Voting

Lecture 20

Integrity/End-to-End verifiability

- Integrity/End-to-End verifiability
 - Collected as cast: Each voter should be convinced that their vote was collected correctly

- Integrity/End-to-End verifiability
 - Collected as cast: Each voter should be convinced that their vote was collected correctly
 - Counted as collected: Tallying is publicly verifiable

- Integrity/End-to-End verifiability
 - Collected as cast: Each voter should be convinced that their vote was collected correctly
 - Counted as collected: Tallying is publicly verifiable
- Secrecy

- Integrity/End-to-End verifiability
 - Collected as cast: Each voter should be convinced that their vote was collected correctly
 - Counted as collected: Tallying is publicly verifiable
- Secrecy
 - Honest voters' votes are not revealed by the system (beyond what the tally reveals)

- Integrity/End-to-End verifiability
 - Collected as cast: Each voter should be convinced that their vote was collected correctly
 - Counted as collected: Tallying is publicly verifiable
- Secrecy
 - Honest voters' votes are not revealed by the system (beyond what the tally reveals)
 - Incoercibility: Even corrupt voters should not be able to convince an adversary about their vote (i.e., no vote-buying)

Produce a public list which encodes all the votes cast

- Produce a public list which encodes all the votes cast
 - Individual voters can verify that their vote is correctly captured in this list

- Produce a public list which encodes all the votes cast
 - Individual voters can verify that their vote is correctly captured in this list
 - Based on a receipt (and other knowledge) from the polling booth

- Produce a public list which encodes all the votes cast
 - Individual voters can verify that their vote is correctly captured in this list
 - Based on a receipt (and other knowledge) from the polling booth
- Tallying is done on this list

- Produce a public list which encodes all the votes cast
 - Individual voters can verify that their vote is correctly captured in this list
 - Based on a receipt (and other knowledge) from the polling booth
- Tallying is done on this list
 - Publicly verifiable that the posted votes are correctly tabulated

- Produce a public list which encodes all Front-End the votes cast
 - Individual voters can verify that their vote is correctly captured in this list
 - Based on a receipt (and other knowledge) from the polling booth
- Tallying is done on this list
 - Publicly verifiable that the posted votes are correctly tabulated

- Produce a public list which encodes all the votes cast
 - Individual voters can verify that their vote is correctly captured in this list
 - Based on a receipt (and other knowledge) from the polling booth
- Tallying is done on this list
 - Publicly verifiable that the posted votes are correctly tabulated

- Front-End
 - Ballot Preparation

- Produce a public list which encodes all the votes cast
 - Individual voters can verify that their vote is correctly captured in this list
 - Based on a receipt (and other knowledge) from the polling booth
- Tallying is done on this list
 - Publicly verifiable that the posted votes are correctly tabulated

- Front-End
 - Ballot Preparation
 - Vote capturing/Receipt issue

- Produce a public list which encodes all the votes cast
 - Individual voters can verify that their vote is correctly captured in this list
 - Based on a receipt (and other knowledge) from the polling booth
- Tallying is done on this list
 - Publicly verifiable that the posted votes are correctly tabulated

- Front-End
 - Ballot Preparation
 - Vote capturing/ Receipt issue
 - Verification

- Produce a public list which encodes all the votes cast
 - Individual voters can verify that their vote is correctly captured in this list
 - Based on a receipt (and other knowledge) from the polling booth
- Tallying is done on this list
 - Publicly verifiable that the posted votes are correctly tabulated

- Front-End
 - Ballot Preparation
 - Vote capturing/Receipt issue
 - Verification
- Back-End

- Produce a public list which encodes all the votes cast
 - Individual voters can verify that their vote is correctly captured in this list
 - Based on a receipt (and other knowledge) from the polling booth
- Tallying is done on this list
 - Publicly verifiable that the posted votes are correctly tabulated

- Front-End
 - Ballot Preparation
 - Vote capturing/ Receipt issue
 - Verification
- Back-End
 - Tallying/Verification

Impractical

- Impractical
 - In the front-end, want voters not to have to do crypto, and arrive/leave one by one

- Impractical
 - In the front-end, want voters not to have to do crypto, and arrive/leave one by one
 - OK in the back-end, but needs to be very efficient if a large election

- Impractical
 - In the front-end, want voters not to have to do crypto, and arrive/leave one by one
 - OK in the back-end, but needs to be very efficient if a large election
- Doesn't account for incoercibility (unless security requirement augmented)

 Coercion: voters can get rewards from adversary by following adversary's instructions in a detectable fashion

- Coercion: voters can get rewards from adversary by following adversary's instructions in a detectable fashion
- What is not coercion?

