Secure 2-Party Computation

Lecture 14
Yao’s Garbled Circuit
SIM-Secure MPC

Secure (and correct) if:

∀ \exists s.t. output of is distributed identically in REAL and IDEAL

RECALL
Passive Adversary

- Gets only read access to the internal state of the corrupted players (and can use that information in talking to environment)
- Also called “Honest-But-Curious” adversary
- Will require that simulator also corrupts passively
- Simplifies several cases
 - e.g. coin-tossing [why?], commitment [coming up]
- Oddly, sometimes security against a passive adversary is more demanding than against an active adversary
 - Active adversary: too pessimistic about what guarantee is available even in the IDEAL world
 - e.g. 2-party SFE for OR, with output going to only one party (trivial against active adversary; impossible without computational assumptions against passive adversary)
Oblivious Transfer

Pick one out of two, without revealing which

Intuitive property: transfer partial information “obliviously”

\[
\begin{align*}
&x_0, x_1 \\
&b \\
&b
\end{align*}
\]

We Predict STOCKS!!

A: up, B: down

I need just one
But can’t tell you which

Sure

All 2 of them!

IDEAL World
2-Party (Passive)
Secure Function Evaluation
2-Party (Passive) Secure Function Evaluation

Functionality takes \((X;Y)\) and outputs \(f(X;Y)\) to Alice, \(g(X;Y)\) to Bob.
2-Party (Passive) Secure Function Evaluation

- Functionality takes \((X;Y)\) and outputs \(f(X;Y)\) to Alice, \(g(X;Y)\) to Bob
- OT is an instance of 2-party SFE
2-Party (Passive) Secure Function Evaluation

- Functionality takes \((X;Y)\) and outputs \(f(X;Y)\) to Alice, \(g(X;Y)\) to Bob.
- OT is an instance of 2-party SFE.
- \(f(x_0,x_1;b) = \text{none}; g(x_0,x_1;b) = x_b\)
2-Party (Passive) Secure Function Evaluation

- Functionality takes \((X;Y)\) and outputs \(f(X;Y)\) to Alice, \(g(X;Y)\) to Bob
- OT is an instance of 2-party SFE

 \[f(x_0,x_1;b) = \text{none}; \quad g(x_0,x_1;b) = x_b \]

- Symmetric SFE: both parties get the same output
2-Party (Passive) Secure Function Evaluation

- Functionality takes \((X;Y)\) and outputs \(f(X;Y)\) to Alice, \(g(X;Y)\) to Bob
- OT is an instance of 2-party SFE
 - \(f(x_0,x_1;b) = \text{none}; \ g(x_0,x_1;b) = x_b\)
- Symmetric SFE: both parties get the same output
 - e.g. \(f(x_0,x_1;b,z) = g(x_0,x_1;b,z) = x_b \oplus z\) [OT from this! How?]
2-Party (Passive)
Secure Function Evaluation

- Functionality takes (X;Y) and outputs f(X;Y) to Alice, g(X;Y) to Bob
- OT is an instance of 2-party SFE
 \[f(x_0, x_1; b) = \text{none}; g(x_0, x_1; b) = x_b \]
- Symmetric SFE: both parties get the same output
 \[\text{e.g. } f(x_0, x_1; b, z) = g(x_0, x_1; b, z) = x_b \oplus z \] [OT from this! How?]
 General SFE from appropriate symmetric SFE [How?]
2-Party (Passive) Secure Function Evaluation

- Functionality takes \((X; Y)\) and outputs \(f(X; Y)\) to Alice, \(g(X; Y)\) to Bob
- OT is an instance of 2-party SFE
 - \(f(x_0, x_1; b) = \text{none}; g(x_0, x_1; b) = x_b\)
- Symmetric SFE: both parties get the same output
 - e.g. \(f(x_0, x_1; b, z) = g(x_0, x_1; b, z) = x_b \oplus z\) [OT from this! How?]
- General SFE from appropriate symmetric SFE [How?]
- One-sided SFE: only one party gets any output
2-Party (Passive) Secure Function Evaluation

