Hash Functions in Action
Hash Functions in Action

Lecture 11
Hash Functions
Hash Functions

Main syntactic feature: Variable input length to fixed length output
Hash Functions

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
Hash Functions

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance

If for all PPT A, \(\Pr[x \neq y \text{ and } h(x) = h(y)] \) is negligible in the following experiment:
Hash Functions

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance

If for all PPT A, \(\Pr[x \neq y \text{ and } h(x) = h(y)]\) is negligible in the following experiment:

\[A \rightarrow (x, y); h \leftarrow \mathcal{H} : \text{Combinatorial Hash Functions}\]
Hash Functions

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
- If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:
 - A\rightarrow(x,y); h\leftarrow\mathcal{U} : Combinatorial Hash Functions
 - A\rightarrow x; h\leftarrow\mathcal{U}; A(h)\rightarrow y : Universal One-Way Hash Functions
Main syntactic feature: Variable input length to fixed length output

Primary requirement: collision-resistance

If for all PPT A, $\Pr[x \neq y \text{ and } h(x) = h(y)]$ is negligible in the following experiment:

$A \xrightarrow{} (x, y); h \leftarrow \mathcal{U}$: Combinatorial Hash Functions

$A \xrightarrow{} x; h \leftarrow \mathcal{U}; A(h) \xrightarrow{} y$: Universal One-Way Hash Functions

$h \leftarrow \mathcal{U}; A(h) \xrightarrow{} (x, y)$: Collision-Resistant Hash Functions
Hash Functions

Main syntactic feature: Variable input length to fixed length output

Primary requirement: collision-resistance

If for all PPT A, $Pr[x \neq y \text{ and } h(x) = h(y)]$ is negligible in the following experiment:

- $A \xrightarrow{\text{A}} (x, y); h \xleftarrow{\text{A}} : \text{Combinatorial Hash Functions}$
- $A \xrightarrow{\text{A}} x; h \xleftarrow{\text{A}}; A(h) \xrightarrow{\text{A}} y : \text{Universal One-Way Hash Functions}$
- $h \xleftarrow{\text{A}}; A(h) \xrightarrow{\text{A}} (x, y) : \text{Collision-Resistant Hash Functions}$
- $h \xleftarrow{\text{A}}; A^h \xrightarrow{\text{A}} (x, y) : \text{Weak Collision-Resistant Hash Functions}$
Main syntactic feature: Variable input length to fixed length output

Primary requirement: collision-resistance

If for all PPT A, Pr\[x \neq y \text{ and } h(x) = h(y)\] is negligible in the following experiment:

\[A \xrightarrow{(x,y)}; h \xleftarrow{\mathcal{U}} : \text{Combinatorial Hash Functions}\]

\[A \xrightarrow{x}; h \xleftarrow{\mathcal{U}}; A(h) \xrightarrow{y} : \text{Universal One-Way Hash Functions}\]

\[h \xleftarrow{\mathcal{U}}; A(h) \xrightarrow{(x,y)} : \text{Collision-Resistant Hash Functions}\]

\[h \xleftarrow{\mathcal{U}}; A^h \xrightarrow{(x,y)} : \text{Weak Collision-Resistant Hash Functions}\]
Hash Functions

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance

If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:

- \(A \rightarrow (x,y); \ h \leftarrow \mathcal{A} : \text{Combinatorial Hash Functions} \)
- \(A \rightarrow x; \ h \leftarrow \mathcal{A}; \ A(h) \rightarrow y : \text{Universal One-Way Hash Functions} \)
- \(h \leftarrow \mathcal{A}; \ A(h) \rightarrow (x,y) : \text{Collision-Resistant Hash Functions} \)
- \(h \leftarrow \mathcal{A}; \ A^h \rightarrow (x,y) : \text{Weak Collision-Resistant Hash Functions} \)

- Also often required: “unpredictability”
Hash Functions

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance

If for all PPT A, $\Pr[x \neq y \text{ and } h(x) = h(y)]$ is negligible in the following experiment:

- $A \xrightarrow{} (x,y); h \xleftarrow{} \$: Combinatorial Hash Functions

- $A \xrightarrow{} x; h \xleftarrow{} \$; $A(h) \xrightarrow{} y$: Universal One-Way Hash Functions

- $h \xleftarrow{} \$; $A(h) \xrightarrow{} (x,y)$: Collision-Resistant Hash Functions

- $h \xleftarrow{} \$; $A^h \xrightarrow{} (x,y)$: Weak Collision-Resistant Hash Functions

- Also often required: “unpredictability”

- So far: 2-UHF (chop(ax+b)) and UOWHF (from OWP & 2-UHF)
Hash Functions

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
- If for all PPT A, \(\text{Pr}[x \neq y \text{ and } h(x) = h(y)] \) is negligible in the following experiment:
 - \(A \mapsto (x, y); \ h \leftarrow \$ \) : Combinatorial Hash Functions
 - \(A \mapsto x; \ h \leftarrow \$; \ A(h) \mapsto y \) : Universal One-Way Hash Functions
 - \(h \leftarrow \$; \ A(h) \mapsto (x, y) \) : Collision-Resistant Hash Functions
 - \(h \leftarrow \$; \ A^h \mapsto (x, y) \) : Weak Collision-Resistant Hash Functions
- Also often required: “unpredictability”
- So far: 2-UHF (chop(ax+b)) and UOWHF (from OWP & 2-UHF)

Applications of hash functions
UOWHF
Universal One-Way HF: $A \xrightarrow{x} h \xleftarrow{} A(h) \xrightarrow{y}$. $h(x) = h(y)$ w.n.p
Universal One-Way HF: $A \rightarrow x; h \leftarrow \exists; A(h) \rightarrow y. \ h(x)=h(y) \ w.n.p$

Can be constructed from OWF
Universal One-Way HF: $A \rightarrow x; h \leftarrow \mathcal{A}; A(h) \rightarrow y$. $h(x) = h(y)$ w.n.p

Can be constructed from OWF

Easier to see OWP \Rightarrow UOWHF
Universal One-Way HF: $A \to x; h \leftarrow \emptyset; A(h) \to y$. $h(x) = h(y)$ w.n.p.

