
Mix-Nets
Lecture 19

Some tools for electronic-voting (and other things)

Mix-Nets

Mix-Nets
Originally proposed by Chaum (1981) for anonymous
communication

Mix-Nets
Originally proposed by Chaum (1981) for anonymous
communication

Input: a vector of ciphertexts under a “threshold encryption
scheme”

Mix-Nets
Originally proposed by Chaum (1981) for anonymous
communication

Input: a vector of ciphertexts under a “threshold encryption
scheme”

Mix-servers take turns to perform “verifiable shuffles”

Mix-Nets
Originally proposed by Chaum (1981) for anonymous
communication

Input: a vector of ciphertexts under a “threshold encryption
scheme”

Mix-servers take turns to perform “verifiable shuffles”

Final shuffled vector decrypted by decryption-servers

Mix-Nets
Originally proposed by Chaum (1981) for anonymous
communication

Input: a vector of ciphertexts under a “threshold encryption
scheme”

Mix-servers take turns to perform “verifiable shuffles”

Final shuffled vector decrypted by decryption-servers

(Omitted: Decryption mix-nets, which combine shuffling
and decryption. Here: Re-encryption mix-nets)

Mix-Nets
Originally proposed by Chaum (1981) for anonymous
communication

Input: a vector of ciphertexts under a “threshold encryption
scheme”

Mix-servers take turns to perform “verifiable shuffles”

Final shuffled vector decrypted by decryption-servers

(Omitted: Decryption mix-nets, which combine shuffling
and decryption. Here: Re-encryption mix-nets)

Ideal functionality: input a vector of private messages from
senders, and a permutation from each mix server; output
the messages permuted using the composed permutation

Mix-Nets
Originally proposed by Chaum (1981) for anonymous
communication

Input: a vector of ciphertexts under a “threshold encryption
scheme”

Mix-servers take turns to perform “verifiable shuffles”

Final shuffled vector decrypted by decryption-servers

(Omitted: Decryption mix-nets, which combine shuffling
and decryption. Here: Re-encryption mix-nets)

Ideal functionality: input a vector of private messages from
senders, and a permutation from each mix server; output
the messages permuted using the composed permutation

Corruption model: Active adversary can corrupt a limited
number of servers

Threshold Decryption

Threshold Decryption
Key pairs (SKi,PKi) generated by a set of servers (separate
from sender/receiver). (Receiver may set up parameters.)

Threshold Decryption
Key pairs (SKi,PKi) generated by a set of servers (separate
from sender/receiver). (Receiver may set up parameters.)

Ciphertexts generated by honest player (not CCA security)

Threshold Decryption
Key pairs (SKi,PKi) generated by a set of servers (separate
from sender/receiver). (Receiver may set up parameters.)

Ciphertexts generated by honest player (not CCA security)

Decryption by public discussion among servers and receiver
(all the servers and the receiver see all the messages)

Threshold Decryption
Key pairs (SKi,PKi) generated by a set of servers (separate
from sender/receiver). (Receiver may set up parameters.)

Ciphertexts generated by honest player (not CCA security)

Decryption by public discussion among servers and receiver
(all the servers and the receiver see all the messages)

Active adversary can corrupt a limited number of servers

Threshold Decryption
Key pairs (SKi,PKi) generated by a set of servers (separate
from sender/receiver). (Receiver may set up parameters.)

Ciphertexts generated by honest player (not CCA security)

Decryption by public discussion among servers and receiver
(all the servers and the receiver see all the messages)

Active adversary can corrupt a limited number of servers

Ideal: Same as for SIM-CPA, but with servers also getting
the message (if the receiver decides to get it); if number of
corrupted servers above threshold, adversary can block (but
not substitute) output to others

Threshold Decryption

Threshold Decryption
E.g. Threshold El Gamal for threshold n out of n

Threshold Decryption
E.g. Threshold El Gamal for threshold n out of n

KeyGen: (SKi,PKi) = (yi,Yi:=gyi) (group, g are system parameters)

Threshold Decryption
E.g. Threshold El Gamal for threshold n out of n

KeyGen: (SKi,PKi) = (yi,Yi:=gyi) (group, g are system parameters)