- Functionality takes \((X; Y)\) and outputs \(f(X; Y)\) to Alice, \(g(X; Y)\) to Bob.
- OT is an instance of 2-party SFE
 \[
 f(x_0, x_1; b) = \text{none}; \quad g(x_0, x_1; b) = x_b
 \]
- **Symmetric SFE:** both parties get the same output
 - e.g. \(f(x_0, x_1; b, z) = g(x_0, x_1; b, z) = x_b \oplus z\) [OT from this! How?]
- **General SFE from appropriate symmetric SFE** [How?]
- **One-sided SFE:** only one party gets any output
 - **Symmetric SFE from one-sided SFE** (passive secure) [How?]
2-Party (Passive) Secure Function Evaluation

- Functionality takes \((X;Y)\) and outputs \(f(X;Y)\) to Alice, \(g(X;Y)\) to Bob
- OT is an instance of 2-party SFE
 \[f(x_0,x_1;b) = \text{none}; \quad g(x_0,x_1;b) = x_b \]
- \textbf{Symmetric SFE:} both parties get the same output
 - e.g. \(f(x_0,x_1;b,z) = g(x_0,x_1;b,z) = x_b \oplus z\) [OT from this! \textbf{How?}]
 - General SFE from appropriate symmetric SFE [\textbf{How?}]
- \textbf{One-sided SFE:} only one party gets any output
 - Symmetric SFE from one-sided SFE (passive secure) [\textbf{How?}]
- So, for passive security, enough to consider one-sided SFE
2-Party Secure Function Evaluation
2-Party Secure Function Evaluation

Randomized Functions: $f(X;Y;r)$
2-Party Secure Function Evaluation

Randomized Functions: $f(X;Y;r)$

- e.g., Noisy channel:
 - Alice's input X, Bob's input none
 - Bob's output: X with prob $3/4$
 - $1-X$ with prob $1/4$
2-Party Secure Function Evaluation

Randomized Functions: $f(X;Y;r)$

Neither party should know r (beyond what is revealed by output)

e.g., Noisy channel:
Alice's input X, Bob's input none
Bob's output: X, w/ prob 3/4
$1-X$ w/ prob 1/4
2-Party Secure Function Evaluation

- Randomized Functions: $f(X;Y;r)$
 - Neither party should know r (beyond what is revealed by output)
 - Evaluating $f'(X,a;Y,b) := f(X;Y;a \oplus b)$ with random a,b works

E.g., Noisy channel: Alice's input X, Bob's input none
Bob's output: X, w/ prob $3/4$
$1-X$ w/ prob $1/4$
2-Party Secure Function Evaluation

Randomized Functions: $f(X;Y;r)$

Neither party should know r (beyond what is revealed by output)

Evaluating $f'(X,a;Y,b) := f(X;Y;a\oplus b)$ with random a,b works

Note f' is deterministic

e.g., Noisy channel:
Alice's input X, Bob's input none
Bob's output: X, w/ prob $3/4$; $1-X$ w/ prob $1/4$
2-Party Secure Function Evaluation

Randomized Functions: $f(X;Y;r)$

Neither party should know r (beyond what is revealed by output)

Evaluating $f'(X,a;Y,b) := f(X;Y;a \oplus b)$ with random a,b works

Note f' is deterministic

For passive security, realizing deterministic, one-sided SFE enough for all SFE

e.g., Noisy channel: Alice’s input X, Bob’s input none Bob’s output: X, w/ prob $3/4$ $1-X$ w/ prob $1/4$
2-Party Secure Function Evaluation

Randomized Functions: $f(X; Y; r)$

- Neither party should know r (beyond what is revealed by output)

- Evaluating $f'(X, a; Y, b) := f(X; Y; a \oplus b)$ with random a, b works

- Note f' is deterministic

For passive security, realizing **deterministic, one-sided SFE** enough for all SFE

Can we do “general” deterministic, one-sided SFE (i.e., for all functions)?