Can be constructed from OWF.

Easier to see OWP \Rightarrow UOWHF.

$F_h(x) = h(f(x))$, where f is a OWP and h from a UHF family.
UOWHF

- **Universal One-Way HF:** $A \rightarrow x; h \leftarrow \&; A(h) \rightarrow y$. $h(x) = h(y)$ w.n.p.

- Can be constructed from OWF

- Easier to see $OWP \Rightarrow UOWHF$

- $F_h(x) = h(f(x))$, where f is a OWP and h from a UHF family

- Suppose h compresses by a bit (i.e., 2-to-1 maps), and
Universal One-Way HF: $A \xrightarrow{x} h \xleftarrow{\$} A(h) \xrightarrow{y}. h(x)=h(y)$ w.n.p

Can be constructed from OWF

Easier to see OWP \Rightarrow UOWHF

$F_h(x) = h(f(x))$, where f is a OWP and h from a UHF family

suppose h compresses by a bit (i.e., 2-to-1 maps), and

for all z,z', can sample (solve for) h s.t. $h(z) = h(z')$
Universal One-Way HF: $A \rightarrow x; h \leftarrow \mathcal{R}; A(h) \rightarrow y. h(x)=h(y)$ w.n.p

Can be constructed from OWF

Easier to see $OWP \implies UOWHF$

$F_h(x) = h(f(x))$, where f is a OWF and h from a UHF family

suppose h compresses by a bit (i.e., 2-to-1 maps), and

for all z,z', can sample (solve for) h s.t. $h(z) = h(z')$

Is a UOWHF [Why?]
Universal One-Way HF: $A \xrightarrow{x;} h \xleftarrow{y}; A(h) \xrightarrow{y}. h(x) = h(y)$ w.n.p

Can be constructed from OWF

Easier to see $OWP \Rightarrow UOWHF$

$F_h(x) = h(f(x))$, where f is a OWP and h from a UHF family

suppose h compresses by a bit (i.e., 2-to-1 maps), and

for all z, z', can sample (solve for) h s.t. $h(z) = h(z')$

Is a UOWHF [Why?]
Universal One-Way HF: $A \rightarrow x; h \leftarrow \emptyset; A(h) \rightarrow y$. $h(x) = h(y)$ w.n.p

Can be constructed from OWF

Easier to see $\text{OWP} \Rightarrow \text{UOWHF}$

$F_h(x) = h(f(x))$, where f is a OWF and h from a UHF family

Suppose h compresses by a bit (i.e., 2-to-1 maps), and

For all z,z', can sample (solve for) h s.t. $h(z) = h(z')$

Is a UOWHF [Why?]?

Gives a UOWHF that compresses by 1 bit (same as the UHF)

BreakOWP(z) {
 get $x \leftarrow A$; give h to A, s.t. $h(z) = h(f(x))$;
 if $A \rightarrow y$ s.t. $h(f(x)) = h(f(y))$, output y;
}
Universal One-Way HF: $A \xrightarrow{} x; h \xleftarrow{} \mathcal{A}; A(h) \xrightarrow{} y$. $h(x)=h(y)$ w.n.p

Can be constructed from OWF

Easier to see $OWP \Rightarrow UOWHF$

$F_h(x) = h(f(x))$, where f is a OWP and h from a UHF family

suppose h compresses by a bit (i.e., 2-to-1 maps), and

for all z,z', can sample (solve for) h s.t. $h(z) = h(z')$

Is a UOWHF [Why?]

Gives a UOWHF that compresses by 1 bit (same as the UHF)

Will see how to extend the domain to arbitrarily long strings (without increasing output size)
Collision-Resistant HF: $h \leftarrow \mathcal{U}; A(h) \rightarrow (x,y)$. $h(x) = h(y)$ w.n.p.
CRHF

Collision-Resistant HF: $h \leftarrow \#; A(h) \rightarrow (x,y)$. $h(x) = h(y)$ w.n.p

Not known to be possible from OWF/OWP alone
CRHF

Collision-Resistant HF: \(h \leftarrow \#; A(h) \rightarrow (x, y). \ h(x) = h(y) \) w.n.p

Not known to be possible from OWF/OWP alone

“Impossibility” (blackbox-separation) known
CRHF

Collision-Resistant HF: $h \leftarrow \mathcal{H}; A(h) \rightarrow (x,y)$. $h(x) = h(y)$ w.n.p

Not known to be possible from OWF/OWP alone

“Impossibility” (blackbox-separation) known

Possible from “claw-free pair of permutations”
Collision-Resistant HF: $h \leftarrow \#; A(h) \rightarrow (x, y)$. $h(x) = h(y)$ w.n.p

Not known to be possible from OWF/OWP alone

"Impossibility" (blackbox-separation) known

Possible from "claw-free pair of permutations"

In turn from hardness of discrete-log, factoring, and from lattice-based assumptions
CRHF

Collision-Resistant HF: \(h \leftarrow X; A(h) \rightarrow (x,y) \). \(h(x) = h(y) \) w.n.p

Not known to be possible from OWF/OWP alone

“Impossibility” (blackbox-separation) known

Possible from “claw-free pair of permutations”

In turn from hardness of discrete-log, factoring, and from lattice-based assumptions

Also from “homomorphic one-way permutations”, and from homomorphic encryptions
Collision-Resistant HF: \(h \leftarrow \mathcal{H}; A(h) \rightarrow (x, y). \ h(x) = h(y) \) w.n.p

Not known to be possible from OWF/OWP alone

“Impossibility” (blackbox-separation) known

Possible from “claw-free pair of permutations”

In turn from hardness of discrete-log, factoring, and from lattice-based assumptions