Encryption: El Gamal, with PK (g,Y) where Y = Πi gyi

Threshold Decryption
E.g. Threshold El Gamal for threshold n out of n

KeyGen: (SKi,PKi) = (yi,Yi:=gyi) (group, g are system parameters)

Encryption: El Gamal, with PK (g,Y) where Y = Πi gyi

Decryption: Given (A,B) := (gr,mYr), ith server outputs Ai := (gr)yi
and proves (to the receiver) equality of discrete log for (g,Yi)
and (A,Ai). Receiver recovers m as B/Πi Ai

Threshold Decryption
E.g. Threshold El Gamal for threshold n out of n

KeyGen: (SKi,PKi) = (yi,Yi:=gyi) (group, g are system parameters)

Encryption: El Gamal, with PK (g,Y) where Y = Πi gyi

Decryption: Given (A,B) := (gr,mYr), ith server outputs Ai := (gr)yi
and proves (to the receiver) equality of discrete log for (g,Yi)
and (A,Ai). Receiver recovers m as B/Πi Ai

Proof using an Honest-Verifier ZK proof

Threshold Decryption
E.g. Threshold El Gamal for threshold n out of n

KeyGen: (SKi,PKi) = (yi,Yi:=gyi) (group, g are system parameters)

Encryption: El Gamal, with PK (g,Y) where Y = Πi gyi

Decryption: Given (A,B) := (gr,mYr), ith server outputs Ai := (gr)yi
and proves (to the receiver) equality of discrete log for (g,Yi)
and (A,Ai). Receiver recovers m as B/Πi Ai

Proof using an Honest-Verifier ZK proof

Using a special purpose proof (Chaum-Pederson), rather
than ZK for general NP statements

Honest-Verifier ZK Proofs

Honest-Verifier ZK Proofs
ZK Proof of knowledge of discrete log of A=gr

Honest-Verifier ZK Proofs
ZK Proof of knowledge of discrete log of A=gr

This can be used to prove knowledge of the message in
an El Gamal encryption (A,B) = (gr, m Yr)

Honest-Verifier ZK Proofs
ZK Proof of knowledge of discrete log of A=gr

This can be used to prove knowledge of the message in
an El Gamal encryption (A,B) = (gr, m Yr)

P→V: U := gu ; V→P: v ; P→V: w := rv + u ;  

V checks: gw = AvU

Honest-Verifier ZK Proofs
ZK Proof of knowledge of discrete log of A=gr

This can be used to prove knowledge of the message in
an El Gamal encryption (A,B) = (gr, m Yr)

P→V: U := gu ; V→P: v ; P→V: w := rv + u ;  

V checks: gw = AvU

Proof of Knowledge:

Honest-Verifier ZK Proofs
ZK Proof of knowledge of discrete log of A=gr

This can be used to prove knowledge of the message in
an El Gamal encryption (A,B) = (gr, m Yr)

P→V: U := gu ; V→P: v ; P→V: w := rv + u ;  

V checks: gw = AvU

Proof of Knowledge:
Firstly, gw = AvU ⇒ w = rv+u, where U = gu

Honest-Verifier ZK Proofs
ZK Proof of knowledge of discrete log of A=gr

This can be used to prove knowledge of the message in
an El Gamal encryption (A,B) = (gr, m Yr)

P→V: U := gu ; V→P: v ; P→V: w := rv + u ;  

V checks: gw = AvU

Proof of Knowledge:
Firstly, gw = AvU ⇒ w = rv+u, where U = gu

If after sending U, P could respond to two different
values of v: w1 = rv1 + u and w2 = rv2 + u, then can
solve for r

Honest-Verifier ZK Proofs
ZK Proof of knowledge of discrete log of A=gr

This can be used to prove knowledge of the message in
an El Gamal encryption (A,B) = (gr, m Yr)

P→V: U := gu ; V→P: v ; P→V: w := rv + u ;  

V checks: gw = AvU

Proof of Knowledge:
Firstly, gw = AvU ⇒ w = rv+u, where U = gu

If after sending U, P could respond to two different
values of v: w1 = rv1 + u and w2 = rv2 + u, then can
solve for r

ZK: simulation picks w, v first and sets U = gw/Av

HVZK and Special Soundness

HVZK and Special Soundness
HVZK: Simulation for honest (passively corrupt) verifier

HVZK and Special Soundness
HVZK: Simulation for honest (passively corrupt) verifier

e.g. in PoK of discrete log, simulator picks (v,w) first and
computes U (without knowing u). Relies on verifier to pick v
independent of U.

