Lecture 19 Some tools for electronic-voting (and other things)

Originally proposed by Chaum (1981) for anonymous communication

- Originally proposed by Chaum (1981) for anonymous communication
- Input: a vector of ciphertexts under a "threshold encryption scheme"

- Originally proposed by Chaum (1981) for anonymous communication
- Input: a vector of ciphertexts under a "threshold encryption scheme"
- Mix-servers take turns to perform "verifiable shuffles"

- Originally proposed by Chaum (1981) for anonymous communication
- Input: a vector of ciphertexts under a "threshold encryption scheme"
- Mix-servers take turns to perform "verifiable shuffles"
- Final shuffled vector decrypted by decryption-servers

- Originally proposed by Chaum (1981) for anonymous communication
- Input: a vector of ciphertexts under a "threshold encryption scheme"
- Mix-servers take turns to perform "verifiable shuffles"
- Final shuffled vector decrypted by decryption-servers
 - (Omitted: Decryption mix-nets, which combine shuffling and decryption. Here: Re-encryption mix-nets)

- Originally proposed by Chaum (1981) for anonymous communication
- Input: a vector of ciphertexts under a "threshold encryption scheme"
- Mix-servers take turns to perform "verifiable shuffles"
- Final shuffled vector decrypted by decryption-servers
 - (Omitted: Decryption mix-nets, which combine shuffling and decryption. Here: Re-encryption mix-nets)
- Ideal functionality: input a vector of private messages from senders, and a permutation from each mix server; output the messages permuted using the composed permutation

- Originally proposed by Chaum (1981) for anonymous communication
- Input: a vector of ciphertexts under a "threshold encryption scheme"
- Mix-servers take turns to perform "verifiable shuffles"
- Final shuffled vector decrypted by decryption-servers
 - (Omitted: Decryption mix-nets, which combine shuffling and decryption. Here: Re-encryption mix-nets)
- Ideal functionality: input a vector of private messages from senders, and a permutation from each mix server; output the messages permuted using the composed permutation
- Corruption model: Active adversary can corrupt a limited number of servers

Key pairs (SK_i,PK_i) generated by a set of servers (separate from sender/receiver). (Receiver may set up parameters.)

Key pairs (SK_i,PK_i) generated by a set of servers (separate from sender/receiver). (Receiver may set up parameters.)

Ciphertexts generated by honest player (not CCA security)

- Key pairs (SK_i,PK_i) generated by a set of servers (separate from sender/receiver). (Receiver may set up parameters.)
- Ciphertexts generated by honest player (not CCA security)
- Decryption by public discussion among servers and receiver (all the servers and the receiver see all the messages)

- Key pairs (SK_i,PK_i) generated by a set of servers (separate from sender/receiver). (Receiver may set up parameters.)
- Ciphertexts generated by honest player (not CCA security)
- Decryption by public discussion among servers and receiver (all the servers and the receiver see all the messages)
- Active adversary can corrupt a limited number of servers

- Key pairs (SK_i,PK_i) generated by a set of servers (separate from sender/receiver). (Receiver may set up parameters.)
- Ciphertexts generated by honest player (not CCA security)
- Decryption by public discussion among servers and receiver (all the servers and the receiver see all the messages)
- Active adversary can corrupt a limited number of servers
- Ideal: Same as for SIM-CPA, but with servers also getting the message (if the receiver decides to get it); if number of corrupted servers above threshold, adversary can block (but not substitute) output to others

E.g. Threshold El Gamal for threshold n out of n

- E.g. Threshold El Gamal for threshold n out of n
- KeyGen: (SK_i,PK_i) = (y_i,Y_i:=g^{yi}) (group, g are system parameters)

- E.g. Threshold El Gamal for threshold n out of n
- KeyGen: $(SK_i, PK_i) = (y_i, Y_i:=g^{y_i})$ (group, g are system parameters)
- Encryption: El Gamal, with PK (g,Y) where Y = $\Pi_i g^{yi}$

