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Mix-Nets
Originally proposed by Chaum (1981) for anonymous 
communication

Input: a vector of ciphertexts under a “threshold encryption 
scheme”

Mix-servers take turns to perform “verifiable shuffles”

Final shuffled vector decrypted by decryption-servers

(Omitted: Decryption mix-nets, which combine shuffling 
and decryption. Here: Re-encryption mix-nets)

Ideal functionality: input a vector of private messages from 
senders, and a permutation from each mix server; output 
the messages permuted using the composed permutation

Corruption model: Active adversary can corrupt a limited 
number of servers 



Threshold Decryption



Threshold Decryption
Key pairs (SKi,PKi) generated by a set of servers (separate 
from sender/receiver). (Receiver may set up parameters.)



Threshold Decryption
Key pairs (SKi,PKi) generated by a set of servers (separate 
from sender/receiver). (Receiver may set up parameters.)

Ciphertexts generated by honest player (not CCA security)



Threshold Decryption
Key pairs (SKi,PKi) generated by a set of servers (separate 
from sender/receiver). (Receiver may set up parameters.)

Ciphertexts generated by honest player (not CCA security)

Decryption by public discussion among servers and receiver 
(all the servers and the receiver see all the messages)



Threshold Decryption
Key pairs (SKi,PKi) generated by a set of servers (separate 
from sender/receiver). (Receiver may set up parameters.)

Ciphertexts generated by honest player (not CCA security)

Decryption by public discussion among servers and receiver 
(all the servers and the receiver see all the messages)

Active adversary can corrupt a limited number of servers 



Threshold Decryption
Key pairs (SKi,PKi) generated by a set of servers (separate 
from sender/receiver). (Receiver may set up parameters.)

Ciphertexts generated by honest player (not CCA security)

Decryption by public discussion among servers and receiver 
(all the servers and the receiver see all the messages)

Active adversary can corrupt a limited number of servers 

Ideal: Same as for SIM-CPA, but with servers also getting 
the message (if the receiver decides to get it); if number of 
corrupted servers above threshold, adversary can block (but 
not substitute) output to others
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Threshold Decryption
E.g. Threshold El Gamal for threshold n out of n

KeyGen: (SKi,PKi) = (yi,Yi:=gyi)  (group, g are system parameters)

Encryption: El Gamal, with PK (g,Y) where Y = Πi gyi

Decryption: Given (A,B) := (gr,mYr), ith server outputs Ai := (gr)yi 
and proves (to the receiver) equality of discrete log for (g,Yi) 
and (A,Ai). Receiver recovers m as B/Πi Ai 

Proof using an Honest-Verifier ZK proof

Using a special purpose proof (Chaum-Pederson), rather 
than ZK for general NP statements
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Honest-Verifier ZK Proofs
ZK Proof of knowledge of discrete log of A=gr 

This can be used to prove knowledge of the message in 
an El Gamal encryption (A,B) = (gr, m Yr)

P→V:  U := gu ; V→P: v ;  P→V: w := rv + u  ;  

V checks: gw  = AvU

Proof of Knowledge:
Firstly, gw = AvU  ⇒  w = rv+u, where U = gu

If after sending U, P could respond to two different 
values of v: w1 = rv1 + u and w2 = rv2 + u, then can 
solve for r

ZK: simulation picks w, v first and sets U = gw/Av
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HVZK: Simulation for honest (passively corrupt) verifier

e.g. in PoK of discrete log, simulator picks (v,w) first and 
computes U (without knowing u). Relies on verifier to pick v 
independent of U.

Special soundness: given (U,v,w) and (U,v’,w’) s.t. v≠v’ and both 
accepted by verifier, can derive a witness (in stand-alone setting)

e.g. solve r from w=rv+u and w’=rv’+u (given v,w,v’,w’)

Implies soundness: for each U s.t. prover has significant 
probability of being able to convince, can extract r from the 
prover with comparable probability (using “rewinding”)

Can amplify soundness using parallel repetition: still 3 rounds
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Honest-Verifier ZK Proofs
ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)),  
i.e., Y = gr and D = Cr [Chaum-Pederson]

Can be used to prove equality of two El Gamal encryptions (A,B) & 
(A’,B’) w.r.t public-key (g,Y): set (C,D) := (A/A’,B/B’)