HVZK and Special Soundness
HVZK: Simulation for honest (passively corrupt) verifier

e.g. in PoK of discrete log, simulator picks (v,w) first and
computes U (without knowing u). Relies on verifier to pick v
independent of U.

Special soundness: given (U,v,w) and (U,v’,w’) s.t. v≠v’ and both
accepted by verifier, can derive a witness (in stand-alone setting)

HVZK and Special Soundness
HVZK: Simulation for honest (passively corrupt) verifier

e.g. in PoK of discrete log, simulator picks (v,w) first and
computes U (without knowing u). Relies on verifier to pick v
independent of U.

Special soundness: given (U,v,w) and (U,v’,w’) s.t. v≠v’ and both
accepted by verifier, can derive a witness (in stand-alone setting)

e.g. solve r from w=rv+u and w’=rv’+u (given v,w,v’,w’)

HVZK and Special Soundness
HVZK: Simulation for honest (passively corrupt) verifier

e.g. in PoK of discrete log, simulator picks (v,w) first and
computes U (without knowing u). Relies on verifier to pick v
independent of U.

Special soundness: given (U,v,w) and (U,v’,w’) s.t. v≠v’ and both
accepted by verifier, can derive a witness (in stand-alone setting)

e.g. solve r from w=rv+u and w’=rv’+u (given v,w,v’,w’)

Implies soundness: for each U s.t. prover has significant
probability of being able to convince, can extract r from the
prover with comparable probability (using “rewinding”)

HVZK and Special Soundness
HVZK: Simulation for honest (passively corrupt) verifier

e.g. in PoK of discrete log, simulator picks (v,w) first and
computes U (without knowing u). Relies on verifier to pick v
independent of U.

Special soundness: given (U,v,w) and (U,v’,w’) s.t. v≠v’ and both
accepted by verifier, can derive a witness (in stand-alone setting)

e.g. solve r from w=rv+u and w’=rv’+u (given v,w,v’,w’)

Implies soundness: for each U s.t. prover has significant
probability of being able to convince, can extract r from the
prover with comparable probability (using “rewinding”)

Can amplify soundness using parallel repetition: still 3 rounds

Honest-Verifier ZK Proofs

Honest-Verifier ZK Proofs
ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)),  
i.e., Y = gr and D = Cr [Chaum-Pederson]

Honest-Verifier ZK Proofs
ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)),  
i.e., Y = gr and D = Cr [Chaum-Pederson]

Can be used to prove equality of two El Gamal encryptions (A,B) &
(A’,B’) w.r.t public-key (g,Y): set (C,D) := (A/A’,B/B’)

Honest-Verifier ZK Proofs
ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)),  
i.e., Y = gr and D = Cr [Chaum-Pederson]

Can be used to prove equality of two El Gamal encryptions (A,B) &
(A’,B’) w.r.t public-key (g,Y): set (C,D) := (A/A’,B/B’)

P→V: (U,M) := (gu,Cu); V→P: v ; P→V: w := rv+u ;  

V checks: gw = YvU and Cw = DvM

Honest-Verifier ZK Proofs
ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)),  
i.e., Y = gr and D = Cr [Chaum-Pederson]

Can be used to prove equality of two El Gamal encryptions (A,B) &
(A’,B’) w.r.t public-key (g,Y): set (C,D) := (A/A’,B/B’)

P→V: (U,M) := (gu,Cu); V→P: v ; P→V: w := rv+u ;  

V checks: gw = YvU and Cw = DvM

Proof of Knowledge:

Honest-Verifier ZK Proofs
ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)),  
i.e., Y = gr and D = Cr [Chaum-Pederson]

Can be used to prove equality of two El Gamal encryptions (A,B) &
(A’,B’) w.r.t public-key (g,Y): set (C,D) := (A/A’,B/B’)

P→V: (U,M) := (gu,Cu); V→P: v ; P→V: w := rv+u ;  