- E.g. Threshold El Gamal for threshold n out of n
- KeyGen: $(SK_i, PK_i) = (y_i, Y_i:=g^{y_i})$ (group, g are system parameters)
- Encryption: El Gamal, with PK (g,Y) where Y = $\Pi_i g^{yi}$

Decryption: Given (A,B) := (g^r,mY^r), ith server outputs A_i := (g^r)^{yi} and <u>proves</u> (to the receiver) equality of discrete log for (g,Y_i) and (A,A_i). Receiver recovers m as B/Π_i A_i

- E.g. Threshold El Gamal for threshold n out of n
- KeyGen: $(SK_i, PK_i) = (y_i, Y_i:=g^{y_i})$ (group, g are system parameters)
- Encryption: El Gamal, with PK (g,Y) where Y = $\Pi_i g^{yi}$
- Decryption: Given (A,B) := (g^r,mY^r), ith server outputs A_i := (g^r)^{yi} and <u>proves</u> (to the receiver) equality of discrete log for (g,Y_i) and (A,A_i). Receiver recovers m as B/Π_i A_i
 - Proof using an <u>Honest-Verifier ZK proof</u>

- E.g. Threshold El Gamal for threshold n out of n
- KeyGen: $(SK_i, PK_i) = (y_i, Y_i:=g^{y_i})$ (group, g are system parameters)
- Encryption: El Gamal, with PK (g,Y) where Y = $\Pi_i g^{yi}$
- Decryption: Given (A,B) := (g^r,mY^r), ith server outputs A_i := (g^r)^{yi} and proves (to the receiver) equality of discrete log for (g,Y_i) and (A,A_i). Receiver recovers m as B/Π_i A_i
 - Proof using an <u>Honest-Verifier ZK proof</u>
 - Using a special purpose proof (Chaum-Pederson), rather than ZK for general NP statements

ZK Proof of knowledge of discrete log of A=g^r

This can be used to prove knowledge of the message in an El Gamal encryption (A,B) = (g^r, m Y^r)

- This can be used to prove knowledge of the message in an El Gamal encryption (A,B) = (g^r, m Y^r)
- $P \rightarrow V$: U := g^u ; V $\rightarrow P$: v ; $P \rightarrow V$: w := rv + u ; V checks: g^w = A^vU

- This can be used to prove knowledge of the message in an El Gamal encryption (A,B) = (g^r, m Y^r)
- $P \rightarrow V$: U := g^u ; V $\rightarrow P$: v ; $P \rightarrow V$: w := rv + u ; V checks: g^w = A^vU
- Proof of Knowledge:

- This can be used to prove knowledge of the message in an El Gamal encryption (A,B) = (g^r, m Y^r)
- $P \rightarrow V$: $U := g^{u}$; $V \rightarrow P$: v; $P \rightarrow V$: w := rv + u; V checks: $g^{w} = A^{v}U$
- Proof of Knowledge:
 Firstly, $g^w = A^v U \implies w = rv+u$, where $U = g^u$

- This can be used to prove knowledge of the message in an El Gamal encryption (A,B) = (g^r, m Y^r)
- Proof of Knowledge:
 - Firstly, $g^w = A^v U \Rightarrow w = rv+u$, where $U = g^u$
 - If after sending U, P could respond to two different values of v: w₁ = rv₁ + u and w₂ = rv₂ + u, then can solve for r

- This can be used to prove knowledge of the message in an El Gamal encryption (A,B) = (g^r, m Y^r)
- Proof of Knowledge:
 Firstly, $g^w = A^v U \implies w = rv+u$, where $U = g^u$
 - If after sending U, P could respond to two different values of v: w₁ = rv₁ + u and w₂ = rv₂ + u, then can solve for r
- ZK: simulation picks w, v first and sets U = g^w/A^v

HVZK: Simulation for honest (passively corrupt) verifier

 e.g. in PoK of discrete log, simulator picks (v,w) first and computes U (without knowing u). Relies on verifier to pick v independent of U.