Also from “homomorphic one-way permutations”, and from homomorphic encryptions

All candidates use mathematical structures that are considered computationally expensive
CRHF

CRHF from discrete log assumption:
CRHF from discrete log assumption:

Suppose G a group of prime order q, where DL is considered hard (e.g. \mathbb{QR}_p^* for $p=2q+1$ a safe prime)
CRHF from discrete log assumption:

Suppose \mathbb{G} a group of prime order q, where DL is considered hard (e.g. \mathbb{QR}^*_p for $p=2q+1$ a safe prime)

$h_{g_1,g_2}(x_1,x_2) = g_1^{x_1}g_2^{x_2}$ (in \mathbb{G}) where $g_1, g_2 \neq 1$ (hence generators)
CRHF

CRHF from discrete log assumption:

- Suppose G a group of prime order q, where DL is considered hard (e.g. \mathbb{QR}_p^* for $p=2q+1$ a safe prime)

- $h_{g_1,g_2}(x_1,x_2) = g_1^{x_1}g_2^{x_2}$ (in G) where $g_1, g_2 \neq 1$ (hence generators)

- A collision: $(x_1,x_2) \neq (y_1,y_2)$ s.t. $h_{g_1,g_2}(x_1,x_2) = h_{g_1,g_2}(y_1,y_2)$
CRHF

CRHF from discrete log assumption:

Suppose \(G \) a group of prime order \(q \), where DL is considered hard (e.g. \(QR_p^* \) for \(p=2q+1 \) a safe prime)

\[h_{g_1,g_2}(x_1,x_2) = g_1^{x_1}g_2^{x_2} \text{ (in } G \text{) where } g_1, g_2 \neq 1 \text{ (hence generators)} \]

A collision: \((x_1,x_2) \neq (y_1,y_2) \text{ s.t. } h_{g_1,g_2}(x_1,x_2) = h_{g_1,g_2}(y_1,y_2) \)

Then \((x_1,x_2) \neq (y_1,y_2) \Rightarrow x_1 \neq y_1 \text{ and } x_2 \neq y_2 \) [Why?]
CRHF

CRHF from discrete log assumption:

Suppose \(G \) a group of prime order \(q \), where DL is considered hard (e.g. \(QR_p^* \) for \(p=2q+1 \) a safe prime)

\[h_{g_1,g_2}(x_1,x_2) = g_1^{x_1}g_2^{x_2} \text{ (in } G) \text{ where } g_1, g_2 \neq 1 \text{ (hence generators)} \]

A collision: \((x_1,x_2) \neq (y_1,y_2) \text{ s.t. } h_{g_1,g_2}(x_1,x_2) = h_{g_1,g_2}(y_1,y_2) \)

Then \((x_1,x_2) \neq (y_1,y_2) \Rightarrow x_1 \neq y_1 \text{ and } x_2 \neq y_2 \text{ [Why?]} \)

Then \(g_2 = g_1^{(x_1-y_1)/(x_2-y_2)} \) (exponents in \(\mathbb{Z}_q^* \))
CRHF

CRHF from discrete log assumption:

Suppose G a group of prime order q, where DL is considered hard (e.g. QR_p^* for $p=2q+1$ a safe prime)

$h_{g_1,g_2}(x_1,x_2) = g_1^{x_1}g_2^{x_2}$ (in G) where $g_1, g_2 \neq 1$ (hence generators)

A collision: $(x_1,x_2) \neq (y_1,y_2)$ s.t. $h_{g_1,g_2}(x_1,x_2) = h_{g_1,g_2}(y_1,y_2)$

Then $(x_1,x_2) \neq (y_1,y_2) \Rightarrow x_1 \neq y_1$ and $x_2 \neq y_2$ [Why?]

Then $g_2 = g_1^{(x_1-y_1)/(x_2-y_2)}$ (exponents in \mathbb{Z}_q^*)

i.e., for some base g_1, can compute DL of g_2 (a random non-unit element). Breaks DL!
CRHF

CRHF from discrete log assumption:

Suppose G a group of prime order q, where DL is considered hard (e.g. QR_p^* for $p=2q+1$ a safe prime)

$h_{g_1,g_2}(x_1,x_2) = g_1^{x_1}g_2^{x_2}$ (in G) where g_1, $g_2 \neq 1$ (hence generators)

A collision: $(x_1,x_2) \neq (y_1,y_2)$ s.t. $h_{g_1,g_2}(x_1,x_2) = h_{g_1,g_2}(y_1,y_2)$

Then $(x_1,x_2) \neq (y_1,y_2) \Rightarrow x_1 \neq y_1$ and $x_2 \neq y_2$ [Why?]

Then $g_2 = g_1^{(x_1-y_1)/(x_2-y_2)}$ (exponents in \mathbb{Z}_q^*)

i.e., for some base g_1, can compute DL of g_2 (a random non-unit element). Breaks DL!

Hash halves the size of the input
Domain Extension
Domain Extension

- **Full-domain hash**: hash arbitrarily long strings to a single hash value
Domain Extension

Full-domain hash: hash arbitrarily long strings to a single hash value

So far, UOWHF/CRHF which have a fixed domain
Domain Extension

Full-domain hash: hash arbitrarily long strings to a single hash value

So far, UOWHF/CRHF which have a fixed domain

Idea 1: by repeated application
Domain Extension

Full-domain hash: hash arbitrarily long strings to a single hash value

So far, UOWHF/CRHF which have a fixed domain

Idea 1: by repeated application

If one-bit compression, to hash n-bit string, O(n) (independent) invocations of the basic hash function
Domain Extension

- **Full-domain hash**: hash arbitrarily long strings to a single hash value

- So far, UOWHF/CRHF which have a fixed domain

- Idea 1: by repeated application

- If one-bit compression, to hash n-bit string, $O(n)$ (independent) invocations of the basic hash function
Domain Extension