V checks: gw = YvU and Cw = DvM

Proof of Knowledge:
gw=YvU, Cw=DvM ⇒ w = rv+u = r’v+u’  
where U=gu, M=gu’ and Y=gr, D=Cr’

Honest-Verifier ZK Proofs
ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)),  
i.e., Y = gr and D = Cr [Chaum-Pederson]

Can be used to prove equality of two El Gamal encryptions (A,B) &
(A’,B’) w.r.t public-key (g,Y): set (C,D) := (A/A’,B/B’)

P→V: (U,M) := (gu,Cu); V→P: v ; P→V: w := rv+u ;  

V checks: gw = YvU and Cw = DvM

Proof of Knowledge:
gw=YvU, Cw=DvM ⇒ w = rv+u = r’v+u’  
where U=gu, M=gu’ and Y=gr, D=Cr’

If after sending (U,M) P could respond to two different values
of v: rv1 + u = r’v1 + u’ and rv2 + u = r’v2 + u’, then r=r’

Honest-Verifier ZK Proofs
ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)),  
i.e., Y = gr and D = Cr [Chaum-Pederson]

Can be used to prove equality of two El Gamal encryptions (A,B) &
(A’,B’) w.r.t public-key (g,Y): set (C,D) := (A/A’,B/B’)

P→V: (U,M) := (gu,Cu); V→P: v ; P→V: w := rv+u ;  

V checks: gw = YvU and Cw = DvM

Proof of Knowledge:
gw=YvU, Cw=DvM ⇒ w = rv+u = r’v+u’  
where U=gu, M=gu’ and Y=gr, D=Cr’

If after sending (U,M) P could respond to two different values
of v: rv1 + u = r’v1 + u’ and rv2 + u = r’v2 + u’, then r=r’
ZK: simulation picks w, v first and sets U=gw/Av, M=Cw/Dv

Fiat-Shamir Heuristic

Fiat-Shamir Heuristic
Limitation: Honest-Verifier ZK does not guarantee ZK when
verifier is actively corrupt

Fiat-Shamir Heuristic
Limitation: Honest-Verifier ZK does not guarantee ZK when
verifier is actively corrupt

Can be fixed by implementing the verifier using MPC

Fiat-Shamir Heuristic
Limitation: Honest-Verifier ZK does not guarantee ZK when
verifier is actively corrupt

Can be fixed by implementing the verifier using MPC

If verifier is a public-coin protocol -- i.e., only picks
random elements publicly -- then MPC only to generate
random coins

Fiat-Shamir Heuristic
Limitation: Honest-Verifier ZK does not guarantee ZK when
verifier is actively corrupt

Can be fixed by implementing the verifier using MPC

If verifier is a public-coin protocol -- i.e., only picks
random elements publicly -- then MPC only to generate
random coins

Fiat-Shamir Heuristic: random coins from verifier defined
as R(trans), where R is a random oracle and trans is the
transcript of the proof so far

Fiat-Shamir Heuristic
Limitation: Honest-Verifier ZK does not guarantee ZK when
verifier is actively corrupt

Can be fixed by implementing the verifier using MPC

If verifier is a public-coin protocol -- i.e., only picks
random elements publicly -- then MPC only to generate
random coins

Fiat-Shamir Heuristic: random coins from verifier defined
as R(trans), where R is a random oracle and trans is the
transcript of the proof so far

Removes need for interaction!

Verifiable Shuffle

Verifiable Shuffle
(Not so) ideal functionality: takes as input encrypted messages
from a sender, and a permutation and randomness from a
mixer; outputs rerandomized encryptions of permuted messages
to a receiver. (Mixer gets encryptions, then picks its inputs.)

Verifiable Shuffle
(Not so) ideal functionality: takes as input encrypted messages
from a sender, and a permutation and randomness from a
mixer; outputs rerandomized encryptions of permuted messages
to a receiver. (Mixer gets encryptions, then picks its inputs.)

Will settle for stand-alone security, and restrict to active
corruption of mixer and passive corruption of sender/receiver

Verifiable Shuffle
(Not so) ideal functionality: takes as input encrypted messages
from a sender, and a permutation and randomness from a
mixer; outputs rerandomized encryptions of permuted messages
to a receiver. (Mixer gets encryptions, then picks its inputs.)