- Coercion: voters can get rewards from adversary by following adversary's instructions in a detectable fashion
- What is not coercion?
 - e.g. Adversary rewards the entire set of voters if all votes are for candidate A

- Coercion: voters can get rewards from adversary by following adversary's instructions in a detectable fashion
- What is not coercion?
 - e.g. Adversary rewards the entire set of voters if all votes are for candidate A
 - Is coercion: Voters cannot behave arbitrarily and still collect the reward

- Coercion: voters can get rewards from adversary by following adversary's instructions in a detectable fashion
- What is not coercion?
 - e.g. Adversary rewards the entire set of voters if all votes are for candidate A
 - Is coercion: Voters cannot behave arbitrarily and still collect the reward
 - But unavoidable coercion (even in the Ideal world)

- Coercion: voters can get rewards from adversary by following adversary's instructions in a detectable fashion
- What is not coercion?
 - e.g. Adversary rewards the entire set of voters if all votes are for candidate A
 - Is coercion: Voters cannot behave arbitrarily and still collect the reward
 - But unavoidable coercion (even in the Ideal world)
- We need to protect against <u>further</u> coercion than is possible in the Ideal world

Defining Incoercibility,

Real as incoercible (and secure) as Ideal if:

REAL/coerced

Defining Incoercibility

Real as incoercible (and secure) as Ideal if:

Defining Incoercibility

Real as incoercible (and secure) as Ideal if:

Defining Incoercibility

Real as incoercible (and secure) as Ideal if:

and and s.t.

 and s.t.

 IDEAL/c ≈ REAL/c
and

IDEAL/u ≈ REAL/u

Real as incoercible (and secure) as Ideal if:

and and s.t.

IDEAL/c ≈ REAL/c and

IDEAL/u ≈ REAL/u

Hence REAL/c and REAL/u only as distinguishable as IDEAL/c and IDEAL/u

Env

REAL/coerced

Real as incoercible (and secure) as Ideal if:

and s.t.

IDEAL/c ≈ REAL/c and IDEAL/u ≈ REAL/u

Hence REAL/c and REAL/u only as distinguishable as IDEAL/c and IDEAL/u i.e., if coercion can be simulated in Ideal, it can be simulated in Real too

Real as incoercible (and secure) as Ideal if:

and and

∃ and s.t.

 \forall

IDEAL/c ≈ REAL/c

and

IDEAL/u ≈ REAL/u

Hence REAL/c and REAL/u only as distinguishable as IDEAL/c and IDEAL/u

i.e., if coercion can be simulated in Ideal, it can be simulated in Real too

Definition says nothing about the existence/choice of the Ideal coercion simulator

REAL/uncoerced

Real as incoercible (and secure) as Ideal if:

and 2

 \exists and \circ s.t.

 \forall

IDEAL/c ≈ REAL/c

and

IDEAL/u ≈ REAL/u

Hence REAL/c and REAL/u only as distinguishable as IDEAL/c and IDEAL/u

i.e., if coercion can be simulated in Ideal, it can be simulated in Real too

Definition says nothing about the existence/choice of the Ideal coercion simulator $\stackrel{\textstyle >}{\scriptstyle \sim}$

Meaningful only if Real/u simulator | is credible

Front-end:

- Front-end:
 - Voters encrypt their votes using a threshold encryption scheme, and submit the vote; receives a receipt showing the ciphertext

- Front-end:
 - Voters encrypt their votes using a threshold encryption scheme, and submit the vote; receives a receipt showing the ciphertext
 - The encrypted vote is publicly posted

- Front-end:
 - Voters encrypt their votes using a threshold encryption scheme, and submit the vote; receives a receipt showing the ciphertext
 - The encrypted vote is publicly posted
- Back-end:

- Front-end:
 - Voters encrypt their votes using a threshold encryption scheme, and submit the vote; receives a receipt showing the ciphertext
 - The encrypted vote is publicly posted
- Back-end:
 - A mix-net shuffles, decrypts the set of votes. Publicly tallied

- Front-end:
 - Voters encrypt their votes using a threshold encryption scheme, and submit the vote; receives a receipt showing the ciphertext
 - The encrypted vote is publicly posted
- Back-end:
 - A mix-net shuffles, decrypts the set of votes. Publicly tallied
 - Each candidate/observer can have a mix-net server