e.g., Noisy channel: Alice’s input X, Bob’s input none
Bob’s output: X, w/ prob $3/4$
$1-X$ w/ prob $1/4$
Boolean Circuits
Boolean Circuits

- Directed acyclic graph
Boolean Circuits

- Directed acyclic graph
- Nodes: AND, OR, NOT, CONST gates, inputs, output(s)
Boolean Circuits

Directed acyclic graph

Nodes: AND, OR, NOT, CONST gates, inputs, output(s)

Edges: Boolean valued wires
Boolean Circuits

- Directed acyclic graph
 - Nodes: AND, OR, NOT, CONST gates, inputs, output(s)
 - Edges: Boolean valued wires
 - Each wire comes out of a unique gate
Boolean Circuits

- Directed acyclic graph
 - Nodes: AND, OR, NOT, CONST gates, inputs, output(s)
 - Edges: Boolean valued wires
 - Each wire comes out of a unique gate
 - But a wire might fan-out
Boolean Circuits

- Directed acyclic graph
 - Nodes: AND, OR, NOT, CONST gates, inputs, output(s)
 - Edges: Boolean valued wires
 - Each wire comes out of a unique gate
 - But a wire might fan-out
 - Acyclic: output well-defined
Boolean Circuits

- Directed acyclic graph
 - Nodes: AND, OR, NOT, CONST gates, inputs, output(s)
 - Edges: Boolean valued wires
 - Each wire comes out of a unique gate
 - But a wire might fan-out
 - Acyclic: output well-defined
 - Note: no memory gates
Circuits and Functions
Circuits and Functions

e.g.: OR (single gate, 2 input bits, 1 bit output)
Circuits and Functions

e.g.: OR (single gate, 2 input bits, 1 bit output)

e.g.: $X > Y$ for two bit inputs $X=x_1x_0$, $Y=y_1y_0$:
$(x_1 \text{ AND } (\text{NOT } y_1)) \text{ OR } (\text{NOT}(x_1 \text{ XOR } y_1) \text{ AND } (x_0 \text{ AND } (\text{NOT } y_0)))$
Circuits and Functions

- e.g.: OR (single gate, 2 input bits, 1 bit output)
- e.g.: $X > Y$ for two bit inputs $X=x_1x_0$, $Y=y_1y_0$:
 \[(x_1 \text{ AND } (\text{NOT } y_1)) \text{ OR } (\text{NOT}(x_1 \text{ XOR } y_1) \text{ AND } (x_0 \text{ AND } (\text{NOT } y_0)))\]
- Can convert any ("efficient") program into a ("small") circuit
Circuits and Functions

- e.g.: OR (single gate, 2 input bits, 1 bit output)
- e.g.: $X > Y$ for two bit inputs $X=x_1x_0$, $Y=y_1y_0$:
 \[(x_1 \text{ AND} (\text{NOT} \ y_1)) \text{ OR} (\text{NOT}(x_1 \text{ XOR} \ y_1)) \text{ AND} (x_0 \text{ AND} (\text{NOT} \ y_0))\]
- Can convert any (“efficient”) program into a (“small”) circuit
 - Size of circuit: number of wires (as a function of number of input wires)
Circuits and Functions

- e.g.: OR (single gate, 2 input bits, 1 bit output)
- e.g.: $X > Y$ for two bit inputs $X=x_1x_0$, $Y=y_1y_0$:
 $$(x_1 \text{ AND } (\text{NOT } y_1)) \text{ OR } (\text{NOT}(x_1 \text{ XOR } y_1) \text{ AND } (x_0 \text{ AND } (\text{NOT } y_0)))$$
- Can convert any ("efficient") program into a ("small") circuit
- Size of circuit: number of wires (as a function of number of input wires)
- Can convert a truth-table into a circuit
Circuits and Functions