Will settle for stand-alone security, and restrict to active
corruption of mixer and passive corruption of sender/receiver

Security against active corruption will be enforced
separately (say using the Fiat-Shamir heuristic for
receivers; audits/physical means for senders in voting)

Verifiable Shuffle
(Not so) ideal functionality: takes as input encrypted messages
from a sender, and a permutation and randomness from a
mixer; outputs rerandomized encryptions of permuted messages
to a receiver. (Mixer gets encryptions, then picks its inputs.)

Will settle for stand-alone security, and restrict to active
corruption of mixer and passive corruption of sender/receiver

Security against active corruption will be enforced
separately (say using the Fiat-Shamir heuristic for
receivers; audits/physical means for senders in voting)

We shall consider El Gamal encryption

Verifiable Shuffle
(Not so) ideal functionality: takes as input encrypted messages
from a sender, and a permutation and randomness from a
mixer; outputs rerandomized encryptions of permuted messages
to a receiver. (Mixer gets encryptions, then picks its inputs.)

Will settle for stand-alone security, and restrict to active
corruption of mixer and passive corruption of sender/receiver

Security against active corruption will be enforced
separately (say using the Fiat-Shamir heuristic for
receivers; audits/physical means for senders in voting)

We shall consider El Gamal encryption

Mixer will be given encrypted messages and it will perform
the permutation and reencryptions

Verifiable Shuffle for 2 inputs

Verifiable Shuffle for 2 inputs
On input (C1,C2), produce (D1,D2) by shuffling and rerandomizing

Verifiable Shuffle for 2 inputs
On input (C1,C2), produce (D1,D2) by shuffling and rerandomizing

HVZK proofs that [(C1→D1) or (C1→D2)] and [(C2→D1) or (C2→D2)]

Verifiable Shuffle for 2 inputs
On input (C1,C2), produce (D1,D2) by shuffling and rerandomizing

HVZK proofs that [(C1→D1) or (C1→D2)] and [(C2→D1) or (C2→D2)]

To prove [stmnt1 or stmnt2], given an HVZK/SS proof
system for a single statement (here: equality of El Gamal
encryptions)

Verifiable Shuffle for 2 inputs
On input (C1,C2), produce (D1,D2) by shuffling and rerandomizing

HVZK proofs that [(C1→D1) or (C1→D2)] and [(C2→D1) or (C2→D2)]

To prove [stmnt1 or stmnt2], given an HVZK/SS proof
system for a single statement (here: equality of El Gamal
encryptions)

Denote the messages in the original system by (U,v,w)

Verifiable Shuffle for 2 inputs
On input (C1,C2), produce (D1,D2) by shuffling and rerandomizing

HVZK proofs that [(C1→D1) or (C1→D2)] and [(C2→D1) or (C2→D2)]

To prove [stmnt1 or stmnt2], given an HVZK/SS proof
system for a single statement (here: equality of El Gamal
encryptions)

Denote the messages in the original system by (U,v,w)

P: Run simulator to get (U3-i,v3-i,w3-i) when stmnti true 
P→V: (U1,U2); V→P: v; P→V: (v1,v2,w1,w2) where vi = v-v3-i 

Verifier checks: v1+v2 = v and verifies (U1,v1,w1) and (U2,v2,w2)

Verifiable Shuffle for 2 inputs
On input (C1,C2), produce (D1,D2) by shuffling and rerandomizing

HVZK proofs that [(C1→D1) or (C1→D2)] and [(C2→D1) or (C2→D2)]

To prove [stmnt1 or stmnt2], given an HVZK/SS proof
system for a single statement (here: equality of El Gamal
encryptions)

Denote the messages in the original system by (U,v,w)

P: Run simulator to get (U3-i,v3-i,w3-i) when stmnti true 
P→V: (U1,U2); V→P: v; P→V: (v1,v2,w1,w2) where vi = v-v3-i 

Verifier checks: v1+v2 = v and verifies (U1,v1,w1) and (U2,v2,w2)

Special soundness: given answers for v≠v’ either v1≠v1’ or v2≠v2’.
By special soundness, extract witness for stmnt1 or stmnt2