P→V: (U,M) := (gu,Cu); V→P: v ; P→V: w := rv+u ;  

V checks: gw = YvU and Cw = DvM

Proof of Knowledge:
gw=YvU, Cw=DvM  ⇒ w = rv+u = r’v+u’  
where U=gu, M=gu’ and Y=gr, D=Cr’

If after sending (U,M) P could respond to two different values 
of v: rv1 + u = r’v1 + u’ and rv2 + u = r’v2 + u’, then r=r’
ZK: simulation picks w, v first and sets U=gw/Av, M=Cw/Dv
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Fiat-Shamir Heuristic
Limitation: Honest-Verifier ZK does not guarantee ZK when 
verifier is actively corrupt

Can be fixed by implementing the verifier using MPC

If verifier is a public-coin protocol -- i.e., only picks 
random elements publicly -- then MPC only to generate 
random coins

Fiat-Shamir Heuristic: random coins from verifier defined 
as R(trans), where R is a random oracle and trans is the 
transcript of the proof so far

Removes need for interaction!
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Verifiable Shuffle
(Not so) ideal functionality: takes as input encrypted messages 
from a sender, and a permutation and randomness from a 
mixer; outputs rerandomized encryptions of permuted messages 
to a receiver. (Mixer gets encryptions, then picks its inputs.)

Will settle for stand-alone security, and restrict to active 
corruption of mixer and passive corruption of sender/receiver

Security against active corruption will be enforced 
separately (say using the Fiat-Shamir heuristic for 
receivers; audits/physical means for senders in voting)

We shall consider El Gamal encryption

Mixer will be given encrypted messages and it will perform 
the permutation and reencryptions
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HVZK proofs that [(C1→D1) or (C1→D2)] and [(C2→D1) or (C2→D2)]

To prove [ stmnt1 or stmnt2 ], given an HVZK/SS proof 
system for a single statement (here: equality of El Gamal 
encryptions)

Denote the messages in the original system by (U,v,w)

P: Run simulator to get (U3-i,v3-i,w3-i) when stmnti true 
P→V: (U1,U2); V→P: v; P→V: (v1,v2,w1,w2) where vi = v-v3-i 

Verifier checks: v1+v2 = v and verifies (U1,v1,w1) and (U2,v2,w2)

Special soundness: given answers for v≠v’ either v1≠v1’ or v2≠v2’. 
By special soundness, extract witness for stmnt1 or stmnt2
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From 2 inputs to many
Using a sorting network

A circuit with “comparison gates” such  
that for inputs in any order the output  
is sorted

Simple O(n log2n) size networks known

Fix a sorting network, and use a 2x2 verifiable 
shuffle at each comparison gate

Permutations at the comparison gates chosen 
so as to implement the overall permutation

3 rounds: Parallel composition of HVZK proofs

(Bitonic sort: from Wikipedia)
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Alternate Verifiable-Shuffles

More efficient (w.r.t. communication/computation) protocols 
known:

3 rounds, using “permutation matrices”

With linear communication

7 rounds, using homomorphic commitments

Possible with sub-linear communication for the proof
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Commitment

A commitment scheme over a group

com(x;r) = c, where x, r, c are from their respective 
groups

Hiding and binding

Homomorphism: com(x;r) * com(x’;r’) = com(x+x’;r+r’)

(Operations in respective groups)
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Commitment from CRHF

Let H be a CRHF s.t. HK(x,r) is uniformly random for a 
random r, for any x and any K

Commitment: Receiver sends a random key K for H, and 
sender sends ComK(x;r) := HK(x,r)

Perfectly hiding, because r will be chosen at random 
by the committer

Reveal: send (x,r)

Binding, because of collision resistance when K picked 
at random
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Pedersen Commitment
Recall CRHF Hg,h(x,r) = gxhr (collision resistant under Discrete Log 
assumption)

Binding by collision-resistance: receiver picks (g,h)

Perfectly Hiding in a prime order group

If group is prime order, then all h are generators

Then for all x, Hg,h(x,r) is random if r random

Homomorphism: Comg,h(x;r) * Comg,h(x’;r’) = Comg,h(x+x’;r+r’)

HVZK PoK of (x,r): Send Comg,h(u1;u2), and on challenge v, send  
(xv+u1) and (rv+u2)