- e.g. in PoK of discrete log, simulator picks (v,w) first and computes U (without knowing u). Relies on verifier to pick v independent of U.
- Special soundness: given (U,v,w) and (U,v',w') s.t. v≠v' and both accepted by verifier, can derive a witness (in stand-alone setting)

- e.g. in PoK of discrete log, simulator picks (v,w) first and computes U (without knowing u). Relies on verifier to pick v independent of U.
- Special soundness: given (U,v,w) and (U,v',w') s.t. v≠v' and both accepted by verifier, can derive a witness (in stand-alone setting)
 - e.g. solve r from w=rv+u and w'=rv'+u (given v,w,v',w')

- e.g. in PoK of discrete log, simulator picks (v,w) first and computes U (without knowing u). Relies on verifier to pick v independent of U.
- Special soundness: given (U,v,w) and (U,v',w') s.t. v≠v' and both accepted by verifier, can derive a witness (in stand-alone setting)
 - e.g. solve r from w=rv+u and w'=rv'+u (given v,w,v',w')
 - Implies soundness: for each U s.t. prover has significant probability of being able to convince, can extract r from the prover with comparable probability (using "rewinding")
HVZK and Special Soundness

HVZK: Simulation for honest (passively corrupt) verifier

- e.g. in PoK of discrete log, simulator picks (v,w) first and computes U (without knowing u). Relies on verifier to pick v independent of U.
- Special soundness: given (U,v,w) and (U,v',w') s.t. v≠v' and both accepted by verifier, can derive a witness (in stand-alone setting)
 - e.g. solve r from w=rv+u and w'=rv'+u (given v,w,v',w')
 - Implies soundness: for each U s.t. prover has significant probability of being able to convince, can extract r from the prover with comparable probability (using "rewinding")
 - Can amplify soundness using parallel repetition: still 3 rounds

ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)),
 i.e., Y = g^r and D = C^r [Chaum-Pederson]

- ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)),
 i.e., Y = g^r and D = C^r [Chaum-Pederson]
- Can be used to prove equality of two El Gamal encryptions (A,B) & (A',B') w.r.t public-key (g,Y): set (C,D) := (A/A',B/B')

- ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)),
 i.e., Y = g^r and D = C^r [Chaum-Pederson]
- Can be used to prove equality of two El Gamal encryptions (A,B) & (A',B') w.r.t public-key (g,Y): set (C,D) := (A/A',B/B')

V checks: $g^w = Y^vU$ and $C^w = D^vM$

- ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)),
 i.e., Y = g^r and D = C^r [Chaum-Pederson]
- Can be used to prove equality of two El Gamal encryptions (A,B) & (A',B') w.r.t public-key (g,Y): set (C,D) := (A/A',B/B')
- - V checks: $g^w = Y^vU$ and $C^w = D^vM$
- Proof of Knowledge:

- ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)),
 i.e., Y = g^r and D = C^r [Chaum-Pederson]
- Can be used to prove equality of two El Gamal encryptions (A,B) & (A',B') w.r.t public-key (g,Y): set (C,D) := (A/A',B/B')

V checks: $g^w = Y^vU$ and $C^w = D^vM$

Proof of Knowledge:

g^w=Y^vU, C^w=D^vM ⇒ w = rv+u = r'v+u'
 where U=g^u, M=g^{u'} and Y=g^r, D=C^{r'}

- ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)),
 i.e., Y = g^r and D = C^r [Chaum-Pederson]
- Can be used to prove equality of two El Gamal encryptions (A,B) & (A',B') w.r.t public-key (g,Y): set (C,D) := (A/A',B/B')

V checks: $g^w = Y^vU$ and $C^w = D^vM$

Proof of Knowledge:

- $g^{w}=Y^{v}U, C^{w}=D^{v}M \Rightarrow w = rv+u = r'v+u'$ where $U=g^{u}, M=g^{u'}$ and $Y=g^{r}, D=C^{r'}$
- If after sending (U,M) P could respond to two different values of v: $rv_1 + u = r'v_1 + u'$ and $rv_2 + u = r'v_2 + u'$, then r=r'

- ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)),
 i.e., Y = g^r and D = C^r [Chaum-Pederson]
- Can be used to prove equality of two El Gamal encryptions (A,B) & (A',B') w.r.t public-key (g,Y): set (C,D) := (A/A',B/B')

V checks: $g^w = Y^vU$ and $C^w = D^vM$

Proof of Knowledge:

- g^w=Y^vU, C^w=D^vM ⇒ w = rv+u = r'v+u'
 where U=g^u, M=g^{u'} and Y=g^r, D=C^{r'}
- If after sending (U,M) P could respond to two different values of v: $rv_1 + u = r'v_1 + u'$ and $rv_2 + u = r'v_2 + u'$, then r=r'
- ZK: simulation picks w, v first and sets $U=g^w/A^v$, $M=C^w/D^v$

Limitation: Honest-Verifier ZK does not guarantee ZK when verifier is actively corrupt

- Limitation: Honest-Verifier ZK does not guarantee ZK when verifier is actively corrupt
 - Can be fixed by implementing the verifier using MPC

- Limitation: Honest-Verifier ZK does not guarantee ZK when verifier is actively corrupt
 - Can be fixed by implementing the verifier using MPC
 - If verifier is a public-coin protocol -- i.e., only picks random elements publicly -- then MPC only to generate random coins

- Limitation: Honest-Verifier ZK does not guarantee ZK when verifier is actively corrupt
 - Can be fixed by implementing the verifier using MPC
 - If verifier is a public-coin protocol -- i.e., only picks random elements publicly -- then MPC only to generate random coins
 - Fiat-Shamir Heuristic: random coins from verifier defined as R(trans), where R is a random oracle and trans is the transcript of the proof so far

- Limitation: Honest-Verifier ZK does not guarantee ZK when verifier is actively corrupt
 - Can be fixed by implementing the verifier using MPC
 - If verifier is a public-coin protocol -- i.e., only picks random elements publicly -- then MPC only to generate random coins
 - Fiat-Shamir Heuristic: random coins from verifier defined as R(trans), where R is a random oracle and trans is the transcript of the proof so far

Removes need for interaction!

 (Not so) ideal functionality: takes as input <u>encrypted messages</u> from a <u>sender</u>, and <u>a permutation and randomness</u> from a <u>mixer</u>; outputs <u>rerandomized encryptions</u> of <u>permuted messages</u> to a <u>receiver</u>. (Mixer gets encryptions, then picks its inputs.)

 (Not so) ideal functionality: takes as input <u>encrypted messages</u> from a <u>sender</u>, and <u>a permutation and randomness</u> from a <u>mixer</u>; outputs <u>rerandomized encryptions of permuted messages</u> to a <u>receiver</u>. (Mixer gets encryptions, then picks its inputs.)

Will settle for stand-alone security, and restrict to active corruption of mixer and passive corruption of sender/receiver

 (Not so) ideal functionality: takes as input encrypted messages from a sender, and a permutation and randomness from a mixer; outputs rerandomized encryptions of permuted messages to a receiver. (Mixer gets encryptions, then picks its inputs.)

Will settle for stand-alone security, and restrict to active corruption of mixer and passive corruption of sender/receiver

Security against active corruption will be enforced separately (say using the Fiat-Shamir heuristic for receivers; audits/physical means for senders in voting)

 (Not so) ideal functionality: takes as input <u>encrypted messages</u> from a <u>sender</u>, and <u>a permutation and randomness</u> from a <u>mixer</u>; outputs <u>rerandomized encryptions of permuted messages</u> to a <u>receiver</u>. (Mixer gets encryptions, then picks its inputs.)

Will settle for stand-alone security, and restrict to active corruption of mixer and passive corruption of sender/receiver

- Security against active corruption will be enforced separately (say using the Fiat-Shamir heuristic for receivers; audits/physical means for senders in voting)
- We shall consider El Gamal encryption

 (Not so) ideal functionality: takes as input <u>encrypted messages</u> from a <u>sender</u>, and <u>a permutation and randomness</u> from a <u>mixer</u>; outputs <u>rerandomized encryptions of permuted messages</u> to a <u>receiver</u>. (Mixer gets encryptions, then picks its inputs.)