From 2 inputs to many

From 2 inputs to many
Using a sorting network

From 2 inputs to many
Using a sorting network

A circuit with “comparison gates” such  
that for inputs in any order the output  
is sorted

From 2 inputs to many
Using a sorting network

A circuit with “comparison gates” such  
that for inputs in any order the output  
is sorted

(Bitonic sort: from Wikipedia)

From 2 inputs to many
Using a sorting network

A circuit with “comparison gates” such  
that for inputs in any order the output  
is sorted

Simple O(n log2n) size networks known
(Bitonic sort: from Wikipedia)

From 2 inputs to many
Using a sorting network

A circuit with “comparison gates” such  
that for inputs in any order the output  
is sorted

Simple O(n log2n) size networks known

Fix a sorting network, and use a 2x2 verifiable
shuffle at each comparison gate

(Bitonic sort: from Wikipedia)

From 2 inputs to many
Using a sorting network

A circuit with “comparison gates” such  
that for inputs in any order the output  
is sorted

Simple O(n log2n) size networks known

Fix a sorting network, and use a 2x2 verifiable
shuffle at each comparison gate

Permutations at the comparison gates chosen
so as to implement the overall permutation

(Bitonic sort: from Wikipedia)

From 2 inputs to many
Using a sorting network

A circuit with “comparison gates” such  
that for inputs in any order the output  
is sorted

Simple O(n log2n) size networks known

Fix a sorting network, and use a 2x2 verifiable
shuffle at each comparison gate

Permutations at the comparison gates chosen
so as to implement the overall permutation

3 rounds: Parallel composition of HVZK proofs

(Bitonic sort: from Wikipedia)

Alternate Verifiable-Shuffles

Alternate Verifiable-Shuffles

More efficient (w.r.t. communication/computation) protocols
known:

Alternate Verifiable-Shuffles

More efficient (w.r.t. communication/computation) protocols
known:

3 rounds, using “permutation matrices”

Alternate Verifiable-Shuffles

More efficient (w.r.t. communication/computation) protocols
known:

3 rounds, using “permutation matrices”

With linear communication

Alternate Verifiable-Shuffles

More efficient (w.r.t. communication/computation) protocols
known:

3 rounds, using “permutation matrices”

With linear communication

7 rounds, using homomorphic commitments

Alternate Verifiable-Shuffles

More efficient (w.r.t. communication/computation) protocols
known:

3 rounds, using “permutation matrices”

With linear communication

7 rounds, using homomorphic commitments

Possible with sub-linear communication for the proof

Homomorphic
Commitment

Homomorphic
Commitment

A commitment scheme over a group

Homomorphic
Commitment

A commitment scheme over a group

com(x;r) = c, where x, r, c are from their respective
groups

Homomorphic
Commitment

A commitment scheme over a group

com(x;r) = c, where x, r, c are from their respective
groups

Hiding and binding

Homomorphic
Commitment

A commitment scheme over a group

com(x;r) = c, where x, r, c are from their respective
groups

Hiding and binding

Homomorphism: com(x;r) * com(x’;r’) = com(x+x’;r+r’)

Homomorphic
Commitment

A commitment scheme over a group

com(x;r) = c, where x, r, c are from their respective
groups

Hiding and binding

Homomorphism: com(x;r) * com(x’;r’) = com(x+x’;r+r’)

(Operations in respective groups)

Commitment from CRHF

Commitment from CRHF

Let H be a CRHF s.t. HK(x,r) is uniformly random for a
random r, for any x and any K

Commitment from CRHF

Let H be a CRHF s.t. HK(x,r) is uniformly random for a
random r, for any x and any K

Commitment: Receiver sends a random key K for H, and
sender sends ComK(x;r) := HK(x,r)

Commitment from CRHF

Let H be a CRHF s.t. HK(x,r) is uniformly random for a
random r, for any x and any K

Commitment: Receiver sends a random key K for H, and
sender sends ComK(x;r) := HK(x,r)

Perfectly hiding, because r will be chosen at random
by the committer

Commitment from CRHF

Let H be a CRHF s.t. HK(x,r) is uniformly random for a
random r, for any x and any K

Commitment: Receiver sends a random key K for H, and
sender sends ComK(x;r) := HK(x,r)