Full-domain hash: hash arbitrarily long strings to a single hash value

- So far, UOWHF/CRHF which have a fixed domain

Idea 1: by repeated application

- If one-bit compression, to hash n-bit string, $O(n)$ (independent) invocations of the basic hash function

- Independent invocations: hash description depends on n (linearly)
Domain Extension

Full-domain hash: hash arbitrarily long strings to a single hash value

- So far, UOWHF/CRHF which have a fixed domain

Idea 1: by repeated application

- If one-bit compression, to hash n-bit string, $O(n)$ (independent) invocations of the basic hash function

 Independent invocations: hash description depends on n (linearly)
Domain Extension
Domain Extension

Can compose hash functions more efficiently, using a "Merkle tree"
Domain Extension

Can compose hash functions more efficiently, using a "Merkle tree"

Suppose basic hash from \(\{0,1\}^k\) to \(\{0,1\}^{k/2}\). A hash function from \(\{0,1\}^{4k}\) to \(\{0,1\}^{k/2}\) using a tree of depth 3
Can compose hash functions more efficiently, using a "Merkle tree".

Suppose basic hash from \(\{0,1\}^k\) to \(\{0,1\}^{k/2}\). A hash function from \(\{0,1\}^{4k}\) to \(\{0,1\}^{k/2}\) using a tree of depth 3.
Can compose hash functions more efficiently, using a "Merkle tree"

Suppose basic hash from \{0,1\}^k to \{0,1\}^{k/2}. A hash function from \{0,1\}^{4k} to \{0,1\}^{k/2} using a tree of depth 3

If basic hash from \{0,1\}^k to \{0,1\}^{k-1}, first construct new basic hash from \{0,1\}^k to \{0,1\}^{k/2}, by repeated hashing
Domain Extension

Can compose hash functions more efficiently, using a "Merkle tree"

Suppose basic hash from \(\{0,1\}^k \) to \(\{0,1\}^{k/2} \).
A hash function from \(\{0,1\}^{4k} \) to \(\{0,1\}^{k/2} \)
using a tree of depth 3

If basic hash from \(\{0,1\}^k \) to \(\{0,1\}^{k-1} \),
first construct new basic hash from
\(\{0,1\}^k \) to \(\{0,1\}^{k/2} \), by repeated hashing
Can compose hash functions more efficiently, using a "Merkle tree"

Suppose basic hash from \(\{0,1\}^k\) to \(\{0,1\}^{k/2}\). A hash function from \(\{0,1\}^{4k}\) to \(\{0,1\}^{k/2}\) using a tree of depth 3

If basic hash from \(\{0,1\}^k\) to \(\{0,1\}^{k-1}\), first construct new basic hash from \(\{0,1\}^k\) to \(\{0,1\}^{k/2}\), by repeated hashing

Any tree can be used, with consistent I/O sizes
Can compose hash functions more efficiently, using a "Merkle tree"

- Suppose basic hash from \(\{0,1\}^k \) to \(\{0,1\}^{k/2} \). A hash function from \(\{0,1\}^{4k} \) to \(\{0,1\}^{k/2} \) using a tree of depth 3

 - If basic hash from \(\{0,1\}^k \) to \(\{0,1\}^{k-1} \), first construct new basic hash from \(\{0,1\}^k \) to \(\{0,1\}^{k/2} \), by repeated hashing

Any tree can be used, with consistent I/O sizes

Independent hashes or same hash?
Can compose hash functions more efficiently, using a “Merkle tree”

Suppose basic hash from \(\{0,1\}^k\) to \(\{0,1\}^{k/2}\). A hash function from \(\{0,1\}^{4k}\) to \(\{0,1\}^{k/2}\) using a tree of depth 3

If basic hash from \(\{0,1\}^k\) to \(\{0,1\}^{k-1}\), first construct new basic hash from \(\{0,1\}^k\) to \(\{0,1\}^{k/2}\), by repeated hashing

Any tree can be used, with consistent I/O sizes

Independent hashes or same hash?

Depends!
Domain Extension for CRHF
Domain Extension for CRHF

For CRHF, **same basic hash** used throughout the Merkle tree. Hash description same as for a single basic hash.
Domain Extension for CRHF

- For CRHF, **same basic hash** used throughout the Merkle tree. Hash description same as for a single basic hash.

- If a collision \((x_1 \ldots x_n, y_1 \ldots y_n)\) over all, then some collision \((x', y')\) for basic hash.
Domain Extension for CRHF

- For CRHF, **same basic hash** used throughout the Merkle tree. Hash description same as for a single basic hash.

- If a collision \((x_1...x_n), (y_1...y_n)\) over all, then some collision \((x',y')\) for basic hash.

- Consider moving a “frontline” from bottom to top.
For CRHF, **same basic hash** used throughout the Merkle tree. Hash description same as for a single basic hash.

If a collision \((x_1...x_n), (y_1...y_n)\) over all, then some collision \((x',y')\) for basic hash.

Consider moving a “frontline” from bottom to top.
For CRHF, **same basic hash** used throughout the Merkle tree. Hash description same as for a single basic hash.

If a collision \((x_1 \ldots x_n, y_1 \ldots y_n)\) over all, then some collision \((x', y')\) for basic hash.

Consider moving a “frontline” from bottom to top.
For CRHF, **same basic hash** used throughout the Merkle tree. Hash description same as for a single basic hash.

If a collision \((x_1 \ldots x_n), (y_1 \ldots y_n)\) over all, then some collision \((x', y')\) for basic hash.

Consider moving a “frontline” from bottom to top.
For CRHF, same basic hash used throughout the Merkle tree. Hash description same as for a single basic hash.

If a collision \((x_1...x_n), (y_1...y_n)\) over all, then some collision \((x',y')\) for basic hash.