Will settle for stand-alone security, and restrict to active corruption of mixer and passive corruption of sender/receiver

- Security against active corruption will be enforced separately (say using the Fiat-Shamir heuristic for receivers; audits/physical means for senders in voting)
- We shall consider El Gamal encryption
 - Mixer will be given encrypted messages and it will perform the permutation and reencryptions

• On input (C_1, C_2), produce (D_1, D_2) by shuffling and rerandomizing

• On input (C_1, C_2), produce (D_1, D_2) by shuffling and rerandomizing • HVZK proofs that [($C_1 \rightarrow D_1$) or ($C_1 \rightarrow D_2$)] and [($C_2 \rightarrow D_1$) or ($C_2 \rightarrow D_2$)]

• On input (C_1, C_2), produce (D_1, D_2) by shuffling and rerandomizing • HVZK proofs that [($C_1 \rightarrow D_1$) or ($C_1 \rightarrow D_2$)] and [($C_2 \rightarrow D_1$) or ($C_2 \rightarrow D_2$)]

To prove [stmnt₁ or stmnt₂], given an HVZK/SS proof system for a single statement (here: equality of El Gamal encryptions)

• On input (C_1, C_2), produce (D_1, D_2) by shuffling and rerandomizing • HVZK proofs that [($C_1 \rightarrow D_1$) or ($C_1 \rightarrow D_2$)] and [($C_2 \rightarrow D_1$) or ($C_2 \rightarrow D_2$)]

To prove [stmnt₁ or stmnt₂], given an HVZK/SS proof system for a single statement (here: equality of El Gamal encryptions)

Denote the messages in the original system by (U,v,w)

• On input (C_1, C_2), produce (D_1, D_2) by shuffling and rerandomizing • HVZK proofs that [($C_1 \rightarrow D_1$) or ($C_1 \rightarrow D_2$)] and [($C_2 \rightarrow D_1$) or ($C_2 \rightarrow D_2$)]

- To prove [stmnt₁ or stmnt₂], given an HVZK/SS proof system for a single statement (here: equality of El Gamal encryptions)
- Denote the messages in the original system by (U,v,w)
- P: Run simulator to get $(U_{3-i}, v_{3-i}, w_{3-i})$ when stmnt_i true $P \rightarrow V$: (U_1, U_2) ; $V \rightarrow P$: v; $P \rightarrow V$: (v_1, v_2, w_1, w_2) where $v_i = v - v_{3-i}$ Verifier checks: $v_1 + v_2 = v$ and verifies (U_1, v_1, w_1) and (U_2, v_2, w_2)

• On input (C_1, C_2), produce (D_1, D_2) by shuffling and rerandomizing • HVZK proofs that [($C_1 \rightarrow D_1$) or ($C_1 \rightarrow D_2$)] and [($C_2 \rightarrow D_1$) or ($C_2 \rightarrow D_2$)]

- To prove [stmnt₁ or stmnt₂], given an HVZK/SS proof system for a single statement (here: equality of El Gamal encryptions)
- Denote the messages in the original system by (U,v,w)
- P: Run simulator to get $(U_{3-i}, v_{3-i}, w_{3-i})$ when stmnt_i true $P \rightarrow V$: (U_1, U_2) ; $V \rightarrow P$: v; $P \rightarrow V$: (v_1, v_2, w_1, w_2) where $v_i = v - v_{3-i}$ Verifier checks: $v_1 + v_2 = v$ and verifies (U_1, v_1, w_1) and (U_2, v_2, w_2)

Special soundness: given answers for $v \neq v'$ either $v_1 \neq v_1'$ or $v_2 \neq v_2'$. By special soundness, extract witness for stmnt₁ or stmnt₂

Using a <u>sorting network</u>

Using a <u>sorting network</u>

 A circuit with "comparison gates" such that for inputs in any order the output is sorted