Perfectly hiding, because r will be chosen at random
by the committer

Reveal: send (x,r)

Commitment from CRHF

Let H be a CRHF s.t. HK(x,r) is uniformly random for a
random r, for any x and any K

Commitment: Receiver sends a random key K for H, and
sender sends ComK(x;r) := HK(x,r)

Perfectly hiding, because r will be chosen at random
by the committer

Reveal: send (x,r)

Binding, because of collision resistance when K picked
at random

Pedersen Commitment

Pedersen Commitment
Recall CRHF Hg,h(x,r) = gxhr (collision resistant under Discrete Log
assumption)

Pedersen Commitment
Recall CRHF Hg,h(x,r) = gxhr (collision resistant under Discrete Log
assumption)

Binding by collision-resistance: receiver picks (g,h)

Pedersen Commitment
Recall CRHF Hg,h(x,r) = gxhr (collision resistant under Discrete Log
assumption)

Binding by collision-resistance: receiver picks (g,h)

Perfectly Hiding in a prime order group

Pedersen Commitment
Recall CRHF Hg,h(x,r) = gxhr (collision resistant under Discrete Log
assumption)

Binding by collision-resistance: receiver picks (g,h)

Perfectly Hiding in a prime order group

If group is prime order, then all h are generators

Pedersen Commitment
Recall CRHF Hg,h(x,r) = gxhr (collision resistant under Discrete Log
assumption)

Binding by collision-resistance: receiver picks (g,h)

Perfectly Hiding in a prime order group

If group is prime order, then all h are generators

Then for all x, Hg,h(x,r) is random if r random

Pedersen Commitment
Recall CRHF Hg,h(x,r) = gxhr (collision resistant under Discrete Log
assumption)

Binding by collision-resistance: receiver picks (g,h)

Perfectly Hiding in a prime order group

If group is prime order, then all h are generators

Then for all x, Hg,h(x,r) is random if r random

Homomorphism: Comg,h(x;r) * Comg,h(x’;r’) = Comg,h(x+x’;r+r’)

Pedersen Commitment
Recall CRHF Hg,h(x,r) = gxhr (collision resistant under Discrete Log
assumption)

Binding by collision-resistance: receiver picks (g,h)

Perfectly Hiding in a prime order group

If group is prime order, then all h are generators

Then for all x, Hg,h(x,r) is random if r random

Homomorphism: Comg,h(x;r) * Comg,h(x’;r’) = Comg,h(x+x’;r+r’)

HVZK PoK of (x,r): Send Comg,h(u1;u2), and on challenge v, send  
(xv+u1) and (rv+u2)

Pedersen Commitment
Recall CRHF Hg,h(x,r) = gxhr (collision resistant under Discrete Log
assumption)

Binding by collision-resistance: receiver picks (g,h)

Perfectly Hiding in a prime order group

If group is prime order, then all h are generators

Then for all x, Hg,h(x,r) is random if r random

Homomorphism: Comg,h(x;r) * Comg,h(x’;r’) = Comg,h(x+x’;r+r’)

HVZK PoK of (x,r): Send Comg,h(u1;u2), and on challenge v, send  
(xv+u1) and (rv+u2)

Improved efficiency: Hg1,..,gn,h(x1,...,xn,r) = g1
x1...gn

xn hr

Using Homomorphic
Commitments

Using Homomorphic
Commitments

Sub-problem: given a plaintext vector (m1,...,mn), verifiably
commit to a permutation of it (using a vector commitment)

Using Homomorphic
Commitments

Sub-problem: given a plaintext vector (m1,...,mn), verifiably
commit to a permutation of it (using a vector commitment)

Idea: (z1,...,zn) is a permutation of (m1,...,mn) iff the polynomials
f(X) := Πi (X-mi) and h(X) := Πi (X-zi) are the same

Using Homomorphic
Commitments

Sub-problem: given a plaintext vector (m1,...,mn), verifiably
commit to a permutation of it (using a vector commitment)

Idea: (z1,...,zn) is a permutation of (m1,...,mn) iff the polynomials
f(X) := Πi (X-mi) and h(X) := Πi (X-zi) are the same