- Front-end:
 - Voters encrypt their votes using a threshold encryption scheme, and submit the vote; receives a receipt showing the ciphertext
 - The encrypted vote is publicly posted
- Back-end:
 - A mix-net shuffles, decrypts the set of votes. Publicly tallied
 - Each candidate/observer can have a mix-net server
 - Public proofs given to each other (or to the public at large, using Fiat-Shamir heuristics)

Requires voters to use/trust computational devices

- Front-end:
 - Voters encrypt their votes using a threshold encryption scheme, and submit the vote; receives a receipt showing the ciphertext
 - The encrypted vote is publicly posted
- Back-end:
 - A mix-net shuffles, decrypts the set of votes. Publicly tallied
 - Each candidate/observer can have a mix-net server
 - Public proofs given to each other (or to the public at large, using Fiat-Shamir heuristics)

Requires voters to use/trust computational devices

Provide encryption devices that have been "verified" by the public? (Perception of) threats: difficulty in verifying devices, substituting devices...

- Front-end:
 - Voters encrypt their votes using a threshold encryption scheme, and submit the vote; receives a receipt showing the ciphertext
 - The encrypted vote is publicly posted
- Back-end:
 - A mix-net shuffles, decrypts the set of votes. Publicly tallied
 - Each candidate/observer can have a mix-net server
 - Public proofs given to each other (or to the public at large, using Fiat-Shamir heuristics)

Keep it simple for the voter

- Keep it simple for the voter
 - No crypto to ensure vote collected as cast

- Keep it simple for the voter
 - No crypto to ensure vote collected as cast
- Public list will contain information that proves to the voter that the vote collected is as cast

- Keep it simple for the voter
 - No crypto to ensure vote collected as cast
- Public list will contain information that proves to the voter that the vote collected is as cast
- Should not allow voter to prove to a vote-buyer how the vote was cast

Ballot has two parts

Ballot has two parts

Carol	
Alice	
Barack	X
	ahdf87

Ballot has two parts

Carol	
Alice	
Barack	X
	ahdf87

- Ballot has two parts
 - Left-hand side: Candidate list

Carol	
Alice	
Barack	X
	ahdf87

- Ballot has two parts
 - Left-hand side: Candidate list
 - Right-hand side: Vote-mark and encrypted candidate list (and a serial number)

Carol	
Alice	
Barack	X
	ahdf87

- Ballot has two parts
 - Left-hand side: Candidate list
 - Right-hand side: Vote-mark and encrypted candidate list (and a serial number)

Right-hand part has enough information for tallying. Will be posted publicly. Also serves as receipt.

- Ballot has two parts
 - Left-hand side: Candidate list
 - Right-hand side: Vote-mark and encrypted candidate list (and a serial number)

- Right-hand part has enough information for tallying. Will be posted publicly. Also serves as receipt.
- Auditing assures that w.h.p the two parts are consistent

- Ballot has two parts
 - Left-hand side: Candidate list
 - Right-hand side: Vote-mark and encrypted candidate list (and a serial number)

- Right-hand part has enough information for tallying. Will be posted publicly. Also serves as receipt.
- Auditing assures that w.h.p the two parts are consistent
- Voter retains a copy of the right-hand part (possibly with a digital signature, verified by helpers outside the booth, to prevent false claims) as a receipt to verify the publicly posted vote. Left-hand part must be destroyed before leaving the polling-booth.

Carol	
Alice	
Barack	X
	ahdf87

 Tallying: combine vote-mark and encrypted candidate list into an encrypted vote

Carol	
Alice	
Barack	X
	ahdf87

 Tallying: combine vote-mark and encrypted candidate list into an encrypted vote

Carol	
Alice	
Barack	X
	ahdf87

Candidate list is cyclically permuted by s positions

 Tallying: combine vote-mark and encrypted candidate list into an encrypted vote

Carol	
Alice	
Barack	X
	ahdf87

- Candidate list is cyclically permuted by s positions
- Encryption encodes s

- Candidate list is cyclically permuted by s positions
- Encryption encodes s
- Homomorphically add vote-mark position to encryption of s, to get encryption of candidate's index

- Candidate list is cyclically permuted by s positions
- Encryption encodes s
- Homomorphically add vote-mark position to encryption of s, to get encryption of candidate's index
 - Additive homomorphism: Use Paillier, or El Gamal with messages in the exponent (since only a few messages possible)