Using a <u>sorting network</u>

 A circuit with "comparison gates" such that for inputs in any order the output is sorted

(Bitonic sort: from Wikipedia)

Using a sorting network

- A circuit with "comparison gates" such that for inputs in any order the output is sorted
- Simple O(n log²n) size networks known

(Bitonic sort: from Wikipedia)

Using a sorting network

- A circuit with "comparison gates" such that for inputs in any order the output is sorted
- Simple O(n log²n) size networks known

(Bitonic sort: from Wikipedia)

Fix a sorting network, and use a 2x2 verifiable shuffle at each comparison gate

Using a sorting network

 A circuit with "comparison gates" such that for inputs in any order the output is sorted

(Bitonic sort: from Wikipedia)

- Fix a sorting network, and use a 2x2 verifiable shuffle at each comparison gate
 - Permutations at the comparison gates chosen so as to implement the overall permutation

Using a sorting network

- A circuit with "comparison gates" such that for inputs in any order the output is sorted
- Simple O(n log²n) size networks known

(Bitonic sort: from Wikipedia)

- Fix a sorting network, and use a 2x2 verifiable shuffle at each comparison gate
 - Permutations at the comparison gates chosen so as to implement the overall permutation
 - 3 rounds: Parallel composition of HVZK proofs
More efficient (w.r.t. communication/computation) protocols known:

More efficient (w.r.t. communication/computation) protocols known:

3 rounds, using "permutation matrices"

- More efficient (w.r.t. communication/computation) protocols known:
 - 3 rounds, using "permutation matrices"
 - With linear communication

- More efficient (w.r.t. communication/computation) protocols known:
 - 3 rounds, using "permutation matrices"
 - With linear communication
 - 7 rounds, using <u>homomorphic commitments</u>

- More efficient (w.r.t. communication/computation) protocols known:
 - 3 rounds, using "permutation matrices"
 - With linear communication
 - 7 rounds, using <u>homomorphic commitments</u>
 - Possible with sub-linear communication for the proof

A commitment scheme over a group

- A commitment scheme over a group
 - com(x;r) = c, where x, r, c are from their respective groups

- A commitment scheme over a group
 - com(x;r) = c, where x, r, c are from their respective groups
- Hiding and binding

- A commitment scheme over a group
 - com(x;r) = c, where x, r, c are from their respective groups
- Hiding and binding
- Homomorphism: com(x;r) * com(x';r') = com(x+x';r+r')

- A commitment scheme over a group
 - com(x;r) = c, where x, r, c are from their respective groups
- Hiding and binding
- Homomorphism: com(x;r) * com(x';r') = com(x+x';r+r')
 - Operations in respective groups)

Let H be a CRHF s.t. H_K(x,r) is uniformly random for a random r, for any x and any K

Let H be a CRHF s.t. H_K(x,r) is uniformly random for a random r, for any x and any K

 Commitment: Receiver sends a random key K for H, and sender sends Com_κ(x;r) := H_κ(x,r)

- Let H be a CRHF s.t. H_K(x,r) is uniformly random for a random r, for any x and any K
- Commitment: Receiver sends a random key K for H, and sender sends Com_κ(x;r) := H_κ(x,r)
 - Perfectly hiding, because r will be chosen at random by the committer

- Let H be a CRHF s.t. H_K(x,r) is uniformly random for a random r, for any x and any K
- Commitment: Receiver sends a random key K for H, and sender sends Com_κ(x;r) := H_κ(x,r)
 - Perfectly hiding, because r will be chosen at random by the committer
- Reveal: send (x,r)

- Let H be a CRHF s.t. $H_{\kappa}(x,r)$ is uniformly random for a random r, for any x and any K
- Commitment: Receiver sends a random key K for H, and sender sends Com_κ(x;r) := H_κ(x,r)
 - Perfectly hiding, because r will be chosen at random by the committer
- Reveal: send (x,r)
 - <u>Binding</u>, because of collision resistance when K picked at random

Recall CRHF H_{g,h}(x,r) = g^xh^r (collision resistant under Discrete Log assumption)