Consider moving a “frontline” from bottom to top.
Domain Extension for CRHF

- For CRHF, **same basic hash** used throughout the Merkle tree. Hash description same as for a single basic hash.
- If a collision \((x_1...x_n), (y_1...y_n)\) over all, then some collision \((x',y')\) for basic hash.
- Consider moving a “frontline” from bottom to top.
For CRHF, **same basic hash** used throughout the Merkle tree. Hash description same as for a single basic hash.

If a collision \((x_1...x_n), (y_1...y_n)\) over all, then some collision \((x',y')\) for basic hash.

Consider moving a “frontline” from bottom to top.
Domain Extension for CRHF

- For CRHF, **same basic hash** used throughout the Merkle tree. Hash description same as for a single basic hash.
- If a collision \((x_1...x_n, y_1...y_n)\) over all, then some collision \((x',y')\) for basic hash.
- Consider moving a “frontline” from bottom to top.
For CRHF, **same basic hash** used throughout the Merkle tree. Hash description same as for a single basic hash.

If a collision \((x_1...x_n), (y_1...y_n)\) over all, then some collision \((x',y')\) for basic hash.

Consider moving a “frontline” from bottom to top.
Domain Extension for CRHF

- For CRHF, **same basic hash** used throughout the Merkle tree. Hash description same as for a single basic hash.

- If a collision \((x_1...x_n), (y_1...y_n)\) over all, then some collision \((x',y')\) for basic hash.

- Consider moving a “frontline” from bottom to top.
Domain Extension for CRHF

For CRHF, **same basic hash** used throughout the Merkle tree. Hash description same as for a single basic hash.

If a collision \((x_1 \ldots x_n), (y_1 \ldots y_n)\) over all, then some collision \((x',y')\) for basic hash.

Consider moving a “frontline” from bottom to top:

- Collision at some step (different values on \(i^{th}\) front, same on \((i+1)^{st}\)); gives a collision for basic hash.
For CRHF, **same basic hash** used throughout the Merkle tree. Hash description same as for a single basic hash.

If a collision \((x_1...x_n), (y_1...y_n)\) over all, then some collision \((x',y')\) for basic hash.

Consider moving a “frontline” from bottom to top.

Collision at some step (different values on \(i^{th}\) front, same on \(i+1^{st}\)); gives a collision for basic hash.
For CRHF, **same basic hash** used throughout the Merkle tree. Hash description same as for a single basic hash.

If a collision \((x_1...x_n), (y_1...y_n)\) over all, then some collision \((x',y')\) for basic hash.

Consider moving a “frontline” from bottom to top.

Collision at some step (different values on \(i^{th}\) front, same on \(i+1^{st}\)); gives a collision for basic hash.

\(A^*(h)\): run \(A(h)\) to get \((x_1...x_n), (y_1...y_n)\). Move frontline to find \((x',y')\).
Domain Extension for UOWHF
Domain Extension for UOWHF

For UOWHF, can't use same basic hash throughout!
Domain Extension for UOWHF

- For UOWHF, can’t use same basic hash throughout!
- A^* has to output an x' on getting $(x_1...x_n)$ from A, before getting h
Domain Extension for UOWHF

- For UOWHF, can’t use same basic hash throughout!
- \(A^* \) has to output an \(x' \) on getting \((x_1 \ldots x_n) \) from \(A \), before getting \(h \)
- Can guess a random node (i.e., random pair of frontlines) where collision occurs, but if not a leaf, can’t compute \(x' \) until \(h \) is fixed!
Domain Extension for UOWHF

- For UOWHF, can’t use same basic hash throughout!
- A^* has to output an x' on getting $(x_1...x_n)$ from A, before getting h
- Can guess a random node (i.e., random pair of frontlines) where collision occurs, but if not a leaf, can’t compute x' until h is fixed!
For UOWHF, can’t use same basic hash throughout!

A* has to output an x' on getting $(x_1...x_n)$ from A, before getting h

Can guess a random node (i.e., random pair of frontlines) where collision occurs, but if not a leaf, can’t compute x' until h is fixed!

Solution: a different h for each level of the tree (i.e., no ancestor/successor has same h)
Domain Extension for UOWHF

- For UOWHF, can’t use same basic hash throughout!
- A^* has to output an x' on getting $(x_1...x_n)$ from A, before getting h
 - Can guess a random node (i.e., random pair of frontlines) where collision occurs, but if not a leaf, can’t compute x' until h is fixed!
- Solution: a different h for each level of the tree (i.e., no ancestor/successor has same h)
 - To compute x': pick a random node (say at level i), pick h_j for levels below i, give it to A, get back $(x_1...x_n)$, and compute input to the node; this be x'
For UOWHF, can't use same basic hash throughout!

\(A^* \) has to output an \(x' \) on getting \((x_1...x_n) \) from \(A \), before getting \(h \)

Can guess a random node (i.e., random pair of frontlines) where collision occurs, but if not a leaf, can't compute \(x' \) until \(h \) is fixed!

Solution: a different \(h \) for each level of the tree (i.e., no ancestor/successor has same \(h \))

To compute \(x' \): pick a random node (say at level \(i \)), pick \(h_j \) for levels below \(i \), give it to \(A \), get back \((x_1...x_n) \), and compute input to the node; this be \(x' \)
Domain Extension for UOWHF

For UOWHF, can’t use same basic hash throughout!

A* has to output an x' on getting $(x_1...x_n)$ from A, before getting h

Can guess a random node (i.e., random pair of frontlines) where collision occurs, but if not a leaf, can’t compute x' until h is fixed!

Solution: a different h for each level of the tree (i.e., no ancestor/successor has same h)

To compute x': pick a random node (say at level i), pick h_j for levels below i, give it to A, get back $(x_1...x_n)$, and compute input to the node; this be x'

On getting h, plug it in as h_i, pick h_j for remaining levels; get $(y_1...y_n)$ and compute y'
For UOWHF, can’t use same basic hash throughout!

A* has to output an x' on getting $(x_1...x_n)$ from A, before getting h

Can guess a random node (i.e., random pair of frontlines) where collision occurs, but if not a leaf, can’t compute x' until h is fixed!