- e.g.: OR (single gate, 2 input bits, 1 bit output)
- e.g.: $X > Y$ for two bit inputs $X=x_1x_0$, $Y=y_1y_0$: $(x_1 \text{ AND } \neg y_1)) \text{ OR } (\neg(x_1 \text{ XOR } y_1) \text{ AND } (x_0 \text{ AND } \neg y_0))$
- Can convert any (“efficient”) program into a (“small”) circuit
- Size of circuit: number of wires (as a function of number of input wires)
- Can convert a truth-table into a circuit
- Directly: circuit size exponential in input size
Circuits and Functions

e.g.: OR (single gate, 2 input bits, 1 bit output)

e.g.: X > Y for two bit inputs X=x₁x₀, Y=y₁y₀:
 \((x₁ \text{ AND } \neg y₁) \text{ OR } \neg(x₁ \text{ XOR } y₁) \text{ AND } (x₀ \text{ AND } \neg y₀)\)

Can convert any (“efficient”) program into a (“small”) circuit

Size of circuit: number of wires (as a function of number of input wires)

Can convert a truth-table into a circuit

Directly: circuit size exponential in input size

In general, finding a small/smallest circuit from truth-table is notoriously hard
Circuits and Functions

- e.g.: OR (single gate, 2 input bits, 1 bit output)
- e.g.: $X > Y$ for two bit inputs $X=x_1x_0$, $Y=y_1y_0$:
 $(x_1 \text{ AND (NOT } y_1)) \text{ OR (NOT}(x_1 \text{ XOR } y_1) \text{ AND (x}_0 \text{ AND (NOT } y_0))$
- Can convert any (“efficient”) program into a (“small”) circuit

- Size of circuit: number of wires (as a function of number of input wires)
- Can convert a **truth-table** into a circuit
 - Directly: circuit size exponential in input size
 - In general, finding a small/smallest circuit from truth-table is notoriously hard
- Often problems already described as succinct programs/circuits
2-Party SFE using General Circuits
2-Party SFE using General Circuits

“General”: evaluate any arbitrary circuit
2-Party SFE using General Circuits

“General”: evaluate any arbitrary circuit

One-sided output: both parties give inputs, one party gets outputs
2-Party SFE using General Circuits

“General”: evaluate any arbitrary circuit

One-sided output: both parties give inputs, one party gets outputs

Either party maybe corrupted passively
2-Party SFE using General Circuits

“General”: evaluate any arbitrary circuit

One-sided output: both parties give inputs, one party gets outputs

Either party maybe corrupted passively

Consider evaluating OR (single gate circuit)
2-Party SFE using General Circuits

“General”: evaluate any arbitrary circuit

One-sided output: both parties give inputs, one party gets outputs

Either party maybe corrupted passively

Consider evaluating OR (single gate circuit)

Alice holds $x=a$, Bob has $y=b$; Bob should get $\text{OR}(x,y)$
2-Party SFE using General Circuits

“General”: evaluate any arbitrary circuit

One-sided output: both parties give inputs, one party gets outputs

Either party maybe corrupted passively

Consider evaluating OR (single gate circuit)

Alice holds \(x = a \), Bob has \(y = b \); Bob should get \(\text{OR}(x, y) \)

Can use Oblivious Transfer
2-Party SFE using General Circuits

“General”: evaluate any arbitrary circuit

One-sided output: both parties give inputs, one party gets outputs

Either party maybe corrupted passively

Consider evaluating OR (single gate circuit)

Alice holds $x = a$, Bob has $y = b$; Bob should get $\text{OR}(x, y)$

Can use Oblivious Transfer

Any ideas?
A Physical Protocol
A Physical Protocol

Alice prepares 4 boxes B_{xy} corresponding to 4 possible input scenarios, and 4 padlocks/keys $K_{x=0}$, $K_{x=1}$, $K_{y=0}$ and $K_{y=1}$
A Physical Protocol

Alice prepares 4 boxes B_{xy} corresponding to 4 possible input scenarios, and 4 padlocks/keys $K_{x=0}$, $K_{x=1}$, $K_{y=0}$ and $K_{y=1}$
A Physical Protocol

