation?
Formal models are used to analyze higher level protocols,
reducing their security to the security of underlying
cryptographic primitives

More Automation?
Formal models are used to analyze higher level protocols,
reducing their security to the security of underlying
cryptographic primitives

Crypto primitives themselves designed and security reduced to
computational complexity assumptions by hand

More Automation?
Formal models are used to analyze higher level protocols,
reducing their security to the security of underlying
cryptographic primitives

Crypto primitives themselves designed and security reduced to
computational complexity assumptions by hand

Can this be automated?

More Automation?
Formal models are used to analyze higher level protocols,
reducing their security to the security of underlying
cryptographic primitives

Crypto primitives themselves designed and security reduced to
computational complexity assumptions by hand

Can this be automated?

Plausible, if a formal model of complexity assumptions

More Automation?
Formal models are used to analyze higher level protocols,
reducing their security to the security of underlying
cryptographic primitives

Crypto primitives themselves designed and security reduced to
computational complexity assumptions by hand

Can this be automated?

Plausible, if a formal model of complexity assumptions

Likely, for generic group model (which is a formal model)

More Automation?
Formal models are used to analyze higher level protocols,
reducing their security to the security of underlying
cryptographic primitives

Crypto primitives themselves designed and security reduced to
computational complexity assumptions by hand

Can this be automated?

Plausible, if a formal model of complexity assumptions

Likely, for generic group model (which is a formal model)

Recent developments in machine verifiable, machine-
assisted proofs: EasyCrypt/CertiCrypt

Today

Today
Use of formal methods in cryptography

Today
Use of formal methods in cryptography

Prior to 2000 (or Abadi-Rogaway), separate communities

Today
Use of formal methods in cryptography

Prior to 2000 (or Abadi-Rogaway), separate communities

Dolev-Yao, spi calculus, BAN logic

Today
Use of formal methods in cryptography

Prior to 2000 (or Abadi-Rogaway), separate communities

Dolev-Yao, spi calculus, BAN logic

Security in formal model had little bearing as a security
guarantee in the computational model (but attacks in the
formal model give real attacks)

Today
Use of formal methods in cryptography

Prior to 2000 (or Abadi-Rogaway), separate communities

Dolev-Yao, spi calculus, BAN logic

Security in formal model had little bearing as a security
guarantee in the computational model (but attacks in the
formal model give real attacks)

Soundness guarantees

Today
Use of formal methods in cryptography

Prior to 2000 (or Abadi-Rogaway), separate communities

Dolev-Yao, spi calculus, BAN logic

Security in formal model had little bearing as a security
guarantee in the computational model (but attacks in the
formal model give real attacks)

Soundness guarantees

Security in formal models that can be translated to
security in computational models

Today
Use of formal methods in cryptography

Prior to 2000 (or Abadi-Rogaway), separate communities

Dolev-Yao, spi calculus, BAN logic

Security in formal model had little bearing as a security
guarantee in the computational model (but attacks in the
formal model give real attacks)

Soundness guarantees

Security in formal models that can be translated to
security in computational models

Composition: to make analysis of complex protocols feasible;
also to obtain security in arbitrary environments

Today
Use of formal methods in cryptography

Prior to 2000 (or Abadi-Rogaway), separate communities

Dolev-Yao, spi calculus, BAN logic

Security in formal model had little bearing as a security
guarantee in the computational model (but attacks in the
formal model give real attacks)

Soundness guarantees

Security in formal models that can be translated to
security in computational models

Composition: to make analysis of complex protocols feasible;
also to obtain security in arbitrary environments

Ongoing work: Probabilistic models (e.g. Task PIOA), more
tasks, more tools for formal analysis