Solution: a different h for each level of the tree (i.e., no ancestor/successor has same h)

To compute x': pick a random node (say at level i), pick h_j for levels below i, give it to A, get back $(x_1...x_n)$, and compute input to the node; this be x'

On getting h, plug it in as h_i, pick h_j for remaining levels; get $(y_1...y_n)$ and compute y'
UOWHF vs. CRHF
UOWHF vs. CRHF

- UOWHF has a weaker guarantee than CRHF
UOWHF vs. CRHF

- UOWHF has a weaker guarantee than CRHF
- UOWHF can be built based on OWF (we saw based on OWP), where as CRHF “needs stronger assumptions”
UOWHF vs. CRHF

- UOWHF has a weaker guarantee than CRHF.
- UOWHF can be built based on OWF (we saw based on OWP), whereas CRHF “needs stronger assumptions.”
- But “usual” OWF candidates suffice for CRHF too (we saw construction based on discrete-log).
UOWHF vs. CRHF

- UOWHF has a weaker guarantee than CRHF
- UOWHF can be built based on OWF (we saw based on OWP), whereas CRHF “needs stronger assumptions”
 - But “usual” OWF candidates suffice for CRHF too (we saw construction based on discrete-log)
- Domain extension of CRHF is simpler, with no blow-up in the description size. For UOWHF description increases logarithmically in the input size
UOWHF vs. CRHF

- UOWHF has a weaker guarantee than CRHF
- UOWHF can be built based on OWF (we saw based on OWP), whereas CRHF “needs stronger assumptions”
 - But “usual” OWF candidates suffice for CRHF too (we saw construction based on discrete-log)
- Domain extension of CRHF is simpler, with no blow-up in the description size. For UOWHF description increases logarithmically in the input size
- UOWHF theoretically important (based on simpler assumptions, good if paranoid), but CRHF can substitute for it
UOWHF vs. CRHF

- UOWHF has a weaker guarantee than CRHF
- UOWHF can be built based on OWF (we saw based on OWP), where as CRHF “needs stronger assumptions”
 - But “usual” OWF candidates suffice for CRHF too (we saw construction based on discrete-log)
- Domain extension of CRHF is simpler, with no blow-up in the description size. For UOWHF description increases logarithmically in the input size
- UOWHF theoretically important (based on simpler assumptions, good if paranoid), but CRHF can substitute for it
- Current practice: much less paranoid; faith on efficient, ad hoc (and unkeyed) constructions (though increasingly under attack)
Hash Functions in Practice
Hash Functions in Practice

- A single function, not a family (e.g. SHA-3, SHA-256, MD4, MD5)
Hash Functions in Practice

- A single function, not a family (e.g. SHA-3, SHA-256, MD4, MD5)
- Often from a fixed input-length compression function
A single function, not a family (e.g. SHA-3, SHA-256, MD4, MD5)

Often from a fixed input-length compression function

Merkle-Damgård iterated hash function:
Hash Functions in Practice

- A single function, not a family (e.g. SHA-3, SHA-256, MD4, MD5)
- Often from a fixed input-length *compression function*
- Merkle-Damgård iterated hash function:
Hash Functions in Practice

- A single function, not a family (e.g. SHA-3, SHA-256, MD4, MD5)
- Often from a fixed input-length compression function
- Merkle-Damgård iterated hash function:

Collision resistance even with variable input-length
A single function, not a family (e.g. SHA-3, SHA-256, MD4, MD5)

Often from a fixed input-length compression function

Merkle-Damgård iterated hash function:

If f collision resistant (not as “keyed” hash, but “concretely”), then so is the Merkle-Damgård iterated hash-function (for any IV)
One-time MAC
With 2-Universal Hash Functions
One-time MAC
With 2-Universal Hash Functions

Trivial (very inefficient) solution (to sign a single n bit message):
One-time MAC
With 2-Universal Hash Functions

Trivial (very inefficient) solution (to sign a single n bit message):

Key: 2n random strings (each k-bit long) \((r_{i0}^i, r_{i1}^i)_{i=1..n}\)
One-time MAC
With 2-Universal Hash Functions

Trivial (very inefficient) solution (to sign a single n bit message):

Key: 2n random strings (each k-bit long) \((r^i_0, r^i_1)_{i=1..n}\)
One-time MAC
With 2-Universal Hash Functions

Trivial (very inefficient) solution (to sign a single n bit message):

- Key: 2n random strings (each k-bit long) \((r_{i0}^i, r_{i1}^i)_{i=1..n}\)
- Signature for \(m_1...m_n\) be \((r_{mi}^i)_{i=1..n}\)
One-time MAC
With 2-Universal Hash Functions

Trivial (very inefficient) solution (to sign a single n bit message):

Key: 2n random strings (each k-bit long) \((r_i^0, r_i^1)_{i=1..n}\)
Signature for \(m_1...m_n\) be \((r_{mi})_{i=1..n}\)
One-time MAC

With 2-Universal Hash Functions

Trivial (very inefficient) solution (to sign a single n bit message):

Key: 2n random strings (each k-bit long) \((r_i^0, r_i^1)_{i=1..n}\)

Signature for \(m_1...m_n\) be \((r_{mi})_{i=1..n}\)

Negligible probability that Eve can produce a signature on \(m' \neq m\)
One-time MAC
With 2-Universal Hash Functions

Trivial (very inefficient) solution (to sign a single n bit message):

- Key: 2n random strings (each k-bit long) \((r_{i0}, r_{i1})_{i=1\text{...}n}\)
- Signature for \(m_1...m_n\) be \((r_{mi})_{i=1\text{...}n}\)
- Negligible probability that Eve can produce a signature on \(m'\neq m\)

A much better solution, using 2-UHF (and no computational assumptions):
One-time MAC
With 2-Universal Hash Functions