Alice prepares 4 boxes B_{xy} corresponding to 4 possible input scenarios, and 4 padlocks/keys $K_{x=0}$, $K_{x=1}$, $K_{y=0}$ and $K_{y=1}$
A Physical Protocol

Alice prepares 4 boxes B_{xy} corresponding to 4 possible input scenarios, and 4 padlocks/keys $K_{x=0}$, $K_{x=1}$, $K_{y=0}$ and $K_{y=1}$

Inside $B_{xy=ab}$ she places the bit $OR(a,b)$ and locks it with two padlocks $K_{x=a}$ and $K_{y=b}$ (need to open both to open the box)
A Physical Protocol

Alice prepares 4 boxes B_{xy} corresponding to 4 possible input scenarios, and 4 padlocks/keys $K_{x=0}$, $K_{x=1}$, $K_{y=0}$ and $K_{y=1}$

Inside $B_{xy=ab}$ she places the bit $\text{OR}(a,b)$ and locks it with two padlocks $K_{x=a}$ and $K_{y=b}$ (need to open both to open the box)
A Physical Protocol

- Alice prepares 4 boxes B_{xy} corresponding to 4 possible input scenarios, and 4 padlocks/keys $K_{x=0}$, $K_{x=1}$, $K_{y=0}$ and $K_{y=1}$

- Inside $B_{xy=ab}$ she places the bit $\text{OR}(a,b)$ and locks it with two padlocks $K_{x=a}$ and $K_{y=b}$ (need to open both to open the box)
A Physical Protocol

Alice prepares 4 boxes B_{xy} corresponding to 4 possible input scenarios, and 4 padlocks/keys $K_{x=0}$, $K_{x=1}$, $K_{y=0}$ and $K_{y=1}$

Inside $B_{xy=ab}$ she places the bit $\text{OR}(a,b)$ and locks it with two padlocks $K_{x=a}$ and $K_{y=b}$ (need to open both to open the box).

She un-labels the four boxes and sends them in random order to Bob. Also sends the key $K_{x=a}$ (labeled only as K_{x}).
A Physical Protocol

Alice prepares 4 boxes B_{xy} corresponding to 4 possible input scenarios, and 4 padlocks/keys $K_{x=0}$, $K_{x=1}$, $K_{y=0}$ and $K_{y=1}$

Inside $B_{xy=ab}$ she places the bit OR(a,b) and locks it with two padlocks $K_{x=a}$ and $K_{y=b}$ (need to open both to open the box)

She un-labels the four boxes and sends them in random order to Bob. Also sends the key $K_{x=a}$ (labeled only as K_x).
A Physical Protocol

Alice prepares 4 boxes B_{xy} corresponding to 4 possible input scenarios, and 4 padlocks/keys $K_{x=0}$, $K_{x=1}$, $K_{y=0}$ and $K_{y=1}$

Inside $B_{xy=ab}$ she places the bit $\text{OR}(a,b)$ and locks it with two padlocks $K_{x=a}$ and $K_{y=b}$ (need to open both to open the box)

She un-labels the four boxes and sends them in random order to Bob. Also sends the key $K_{x=a}$ (labeled only as K_x).
A Physical Protocol

Alice prepares 4 boxes B_{xy} corresponding to 4 possible input scenarios, and 4 padlocks/keys $K_{x=0}$, $K_{x=1}$, $K_{y=0}$ and $K_{y=1}$

Inside $B_{xy=ab}$ she places the bit OR(a, b) and locks it with two padlocks $K_{x=a}$ and $K_{y=b}$ (need to open both to open the box)

She un-labels the four boxes and sends them in random order to Bob. Also sends the key $K_{x=a}$ (labeled only as K_x).
A Physical Protocol

Alice prepares 4 boxes B_{xy} corresponding to 4 possible input scenarios, and 4 padlocks/keys $K_{x=0}$, $K_{x=1}$, $K_{y=0}$ and $K_{y=1}$

Inside $B_{xy=ab}$ she places the bit OR(a, b) and locks it with two padlocks $K_{x=a}$ and $K_{y=b}$ (need to open both to open the box)

She un-labels the four boxes and sends them in random order to Bob. Also sends the key $K_{x=a}$ (labeled only as K_x).