Improved efficiency: Hg1,..,gn,h(x1,...,xn,r) = g1
x1...gn

xn hr



Using Homomorphic 
Commitments



Using Homomorphic 
Commitments

Sub-problem: given a plaintext vector (m1,...,mn), verifiably 
commit to a permutation of it (using a vector commitment)



Using Homomorphic 
Commitments

Sub-problem: given a plaintext vector (m1,...,mn), verifiably 
commit to a permutation of it (using a vector commitment)

Idea: (z1,...,zn) is a permutation of (m1,...,mn) iff the polynomials 
f(X) := Πi (X-mi) and h(X) := Πi (X-zi) are the same



Using Homomorphic 
Commitments

Sub-problem: given a plaintext vector (m1,...,mn), verifiably 
commit to a permutation of it (using a vector commitment)

Idea: (z1,...,zn) is a permutation of (m1,...,mn) iff the polynomials 
f(X) := Πi (X-mi) and h(X) := Πi (X-zi) are the same

Probabilistically verified by assigning a random value x to X



Using Homomorphic 
Commitments

Sub-problem: given a plaintext vector (m1,...,mn), verifiably 
commit to a permutation of it (using a vector commitment)

Idea: (z1,...,zn) is a permutation of (m1,...,mn) iff the polynomials 
f(X) := Πi (X-mi) and h(X) := Πi (X-zi) are the same

Probabilistically verified by assigning a random value x to X

If the field is large (super-polynomial), soundness error is 
negligible: if not identically 0, f(X)-h(X) has at most n roots



Using Homomorphic 
Commitments

Sub-problem: given a plaintext vector (m1,...,mn), verifiably 
commit to a permutation of it (using a vector commitment)
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Probabilistically verified by assigning a random value x to X

If the field is large (super-polynomial), soundness error is 
negligible: if not identically 0, f(X)-h(X) has at most n roots

Use homomorphic commitments to carry out the polynomial 
evaluation and check equality (details omitted)



Using Homomorphic 
Commitments

Sub-problem: given a plaintext vector (m1,...,mn), verifiably 
commit to a permutation of it (using a vector commitment)



Using Homomorphic 
Commitments

For shuffling ciphertexts:

Sub-problem: given a plaintext vector (m1,...,mn), verifiably 
commit to a permutation of it (using a vector commitment)



Using Homomorphic 
Commitments

For shuffling ciphertexts:

Suppose verifier knew the permutation. Then task reduces 
to proving equality of messages in ciphertext pairs

Sub-problem: given a plaintext vector (m1,...,mn), verifiably 
commit to a permutation of it (using a vector commitment)



Using Homomorphic 
Commitments

For shuffling ciphertexts:

Suppose verifier knew the permutation. Then task reduces 
to proving equality of messages in ciphertext pairs

Can’t reveal the permutation: instead commit to a 
permutation of (1,2,...,n)

Sub-problem: given a plaintext vector (m1,...,mn), verifiably 
commit to a permutation of it (using a vector commitment)



Using Homomorphic 
Commitments

For shuffling ciphertexts:

Suppose verifier knew the permutation. Then task reduces 
to proving equality of messages in ciphertext pairs

Can’t reveal the permutation: instead commit to a 
permutation of (1,2,...,n)

Use the sub-protocol to do this verifiably

Sub-problem: given a plaintext vector (m1,...,mn), verifiably 
commit to a permutation of it (using a vector commitment)



Using Homomorphic 
Commitments

For shuffling ciphertexts:

Suppose verifier knew the permutation. Then task reduces 
to proving equality of messages in ciphertext pairs

Can’t reveal the permutation: instead commit to a 
permutation of (1,2,...,n)

Use the sub-protocol to do this verifiably

Use homomorphic properties of the commitments to 
carry out equality proofs w.r.t committed permutation 
(omitted)

Sub-problem: given a plaintext vector (m1,...,mn), verifiably 
commit to a permutation of it (using a vector commitment)
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Today
Mix-Nets

Verifiable shuffles for El Gamal encryption

Also known for Paillier encryption

Useful in the “back-end” of voting schemes

In principle, general MPC would work

Special constructions with better efficiency

Next: Voting

Several subtleties (especially in the “front-end”)