- Recall CRHF H_{g,h}(x,r) = g^xh^r (collision resistant under Discrete Log assumption)
 - Binding by collision-resistance: receiver picks (g,h)

- Recall CRHF H_{g,h}(x,r) = g^xh^r (collision resistant under Discrete Log assumption)
 - Binding by collision-resistance: receiver picks (g,h)
 - Perfectly Hiding in a prime order group

- Recall CRHF H_{g,h}(x,r) = g^xh^r (collision resistant under Discrete Log assumption)
 - Binding by collision-resistance: receiver picks (g,h)
 - Perfectly Hiding in a prime order group
 - If group is prime order, then all h are generators

- Recall CRHF H_{g,h}(x,r) = g^xh^r (collision resistant under Discrete Log assumption)
 - Binding by collision-resistance: receiver picks (g,h)
 - Perfectly Hiding in a prime order group
 - If group is prime order, then all h are generators
 - Then for all x, $H_{g,h}(x,r)$ is random if r random

- Recall CRHF H_{g,h}(x,r) = g^xh^r (collision resistant under Discrete Log assumption)
 - Binding by collision-resistance: receiver picks (g,h)
 - Perfectly Hiding in a prime order group

If group is prime order, then all h are generators
 Then for all x, H_{g,h}(x,r) is random if r random
 Homomorphism: Com_{g,h}(x;r) * Com_{g,h}(x';r') = Com_{g,h}(x+x';r+r')

- Recall CRHF H_{g,h}(x,r) = g^xh^r (collision resistant under Discrete Log assumption)
 - Binding by collision-resistance: receiver picks (g,h)
 - Perfectly Hiding in a prime order group
 - If group is prime order, then all h are generators
 - Then for all x, $H_{g,h}(x,r)$ is random if r random
- Homomorphism: $Com_{g,h}(x;r) * Com_{g,h}(x';r') = Com_{g,h}(x+x';r+r')$
- HVZK PoK of (x,r): Send Com_{g,h}(u₁;u₂), and on challenge v, send (xv+u₁) and (rv+u₂)

- Recall CRHF H_{g,h}(x,r) = g^xh^r (collision resistant under Discrete Log assumption)
 - Binding by collision-resistance: receiver picks (g,h)
 - Perfectly Hiding in a prime order group
 - If group is prime order, then all h are generators
 - Then for all x, $H_{g,h}(x,r)$ is random if r random
- Homomorphism: $Com_{g,h}(x;r) * Com_{g,h}(x';r') = Com_{g,h}(x+x';r+r')$
- HVZK PoK of (x,r): Send Com_{g,h}(u₁;u₂), and on challenge v, send (xv+u₁) and (rv+u₂)
- Improved efficiency: $H_{g1,..,gn,h}(x_1,...,x_n,r) = g_1^{\times 1}...g_n^{\times n}h^r$

Sub-problem: given a <u>plaintext</u> vector (m₁,...,m_n), verifiably commit to a permutation of it (using a vector commitment)

- Sub-problem: given a <u>plaintext</u> vector (m₁,...,m_n), verifiably commit to a permutation of it (using a vector commitment)
- Idea: $(z_1,...,z_n)$ is a permutation of $(m_1,...,m_n)$ iff the polynomials $f(X) := \prod_i (X-m_i)$ and $h(X) := \prod_i (X-z_i)$ are the same

- Sub-problem: given a <u>plaintext</u> vector (m₁,...,m_n), verifiably commit to a permutation of it (using a vector commitment)
- Idea: (z₁,...,z_n) is a permutation of (m₁,...,m_n) iff the polynomials
 f(X) := Π_i (X-m_i) and h(X) := Π_i (X-z_i) are the same