So far Bob gets no information
A Physical Protocol

Alice prepares 4 boxes B_{xy} corresponding to 4 possible input scenarios, and 4 padlocks/keys $K_{x=0}$, $K_{x=1}$, $K_{y=0}$ and $K_{y=1}$

Inside $B_{xy=ab}$ she places the bit OR(a,b) and locks it with two padlocks $K_{x=a}$ and $K_{y=b}$ (need to open both to open the box)

She un-labels the four boxes and sends them in random order to Bob. Also sends the key $K_{x=a}$ (labeled only as K_{x}).

So far Bob gets no information

Bob “obliviously picks up” $K_{y=b}$, and tries the two keys $K_{x}, K_{y=b}$ on the four boxes. For one box both locks open and he gets the output.
A Physical Protocol

Alice prepares 4 boxes B_{xy} corresponding to 4 possible input scenarios, and 4 padlocks/keys $K_{x=0}$, $K_{x=1}$, $K_{y=0}$ and $K_{y=1}$

Inside $B_{xy=ab}$ she places the bit OR(a,b) and locks it with two padlocks $K_{x=a}$ and $K_{y=b}$ (need to open both to open the box)

She un-labels the four boxes and sends them in random order to Bob. Also sends the key $K_{x=a}$ (labeled only as K_x).

So far Bob gets no information

Bob “obliviously picks up” $K_{y=b}$, and tries the two keys $K_x, K_{y=b}$ on the four boxes. For one box both locks open and he gets the output.
A Physical Protocol
A Physical Protocol

Secure?
A Physical Protocol

Secure?

For curious Alice: only influence from Bob is when he picks up his key $K_{y=b}$
A Physical Protocol

Secure?

For curious Alice: only influence from Bob is when he picks up his key $K_y=b$

But this is done “obliviously”, and so she learns nothing
A Physical Protocol

Secure?

For curious Alice: only influence from Bob is when he picks up his key $K_y = b$

But this is done “obliviously”, and so she learns nothing

For curious Bob: Everything is predictable (i.e., simulatable), given the final outcome
A Physical Protocol

Secure?

For curious Alice: only influence from Bob is when he picks up his key $K_y=b$

But this is done "obliviously", and so she learns nothing

For curious Bob: Everything is predictable (i.e., simulatable), given the final outcome

What Bob sees: K_y opens a lock in two boxes, K_x opens a lock in two boxes; only one random box fully opens. It has the outcome.
A Physical Protocol

Secure?

For curious Alice: only influence from Bob is when he picks up his key $K_y=b$

But this is done “obliviously”, and so she learns nothing

For curious Bob: Everything is predictable (i.e., simulatable), given the final outcome

What Bob sees: K_y opens a lock in two boxes, K_x opens a lock in two boxes; only one random box fully opens. It has the outcome.

Note when $y=1$, cases $x=0$ and $x=1$ appear same
A Physical Protocol

Secure?

For curious Alice: only influence from Bob is when he picks up his key $K_y=b$

But this is done “obliviously”, and so she learns nothing

For curious Bob: Everything is predictable (i.e., simulatable), given the final outcome

What Bob sees: K_y opens a lock in two boxes, K_x opens a lock in two boxes; only one random box fully opens. It has the outcome.

Note when $y=1$, cases $x=0$ and $x=1$ appear same

Formally, easy to simulate (can stuff unopenable boxes arbitrarily)
Larger Circuits
Larger Circuits
Larger Circuits

Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate
Larger Circuits

Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate.
Larger Circuits

Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate.

For each wire w in the circuit (i.e., input wires, or output of a gate) pick 2 keys $K_{w=0}$ and $K_{w=1}$.
Larger Circuits

Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate.