Carol	
Alice	
Barack	X
	ahdf87

Counted as collected: ensured by the mix-net

Carol	
Alice	
Barack	X
	ahdf87

- Counted as collected: ensured by the mix-net
- To ensure collected as cast, need to ensure that the ballot papers are correctly formed

Carol	
Alice	! ! !
Barack	X
	ahdf87

- Counted as collected: ensured by the mix-net
- To ensure collected as cast, need to ensure that the ballot papers are correctly formed
 - Auditing: before voting, select a random subset of ballots and have them decrypted

- Counted as collected: ensured by the mix-net
- To ensure collected as cast, need to ensure that the ballot papers are correctly formed
 - Auditing: before voting, select a random subset of ballots and have them decrypted
 - If no errors found in a large random sample (say half the ballots) probability of more than a few bad ballots is very small (say, 2^{-†} probability that more than t bad)

Carol	
Alice	
Barack	
	ahdf87

For secrecy, need to ensure LHS of ballot-paper remains secret (till voting) and encryption in the RHS is honest (i.e., randomly generated)

Carol	
Alice	! ! !
Barack	! ! !
	ahdf87

- For secrecy, need to ensure LHS of ballot-paper remains secret (till voting) and encryption in the RHS is honest (i.e., randomly generated)
 - A trusted/audited ballot-sheet printer with an encryption key pair

Carol	! ! ! !
Alice	1 1 1 1
Barack	
	ahdf87

- For secrecy, need to ensure LHS of ballot-paper remains secret (till voting) and encryption in the RHS is honest (i.e., randomly generated)
 - x5qu0d ahdf87
 - A trusted/audited ballot-sheet printer with an encryption key pair
 - Use MPC (among candidates/trustees) to encrypt a random rotation twice: one ciphertext using printer's PK (in the left-hand side) and one using the mix-net's PK

- For secrecy, need to ensure LHS of ballot-paper remains secret (till voting) and encryption in the RHS is honest (i.e., randomly generated)
- x5quOd ahdf87
 - A trusted/audited ballot-sheet printer with an encryption key pair
 - Use MPC (among candidates/trustees) to encrypt a random rotation twice: one ciphertext using printer's PK (in the left-hand side) and one using the mix-net's PK
 - At the polling-booth the printer decrypts the left-hand ciphertext, and prints the candidate names in order

For secrecy, need to ensure LHS of ballot-paper remains secret (till voting) and encryption in the RHS is honest (i.e., randomly generated)

Carol	
Alice	
Barack	
x5qu0d	ahdf87

- A trusted/audited ballot-sheet printer with an encryption key pair
- Use MPC (among candidates/trustees) to encrypt a random rotation twice: one ciphertext using printer's PK (in the left-hand side) and one using the mix-net's PK
- At the polling-booth the printer decrypts the left-hand ciphertext, and prints the candidate names in order

For secrecy, need to ensure LHS of ballot-paper remains secret (till voting) and encryption in the RHS is honest (i.e., randomly generated)

Carol	
Alice	
Barack	
x5qu0d	ahdf87

- A trusted/audited ballot-sheet printer with an encryption key pair
- Use MPC (among candidates/trustees) to encrypt a random rotation twice: one ciphertext using printer's PK (in the left-hand side) and one using the mix-net's PK
- At the polling-booth the printer decrypts the left-hand ciphertext, and prints the candidate names in order
- Can be audited by the voter: choose one of (say) two ballot sheets for auditing later; printer's key kept shared among auditors who can audit sheets selected by the voters

Chain voting: One ballot-sheet smuggled out and marked. Then repeatedly coerce voters to use the marked ballot-sheet and return with a blank ballot-sheet

- Chain voting: One ballot-sheet smuggled out and marked. Then repeatedly coerce voters to use the marked ballot-sheet and return with a blank ballot-sheet
 - Officials should ensure ballot-sheet turned in is the same as ballot-sheet given

- Chain voting: One ballot-sheet smuggled out and marked. Then repeatedly coerce voters to use the marked ballot-sheet and return with a blank ballot-sheet
 - Officials should ensure ballot-sheet turned in is the same as ballot-sheet given
- Randomization attack: Coercer can ask voters to mark the first candidate, thereby ensuring they vote randomly

- Chain voting: One ballot-sheet smuggled out and marked. Then repeatedly coerce voters to use the marked ballot-sheet and return with a blank ballot-sheet
 - Officials should ensure ballot-sheet turned in is the same as ballot-sheet given
- Randomization attack: Coercer can ask voters to mark the first candidate, thereby ensuring they vote randomly
 - Comparable to coercing to not cast a vote (allowed in Ideal)