Probabilistically verified by assigning a random value x to X

Using Homomorphic
Commitments

Sub-problem: given a plaintext vector (m1,...,mn), verifiably
commit to a permutation of it (using a vector commitment)

Idea: (z1,...,zn) is a permutation of (m1,...,mn) iff the polynomials
f(X) := Πi (X-mi) and h(X) := Πi (X-zi) are the same

Probabilistically verified by assigning a random value x to X

If the field is large (super-polynomial), soundness error is
negligible: if not identically 0, f(X)-h(X) has at most n roots

Using Homomorphic
Commitments

Sub-problem: given a plaintext vector (m1,...,mn), verifiably
commit to a permutation of it (using a vector commitment)

Idea: (z1,...,zn) is a permutation of (m1,...,mn) iff the polynomials
f(X) := Πi (X-mi) and h(X) := Πi (X-zi) are the same

Probabilistically verified by assigning a random value x to X

If the field is large (super-polynomial), soundness error is
negligible: if not identically 0, f(X)-h(X) has at most n roots

Use homomorphic commitments to carry out the polynomial
evaluation and check equality (details omitted)

Using Homomorphic
Commitments

Sub-problem: given a plaintext vector (m1,...,mn), verifiably
commit to a permutation of it (using a vector commitment)

Using Homomorphic
Commitments

For shuffling ciphertexts:

Sub-problem: given a plaintext vector (m1,...,mn), verifiably
commit to a permutation of it (using a vector commitment)

Using Homomorphic
Commitments

For shuffling ciphertexts:

Suppose verifier knew the permutation. Then task reduces
to proving equality of messages in ciphertext pairs

Sub-problem: given a plaintext vector (m1,...,mn), verifiably
commit to a permutation of it (using a vector commitment)

Using Homomorphic
Commitments

For shuffling ciphertexts:

Suppose verifier knew the permutation. Then task reduces
to proving equality of messages in ciphertext pairs

Can’t reveal the permutation: instead commit to a
permutation of (1,2,...,n)

Sub-problem: given a plaintext vector (m1,...,mn), verifiably
commit to a permutation of it (using a vector commitment)

Using Homomorphic
Commitments

For shuffling ciphertexts:

Suppose verifier knew the permutation. Then task reduces
to proving equality of messages in ciphertext pairs

Can’t reveal the permutation: instead commit to a
permutation of (1,2,...,n)

Use the sub-protocol to do this verifiably

Sub-problem: given a plaintext vector (m1,...,mn), verifiably
commit to a permutation of it (using a vector commitment)

Using Homomorphic
Commitments

For shuffling ciphertexts:

Suppose verifier knew the permutation. Then task reduces
to proving equality of messages in ciphertext pairs

Can’t reveal the permutation: instead commit to a
permutation of (1,2,...,n)

Use the sub-protocol to do this verifiably

Use homomorphic properties of the commitments to
carry out equality proofs w.r.t committed permutation
(omitted)

Sub-problem: given a plaintext vector (m1,...,mn), verifiably
commit to a permutation of it (using a vector commitment)

Today

Today
Mix-Nets

Today
Mix-Nets

Verifiable shuffles for El Gamal encryption

Today
Mix-Nets

Verifiable shuffles for El Gamal encryption

Also known for Paillier encryption

Today
Mix-Nets

Verifiable shuffles for El Gamal encryption

Also known for Paillier encryption

Useful in the “back-end” of voting schemes

Today
Mix-Nets

Verifiable shuffles for El Gamal encryption

Also known for Paillier encryption

Useful in the “back-end” of voting schemes

In principle, general MPC would work

Today
Mix-Nets

Verifiable shuffles for El Gamal encryption

Also known for Paillier encryption

Useful in the “back-end” of voting schemes

In principle, general MPC would work

Special constructions with better efficiency

Today
Mix-Nets

Verifiable shuffles for El Gamal encryption

Also known for Paillier encryption

Useful in the “back-end” of voting schemes

In principle, general MPC would work

Special constructions with better efficiency

Next: Voting

Today
Mix-Nets

Verifiable shuffles for El Gamal encryption

Also known for Paillier encryption

Useful in the “back-end” of voting schemes

In principle, general MPC would work

Special constructions with better efficiency

Next: Voting

Several subtleties (especially in the “front-end”)