For each wire w in the circuit (i.e., input wires, or output of a gate) pick 2 keys $K_{w=0}$ and $K_{w=1}$.
Larger Circuits

Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate.

For each wire w in the circuit (i.e., input wires, or output of a gate) pick 2 keys $K_{w=0}$ and $K_{w=1}$.
Larger Circuits

Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate.

For each wire \(w \) in the circuit (i.e., input wires, or output of a gate) pick 2 keys \(K_{w=0} \) and \(K_{w=1} \).

For each gate \(G \) with input wires \((u,v) \) and output wire \(w \), prepare 4 boxes \(B_{uv} \) and place \(K_{w=G(a,b)} \) inside box \(B_{uv=ab} \). Lock \(B_{uv=ab} \) with keys \(K_{u=a} \) and \(K_{v=b} \).
Larger Circuits

Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate.

For each wire w in the circuit (i.e., input wires, or output of a gate) pick 2 keys $K_{w=0}$ and $K_{w=1}$

For each gate G with input wires (u,v) and output wire w, prepare 4 boxes B_{uv} and place $K_{w=G(a,b)}$ inside box $B_{uv=ab}$. Lock $B_{uv=ab}$ with keys $K_{u=a}$ and $K_{v=b}$

Give to Bob: Boxes for each gate, one key for each of Alice's input wires
Larger Circuits

Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate.

For each wire w in the circuit (i.e., input wires, or output of a gate) pick 2 keys $K_{w=0}$ and $K_{w=1}$.

For each gate G with input wires (u,v) and output wire w, prepare 4 boxes B_{uv} and place $K_{w=G(a,b)}$ inside box $B_{uv=ab}$. Lock $B_{uv=ab}$ with keys $K_{u=a}$ and $K_{v=b}$.

Give to Bob: Boxes for each gate, one key for each of Alice’s input wires.
Larger Circuits

Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate.

For each wire w in the circuit (i.e., input wires, or output of a gate) pick 2 keys $K_{w=0}$ and $K_{w=1}$.

For each gate G with input wires (u,v) and output wire w, prepare 4 boxes B_{uv} and place $K_{w=G(a,b)}$ inside box $B_{uv=ab}$. Lock $B_{uv=ab}$ with keys $K_{u=a}$ and $K_{v=b}$.

Give to Bob: Boxes for each gate, one key for each of Alice's input wires.

Obliviously: one key for each of Bob's input wires.
Larger Circuits

Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate.

For each wire w in the circuit (i.e., input wires, or output of a gate) pick 2 keys $K_{w=0}$ and $K_{w=1}$.

For each gate G with input wires (u,v) and output wire w, prepare 4 boxes B_{uv} and place $K_{w=G(a,b)}$ inside box $B_{uv=ab}$. Lock $B_{uv=ab}$ with keys $K_{u=a}$ and $K_{v=b}$.

Give to Bob: Boxes for each gate, one key for each of Alice’s input wires.

Obliviously: one key for each of Bob’s input wires.
Larger Circuits

Idea: For each gate in the circuit Alice will prepare locked boxes, but will use it to keep keys for the next gate.

For each wire \(w \) in the circuit (i.e., input wires, or output of a gate) pick 2 keys \(K_{w=0} \) and \(K_{w=1} \).

For each gate \(G \) with input wires \((u,v) \) and output wire \(w \), prepare 4 boxes \(B_{uv} \) and place \(K_{w=G(a,b)} \) inside box \(B_{uv=ab} \). Lock \(B_{uv=ab} \) with keys \(K_{u=a} \) and \(K_{v=b} \).

Give to Bob: Boxes for each gate, one key for each of Alice’s input wires.

Obliviously: one key for each of Bob’s input wires.

Boxes for output gates have values instead of keys.
Larger Circuits
Larger Circuits

Evaluation: Bob gets one key for each input wire of a gate, opens one box for the gate, gets one key for the output wire, and proceeds.
Larger Circuits

Evaluation: Bob gets one key for each input wire of a gate, opens one box for the gate, gets one key for the output wire, and proceeds

- Gets output from a box in the output gate
Larger Circuits

Evaluation: Bob gets one key for each input wire of a gate, opens one box for the gate, gets one key for the output wire, and proceeds.