- Trivial (very inefficient) solution (to sign a single n bit message):
 - Key: 2n random strings (each k-bit long) \((r_{i0}, r_{i1})_{i=1\ldots n}\)
 - Signature for \(m_1\ldots m_n\) be \((r_{mi})_{i=1\ldots n}\)
 - Negligible probability that Eve can produce a signature on \(m' \neq m\)

- A much better solution, using 2-UHF (and no computational assumptions):
 - \(\text{Onetime-MAC}_h(M) = h(M)\), where \(h \leftarrow \mathcal{H}\), and \(\mathcal{H}\) is a 2-UHF
One-time MAC

With 2-Universal Hash Functions

Trivial (very inefficient) solution (to sign a single n bit message):

Key: 2n random strings (each k-bit long) \((r_{i0}, r_{i1})_{i=1...n} \)

Signature for \(m_1...m_n \) be \((r_{imi})_{i=1...n} \)

Negligible probability that Eve can produce a signature on \(m' \neq m \)

A much better solution, using 2-UHF (and no computational assumptions):

\[\text{Onetime-MAC}_h(M) = h(M), \text{ where } h \leftarrow \# \text{, and } \# \text{ is a 2-UHF} \]

Seeing hash of one input gives no information on hash of another value
MAC
With Combinatorial Hash Functions and PRF
MAC

With Combinatorial Hash Functions and PRF

Recall: PRF is a MAC (on one-block messages)
MAC

With Combinatorial Hash Functions and PRF

- Recall: PRF is a MAC (on one-block messages)
- CBC-MAC: Extends to any fixed length domain
MAC
With Combinatorial Hash Functions and PRF

- Recall: PRF is a MAC (on one-block messages)
- **CBC-MAC**: Extends to any fixed length domain
- Alternate approach (for fixed length domains):
MAC

With Combinatorial Hash Functions and PRF

- Recall: PRF is a MAC (on one-block messages)
- CBC-MAC: Extends to any fixed length domain
- Alternate approach (for fixed length domains):
 - $\text{MAC}_{K,h^*}(M) = \text{PRF}_K(h(M))$ where $h \leftarrow \mathcal{A}$, and \mathcal{A} a 2-UHF
- A proper MAC must work on inputs of variable length
- Making CBC-MAC variable input-length (can be proven secure):
 - Derive K as $F_K(t)$, where t is the number of blocks
 - Or, Use first block to specify number of blocks
Recall: PRF is a MAC (on one-block messages)

CBC-MAC: Extends to any fixed length domain

Alternate approach (for fixed length domains):

\[\text{MAC}_{K,h^*}(M) = \text{PRF}_K(h(M)) \] where \(h \leftarrow \mathcal{H} \), and \(\mathcal{H} \) a 2-UHF

A proper MAC must work on inputs of variable length

Making CBC-MAC variable input-length (can be proven secure):

Derive \(K \) as \(F_{K'}(t) \), where \(t \) is the number of blocks

Or, Use first block to specify number of blocks

Or, output not the last tag \(T \), but \(F_{K'}(T) \), where \(K' \) is an independent key (EMAC)
MAC

With Combinatorial Hash Functions and PRF

- Recall: PRF is a MAC (on one-block messages)
- **CBC-MAC**: Extends to any fixed length domain
- Alternate approach (for fixed length domains):
 - \(\text{MAC}_{K,h^*}(M) = \text{PRF}_K(h(M)) \) where \(h \leftarrow \mathcal{H} \), and \(\mathcal{H} \) a 2-UHF

- A proper MAC must work on inputs of variable length
- Making CBC-MAC variable input-length (can be proven secure):
 - Derive \(K \) as \(F_{K'}(t) \), where \(t \) is the number of blocks
 - Or, Use first block to specify number of blocks
 - Or, output not the last tag \(T \), but \(F_{K'}(T) \), where \(K' \) is an independent key (EMAC)
 - Or, XOR last message block with another key \(K' \) (CMAC)
MAC

With Combinatorial Hash Functions and PRF

- Recall: PRF is a MAC (on one-block messages)
- CBC-MAC: Extends to any fixed length domain
- Alternate approach (for fixed length domains):
 - $\text{MAC}_{K,h}^{*}(M) = \text{PRF}_K(h(M))$ where $h \leftarrow \mathcal{U}$, and \mathcal{U} a 2-UHF

A proper MAC must work on inputs of variable length

Making CBC-MAC variable input-length (can be proven secure):
- Derive K as $F_{K'}(t)$, where t is the number of blocks
- Or, Use first block to specify number of blocks
- Or, output not the last tag T, but $F_{K'}(T)$, where K' is an independent key (EMAC)
- Or, XOR last message block with another key K' (CMAC)

Leave variable input-lengths to the hash? (But 2-UHF won’t work)
MAC

With Cryptographic Hash Functions
MAC
With Cryptographic Hash Functions

Previous extension solutions required pseudorandomness of MAC
MAC
With Cryptographic Hash Functions

- Previous extension solutions required pseudorandomness of MAC
- What if we are given just a fixed input-length MAC (not PRF)?
MAC
With Cryptographic Hash Functions

Previous extension solutions required pseudorandomness of MAC
What if we are given just a fixed input-length MAC (not PRF)?
Why? “No export restrictions!” Also security/efficiency/legacy
MAC
With Cryptographic Hash Functions

Previous extension solutions required pseudorandomness of MAC
What if we are given just a fixed input-length MAC (not PRF)?
Why? “No export restrictions!” Also security/efficiency/legacy
Candidate fixed input-length MACs in practice that do not use a block-cipher
MAC
With Cryptographic Hash Functions

Previous extension solutions required pseudorandomness of MAC
What if we are given just a fixed input-length MAC (not PRF)?
Why? “No export restrictions!” Also security/efficiency/legacy
Candidate fixed input-length MACs in practice that do not use a block-cipher
Called “compression functions” (with key as IV)
Previous extension solutions required pseudorandomness of MAC

What if we are given just a fixed input-length MAC (not PRF)?