- Chain voting: One ballot-sheet smuggled out and marked. Then repeatedly coerce voters to use the marked ballot-sheet and return with a blank ballot-sheet
 - Officials should ensure ballot-sheet turned in is the same as ballot-sheet given
- Randomization attack: Coercer can ask voters to mark the first candidate, thereby ensuring they vote randomly
 - Comparable to coercing to not cast a vote (allowed in Ideal)
- Discarded receipt attack: If corrupt election authority learns that a receipt was discarded, can safely change the collected vote

- Chain voting: One ballot-sheet smuggled out and marked. Then repeatedly coerce voters to use the marked ballot-sheet and return with a blank ballot-sheet
 - Officials should ensure ballot-sheet turned in is the same as ballot-sheet given
- Randomization attack: Coercer can ask voters to mark the first candidate, thereby ensuring they vote randomly
 - Comparable to coercing to not cast a vote (allowed in Ideal)
- Discarded receipt attack: If corrupt election authority learns that a receipt was discarded, can safely change the collected vote
- Retained left-hand part: can be used to sell votes

- Chain voting: One ballot-sheet smuggled out and marked. Then repeatedly coerce voters to use the marked ballot-sheet and return with a blank ballot-sheet
 - Officials should ensure ballot-sheet turned in is the same as ballot-sheet given
- Randomization attack: Coercer can ask voters to mark the first candidate, thereby ensuring they vote randomly
 - Comparable to coercing to not cast a vote (allowed in Ideal)
- Discarded receipt attack: If corrupt election authority learns that a receipt was discarded, can safely change the collected vote
- Retained left-hand part: can be used to sell votes
 - Ensure it is destroyed. Also make decoys available

- Chain voting: One ballot-sheet smuggled out and marked. Then repeatedly coerce voters to use the marked ballot-sheet and return with a blank ballot-sheet
 - Officials should ensure ballot-sheet turned in is the same as ballot-sheet given
- Randomization attack: Coercer can ask voters to mark the first candidate, thereby ensuring they vote randomly
 - Comparable to coercing to not cast a vote (allowed in Ideal)
- Discarded receipt attack: If corrupt election authority learns that a receipt was discarded, can safely change the collected vote
- Retained left-hand part: can be used to sell votes
 - Ensure it is destroyed. Also make decoys available
- Printer's key known: Attack if also (LHS,RHS) pairing known

Several schemes

- Several schemes
 - Few security definitions/proofs

- Several schemes
 - Few security definitions/proofs
- Punchscan

- Several schemes
 - Few security definitions/proofs
- Punchscan
 - Two-layer ballot-sheet

- Several schemes
 - Few security definitions/proofs
- Punchscan
 - Two-layer ballot-sheet

- Several schemes
 - Few security definitions/proofs
- Punchscan
 - Two-layer ballot-sheet
- Scratch-and-Vote

- Several schemes
 - Few security definitions/proofs
- Punchscan
 - Two-layer ballot-sheet
- Scratch-and-Vote

- Several schemes
 - Few security definitions/proofs
- Punchscan
 - Two-layer ballot-sheet
- Scratch-and-Vote
 - Punchscan variant

- Several schemes
 - Few security definitions/proofs
- Punchscan
 - Two-layer ballot-sheet
- Scratch-and-Vote
 - Punchscan variant
 - To audit a ballot-sheet, scratch off and obtain randomness used in encryption

 Efficient (and publicly verifiable) MPC for tallying encrypted votes

- Efficient (and publicly verifiable) MPC for tallying encrypted votes
- Using mix-nets: Shuffle, decrypt and tally

- Efficient (and publicly verifiable) MPC for tallying encrypted votes
- Using mix-nets: Shuffle, decrypt and tally
- Using homomorphic counters: Tally and decrypt

- Efficient (and publicly verifiable) MPC for tallying encrypted votes
- Using mix-nets: Shuffle, decrypt and tally
- Using homomorphic counters: Tally and decrypt
 - A single counter that is the concatenation of counters for each candidate

- Efficient (and publicly verifiable) MPC for tallying encrypted votes
- Using mix-nets: Shuffle, decrypt and tally
- Using homomorphic counters: Tally and decrypt
 - A single counter that is the concatenation of counters for each candidate
 - To add to a counter for a candidate, must add after appropriately shifting