- Gets output from a box in the output gate
- Security similar to before
Larger Circuits

Evaluation: Bob gets one key for each input wire of a gate, opens one box for the gate, gets one key for the output wire, and proceeds

- Gets output from a box in the output gate

- Security similar to before

- Curious Alice sees nothing (as Bob picks up keys obliviously)
Larger Circuits

- Evaluation: Bob gets one key for each input wire of a gate, opens one box for the gate, gets one key for the output wire, and proceeds.
- Gets output from a box in the output gate.
- Security similar to before.
- Curious Alice sees nothing (as Bob picks up keys obliviously).
- Everything is simulatable for curious Bob given final output: Bob could prepare boxes and keys (stuffing unopenable boxes arbitrarily); for an output gate, place the output bit in the box that opens.
Garbled Circuit
Garbled Circuit

That was too physical!
Garbled Circuit

That was too physical!

Yao’s Garbled circuit: boxes/keys replaced by IND-CPA secure SKE (i.e., using PRF, and independent randomness when key reused)
Garbled Circuit

That was too physical!

Yao’s Garbled circuit: boxes/keys replaced by IND-CPA secure SKE (i.e., using PRF, and independent randomness when key reused)

Double lock: $\text{Enc}_{K_x}(\text{Enc}_{K_y}(m))$
Garbled Circuit

That was too physical!

Yao’s Garbled circuit: boxes/keys replaced by IND-CPA secure SKE (i.e., using PRF, and independent randomness when key reused)

Double lock: $\text{Enc}_{K_x}(\text{Enc}_{K_y}(m))$

Need proof to ensure that this suffices for indistinguishability of simulation. (In fact, one-time-like security for Enc suffices)
Garbled Circuit

That was too physical!

Yao’s Garbled circuit: boxes/keys replaced by IND-CPA secure SKE (i.e., using PRF, and independent randomness when key reused)

Double lock: $\text{Enc}_{K_x}(\text{Enc}_{K_y}(m))$

Need proof to ensure that this suffices for indistinguishability of simulation. (In fact, one-time-like security for Enc suffices)

Oblivious Transfer: We already saw for one bit (using T-OWP); with passive adversaries, just repeat bit-OT several times to transfer longer keys
Garbled Circuit

That was too physical!

Yao’s Garbled circuit: boxes/keys replaced by IND-CPA secure SKE (i.e., using PRF, and independent randomness when key reused)

Double lock: $\text{Enc}_{Kx}(\text{Enc}_{Ky}(m))$

Need proof to ensure that this suffices for indistinguishability of simulation. (In fact, one-time-like security for Enc suffices)

Oblivious Transfer: We already saw for one bit (using T-OWP); with passive adversaries, just repeat bit-OT several times to transfer longer keys

Can we really compose? Yes, for passive security.
Today
Today

- 2-Party SFE secure against passive adversaries
Today

- 2-Party SFE secure against passive adversaries
- Yao’s Garbled Circuit
Today

- 2-Party SFE secure against passive adversaries
- Yao’s Garbled Circuit
- Using OT and IND-CPA encryption
Today

- 2-Party SFE secure against passive adversaries
- Yao's Garbled Circuit
- Using OT and IND-CPA encryption
- OT using TOWP
Today

- 2-Party SFE secure against passive adversaries
- Yao’s Garbled Circuit
- Using OT and IND-CPA encryption
 - OT using TOWP
- Composition (implicitly)
Today

- 2-Party SFE secure against passive adversaries
 - Yao’s Garbled Circuit
 - Using OT and IND-CPA encryption
 - OT using TOWP
 - Composition (implicitly)

- Coming up: Zero-Knowledge proofs and general multi-party computation, more protocols (for different settings).
 - Universal Composition