Why? “No export restrictions!” Also security/efficiency/legacy

Candidate fixed input-length MACs in practice that do not use a block-cipher

Called “compression functions” (with key as IV)

$$\text{MAC}^{*}_{k,h}(M) = \text{MAC}_{k}(h(M))$$ where $$h \leftarrow \$$$, and $$\$$ a weak-CRHF
Previous extension solutions required pseudorandomness of MAC

What if we are given just a fixed input-length MAC (not PRF)?

Why? “No export restrictions!” Also security/efficiency/legacy

Candidate fixed input-length MACs in practice that do not use a block-cipher

Called “compression functions” (with key as IV)

$\text{MAC}^*_{K,h}(M) = \text{MAC}_K(h(M))$ where $h \leftarrow \mathcal{H}$, and \mathcal{H} a weak-CRHF

Weak-CRHF can be based on OWF; can be efficiently constructed from fixed input-length MACs.
HMAC
HMAC: Hash-based MAC
HMAC

HMAC: Hash-based MAC

Essentially built from a compression function f
HMAC

- HMAC: Hash-based MAC

Essentially built from a compression function \(f \)

- If keys \(K_1, K_2 \) independent (called NMAC), then secure MAC if \(f \) is a fixed input-length MAC, and the Merkle-Damgård iterated-hash is a weak-CRHF
HMAC

- **HMAC**: Hash-based MAC

- Essentially built from a compression function f
 - If keys K_1, K_2 independent (called NMAC), then secure MAC if f is a fixed input-length MAC, and the Merkle-Damgård iterated-hash is a weak-CRHF
 - In HMAC (K_1, K_2) derived from (K', K''), in turn heuristically derived from a single key K. If f is a (weak kind of) PRF K_1, K_2 can be considered independent
Hash Not a Random Oracle!
Hash Not a Random Oracle!

Hash functions are no substitute for RO, especially if built using iterated-hashing (even if the compression function was to be modeled as an RO)
Hash Not a Random Oracle!

- Hash functions are no substitute for RO, especially if built using iterated-hashing (even if the compression function was to be modeled as an RO)

- If H is a Random Oracle, then just $H(K||M)$ will be a MAC
Hash Not a Random Oracle!

- Hash functions are no substitute for RO, especially if built using iterated-hashing (even if the compression function was to be modeled as an RO)
- If H is a Random Oracle, then just $H(K||M)$ will be a MAC
- But if H is a Merkle-Damgård iterated-hash function, then there is a simple length-extension attack for forgery
Hash Not a Random Oracle!

- Hash functions are no substitute for RO, especially if built using iterated-hashing (even if the compression function was to be modeled as an RO)

- If H is a Random Oracle, then just $H(K||M)$ will be a MAC

- But if H is a Merkle-Damgård iterated-hash function, then there is a simple length-extension attack for forgery

 (That attack can be fixed by preventing extension: prefix-free encoding)
Hash Not a Random Oracle!

Hash functions are no substitute for RO, especially if built using iterated-hashing (even if the compression function was to be modeled as an RO)

If H is a Random Oracle, then just $H(K\|M)$ will be a MAC

But if H is a Merkle-Damgård iterated-hash function, then there is a simple length-extension attack for forgery

(That attack can be fixed by preventing extension: prefix-free encoding)

Other suggestions like $SHA1(M\|K)$, $SHA1(K\|M\|K)$ all turned out to be flawed too
Today
Today

A CRHF candidate from DDH
Today

- A CRHF candidate from DDH
- CRHF and UOWHF domain extension using Merkle trees
Today

- A CRHF candidate from DDH
- CRHF and UOWHF domain extension using Merkle trees
- Merkle-Damgård iterated hash function for full-domain hash
Today

- A CRHF candidate from DDH
- CRHF and UOWHF domain extension using Merkle trees
- Merkle-Damgård iterated hash function for full-domain hash
- Hash functions for MACs
Today

- A CRHF candidate from DDH
- CRHF and UOWHF domain extension using Merkle trees
- Merkle-Damgård iterated hash function for full-domain hash
- Hash functions for MACs
- 2-UHF: for domain extension of one-time MAC. Also for MAC from PRF.
Today

- A CRHF candidate from DDH
- CRHF and UOWHF domain extension using Merkle trees
- Merkle-Damgård iterated hash function for full-domain hash
- Hash functions for MACs
 - 2-UHF: for domain extension of one-time MAC. Also for MAC from PRF.
 - Hash-then-MAC
Today

- A CRHF candidate from DDH
- CRHF and UOWHF domain extension using Merkle trees
- Merkle-Damgård iterated hash function for full-domain hash
- Hash functions for MACs
 - 2-UHF: for domain extension of one-time MAC. Also for MAC from PRF.
- Hash-then-MAC
 - Using weak CRHF and fixed input-length CRHF
Today

- A CRHF candidate from DDH
- CRHF and UOWHF domain extension using Merkle trees
- Merkle-Damgård iterated hash function for full-domain hash
- Hash functions for MACs
 - 2-UHF: for domain extension of one-time MAC. Also for MAC from PRF.
- Hash-then-MAC
 - Using weak CRHF and fixed input-length CRHF
 - Underlying HMAC/NMAC: compression function in an iterated-hash function assumed to be both a weak CRHF and a fixed input-length MAC
Today

- A CRHF candidate from DDH
- CRHF and UOWHF domain extension using Merkle trees
- Merkle-Damgård iterated hash function for full-domain hash
- Hash functions for MACs
 - 2-UHF: for domain extension of one-time MAC. Also for MAC from PRF.
- Hash-then-MAC
 - Using weak CRHF and fixed input-length CRHF
 - Underlying HMAC/NMAC: compression function in an iterated-hash function assumed to be both a weak CRHF and a fixed input-length MAC
- Next: Digital Signatures