- Efficient (and publicly verifiable) MPC for tallying encrypted votes
- Using mix-nets: Shuffle, decrypt and tally
- Using homomorphic counters: Tally and decrypt
 - A single counter that is the concatenation of counters for each candidate
 - To add to a counter for a candidate, must add after appropriately shifting
 - In Prêt à Voter, information on RHS: encryptions of the shifted value to be added for each possible mark

Dispute resolution (without compromising voter's privacy)

- Dispute resolution (without compromising voter's privacy)
- Subliminal channels from polling booth to the adversary that facilitate coercion

- Dispute resolution (without compromising voter's privacy)
- Subliminal channels from polling booth to the adversary that facilitate coercion
 - Coerced voters could be asked to bring along a "verifier" (implemented as scratch cards etc.) to which they should "prove" that they are voting as promised

- Dispute resolution (without compromising voter's privacy)
- Subliminal channels from polling booth to the adversary that facilitate coercion
 - Coerced voters could be asked to bring along a "verifier" (implemented as scratch cards etc.) to which they should "prove" that they are voting as promised
 - Aggravated by allowing voters to audit at the pollingbooth

- Dispute resolution (without compromising voter's privacy)
- Subliminal channels from polling booth to the adversary that facilitate coercion
 - Coerced voters could be asked to bring along a "verifier" (implemented as scratch cards etc.) to which they should "prove" that they are voting as promised
 - Aggravated by allowing voters to audit at the pollingbooth
- Internet voting?

- Dispute resolution (without compromising voter's privacy)
- Subliminal channels from polling booth to the adversary that facilitate coercion
 - Coerced voters could be asked to bring along a "verifier" (implemented as scratch cards etc.) to which they should "prove" that they are voting as promised
 - Aggravated by allowing voters to audit at the pollingbooth
- Internet voting?
 - Coercion is hard to prevent, but can be mitigated by allowing voters to change votes any time

"Standard" (a.k.a plurality rule or First Past the Pole): each voter has a single vote and candidate with most votes win

- "Standard" (a.k.a plurality rule or First Past the Pole): each voter has a single vote and candidate with most votes win
- Approval voting: a voter can vote for arbitrary number of candidates; candidate with most votes win

- "Standard" (a.k.a plurality rule or First Past the Pole): each voter has a single vote and candidate with most votes win
- Approval voting: a voter can vote for arbitrary number of candidates; candidate with most votes win
- **Tournament between candidates, so that A beats B if A appears above B in more rankings than vice versa. If the tournament has a champion who beats everyone else, that candidate wins. Several special rules for handling cycles.

- "Standard" (a.k.a plurality rule or First Past the Pole): each voter has a single vote and candidate with most votes win
- Approval voting: a voter can vote for arbitrary number of candidates; candidate with most votes win
- **Tournament between candidates, so that A beats B if A appears above B in more rankings than vice versa. If the tournament has a champion who beats everyone else, that candidate wins. Several special rules for handling cycles.
- Multiple round tallying: Supplementary vote, Instant Run-off elections, Single Transferable Vote

- "Standard" (a.k.a plurality rule or First Past the Pole): each voter has a single vote and candidate with most votes win
- Approval voting: a voter can vote for arbitrary number of candidates; candidate with most votes win
- **Tournament" between candidates, so that A beats B if A appears above B in more rankings than vice versa. If the tournament has a champion who beats everyone else, that candidate wins. Several special rules for handling cycles.
- Multiple round tallying: Supplementary vote, Instant Run-off elections, Single Transferable Vote
- Front-end and back-end need to be modified

Several proposals for electronic voting

- Several proposals for electronic voting
 - Crypto tools based on homomorphic encryption

- Several proposals for electronic voting
 - Crypto tools based on homomorphic encryption
- Aims to get unprecedented level of confidence from individual voters and public auditors (E2E security)

- Several proposals for electronic voting
 - Crypto tools based on homomorphic encryption
- Aims to get unprecedented level of confidence from individual voters and public auditors (E2E security)
 - Challenge: Increases risk of coercion

- Several proposals for electronic voting
 - Crypto tools based on homomorphic encryption
- Aims to get unprecedented level of confidence from individual voters and public auditors (E2E security)
 - Challenge: Increases risk of coercion
- A cyber-physical system with avenue for new protocol techniques and attacks

- Several proposals for electronic voting
 - Crypto tools based on homomorphic encryption
- Aims to get unprecedented level of confidence from individual voters and public auditors (E2E security)
 - Challenge: Increases risk of coercion
- A cyber-physical system with avenue for new protocol techniques and attacks
- Few satisfactory security definitions yet (let alone proofs)