Probabilistically verified by assigning a random value x to X

- Sub-problem: given a <u>plaintext</u> vector (m₁,...,m_n), verifiably commit to a permutation of it (using a vector commitment)
- Idea: $(z_1,...,z_n)$ is a permutation of $(m_1,...,m_n)$ iff the polynomials $f(X) := \prod_i (X-m_i)$ and $h(X) := \prod_i (X-z_i)$ are the same
 - Probabilistically verified by assigning a random value x to X
 - If the field is large (super-polynomial), soundness error is negligible: if not identically 0, f(X)-h(X) has at most n roots

- Sub-problem: given a <u>plaintext</u> vector (m₁,...,m_n), verifiably commit to a permutation of it (using a vector commitment)
- Idea: (z₁,...,z_n) is a permutation of (m₁,...,m_n) iff the polynomials
 f(X) := Π_i (X-m_i) and h(X) := Π_i (X-z_i) are the same
 - Probabilistically verified by assigning a random value x to X
 - If the field is large (super-polynomial), soundness error is negligible: if not identically 0, f(X)-h(X) has at most n roots
- Use homomorphic commitments to carry out the polynomial evaluation and check equality (details omitted)

Sub-problem: given a plaintext vector (m₁,...,m_n), verifiably commit to a permutation of it (using a vector commitment)

Sub-problem: given a <u>plaintext</u> vector (m₁,...,m_n), verifiably commit to a permutation of it (using a vector commitment)

For shuffling ciphertexts:

- Sub-problem: given a <u>plaintext</u> vector (m₁,...,m_n), verifiably commit to a permutation of it (using a vector commitment)
- For shuffling ciphertexts:
 - Suppose verifier knew the permutation. Then task reduces to proving equality of messages in ciphertext pairs
Using Homomorphic Commitments

Sub-problem: given a <u>plaintext</u> vector (m₁,...,m_n), verifiably commit to a permutation of it (using a vector commitment)

For shuffling ciphertexts:

- Suppose verifier knew the permutation. Then task reduces to proving equality of messages in ciphertext pairs
- Can't reveal the permutation: instead commit to a permutation of (1,2,...,n)

Using Homomorphic Commitments

Sub-problem: given a <u>plaintext</u> vector (m₁,...,m_n), verifiably commit to a permutation of it (using a vector commitment)

For shuffling ciphertexts:

- Suppose verifier knew the permutation. Then task reduces to proving equality of messages in ciphertext pairs
- Can't reveal the permutation: instead commit to a permutation of (1,2,...,n)
 - Output Use the sub-protocol to do this verifiably

Using Homomorphic Commitments

Sub-problem: given a <u>plaintext</u> vector (m₁,...,m_n), verifiably commit to a permutation of it (using a vector commitment)

For shuffling ciphertexts:

- Suppose verifier knew the permutation. Then task reduces to proving equality of messages in ciphertext pairs
- Can't reveal the permutation: instead commit to a permutation of (1,2,...,n)
 - Output Use the sub-protocol to do this verifiably
 - Use homomorphic properties of the commitments to carry out equality proofs w.r.t committed permutation (omitted)

Mix-Nets

Mix-Nets

Verifiable shuffles for El Gamal encryption

Mix-Nets

Verifiable shuffles for El Gamal encryption

Also known for Paillier encryption

Mix-Nets

Verifiable shuffles for El Gamal encryption
Also known for Paillier encryption
Useful in the "back-end" of voting schemes

Mix-Nets

Verifiable shuffles for El Gamal encryption
Also known for Paillier encryption
Useful in the "back-end" of voting schemes
In principle, general MPC would work

Mix-Nets

Verifiable shuffles for El Gamal encryption
Also known for Paillier encryption
Useful in the "back-end" of voting schemes
In principle, general MPC would work
Special constructions with better efficiency

Mix-Nets

Verifiable shuffles for El Gamal encryption
Also known for Paillier encryption
Useful in the "back-end" of voting schemes
In principle, general MPC would work
Special constructions with better efficiency
Next: Voting

Mix-Nets

Verifiable shuffles for El Gamal encryption Also known for Paillier encryption Output Useful in the "back-end" of voting schemes In principle, general MPC would work 0 Special constructions with better efficiency Next: Voting 0

Several subtleties (especially in the "front-end")