Public-Key Cryptography
Public-Key Cryptography

Lecture 8
Public-Key Cryptography

Lecture 8

Public-Key Encryption from Trapdoor OWP
Public-Key Cryptography

Lecture 8
Public-Key Encryption from Trapdoor OWP
CCA Security
El Gamal Encryption
El Gamal Encryption

Based on DH key-exchange
El Gamal Encryption

- Based on DH key-exchange
- Alice, Bob generate a key using DH key-exchange
El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key using DH key-exchange

\[\begin{align*}
X &= g^x \\
Y &= g^y \\
K &= Y^x \\
\end{align*} \]
El Gamal Encryption

- Based on DH key-exchange
- Alice, Bob generate a key using DH key-exchange
- Then use it as a one-time pad

\[
\begin{align*}
 &\text{Random } x \\
 &X = g^x \\
 &K = Y^x \\
 &Y = g^y
\end{align*}
\]
El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key using DH key-exchange

Then use it as a one-time pad
El Gamal Encryption

- Based on DH key-exchange
- Alice, Bob generate a key using DH key-exchange
- Then use it as a one-time pad
El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key using DH key-exchange

Then use it as a one-time pad
El Gamal Encryption

- Based on DH key-exchange
- Alice, Bob generate a key using DH key-exchange
- Then use it as a one-time pad
- Bob’s “message” in the key-exchange is his PK
El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-exchange is his PK

Alice’s message in the key-exchange and the ciphertext of the one-time pad together form a single ciphertext
El Gamal Encryption

- Based on DH key-exchange
- Alice, Bob generate a key using DH key-exchange
- Then use it as a one-time pad
- Bob’s “message” in the key-exchange is his PK
- Alice’s message in the key-exchange and the ciphertext of the one-time pad together form a single ciphertext

KeyGen: PK=(G,g,Y), SK=(G,g,y)

- Random x
- $X = g^x$
- $K = Y^x$
- $C = MK$
- $Y = g^y$
- $K = X^y$
- $M = CK^{-1}$
El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-exchange is his PK

Alice’s message in the key-exchange and the ciphertext of the one-time pad together form a single ciphertext

KeyGen: $PK = (G, g, Y)$, $SK = (G, g, y)$

$Enc_{(G,g,Y)}(M) = (X = g^x, C = MY^x)$
El Gamal Encryption

- Based on DH key-exchange
- Alice, Bob generate a key using DH key-exchange
- Then use it as a one-time pad
- Bob's "message" in the key-exchange is his PK
- Alice's message in the key-exchange and the ciphertext of the one-time pad together form a single ciphertext

KeyGen: PK=(G,g,Y), SK=(G,g,y)
Enc_{(G,g,Y)}(M) = (X=g^x, C=MY^x)
Dec_{(G,g,y)}(X,C) = CX^{-y}
El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-exchange is his PK

Alice’s message in the key-exchange and the ciphertext of the one-time pad together form a single ciphertext

KeyGen: PK=(G,g,Y), SK=(G,g,y)

Enc\(_{(G,g,Y)}(M) = (X=g^x, C=MY^x)\)

Dec\(_{(G,g,y)}(X,C) = CX^{-y}\)

- KeyGen uses GroupGen to get (G,g)
El Gamal Encryption

- Based on DH key-exchange
- Alice, Bob generate a key using DH key-exchange
- Then use it as a one-time pad
- Bob’s “message” in the key-exchange is his PK
- Alice’s message in the key-exchange and the ciphertext of the one-time pad together form a single ciphertext

KeyGen: $PK=(G,g,Y)$, $SK=(G,g,y)$

$Enc_{(G,g,Y)}(M) = (X=g^x, C=MY^x)$

$Dec_{(G,g,Y)}(X,C) = CX^{-y}$

- KeyGen uses GroupGen to get (G,g)
- x, y uniform from $|G|$
ElGamal Encryption

Based on DH key-exchange

Alice, Bob generate a key using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-exchange is his PK

Alice’s message in the key-exchange and the ciphertext of the one-time pad together form a single ciphertext

KeyGen: PK=(G,g,Y), SK=(G,g,y)

Enc_{(G,g,Y)}(M) = (X=g^x, C=MY^x)

Dec_{(G,g,y)}(X,C) = Cx^{-y}

- KeyGen uses GroupGen to get (G,g)
- x, y uniform from [1|G|]
- Message encoded into group element, and decoded
Security of El Gamal
Security of El Gamal

El Gamal IND-CPA secure if DDH holds (for the collection of groups used)
Security of El Gamal

El Gamal IND-CPA secure if DDH holds (for the collection of groups used)

Construct a DDH adversary A^* given an IND-CPA adversary A
Security of El Gamal

El Gamal IND-CPA secure if DDH holds (for the collection of groups used)

Construct a DDH adversary A^* given an IND-CPA adversary A

$A^*(G,g; g^x,g^y,g^z)$ (where $(G,g) \leftarrow \text{GroupGen}$, x,y random and $z=xy$ or random) plays the IND-CPA experiment with A:
Security of El Gamal

El Gamal IND-CPA secure if DDH holds (for the collection of groups used)

Construct a DDH adversary A^* given an IND-CPA adversary A

$A^*(G,g; g^x, g^y, g^z)$ (where $(G,g) \leftarrow \text{GroupGen}$, x,y random and $z=xy$ or random) plays the IND-CPA experiment with A:

But sets $PK=(G,g,g^y)$ and $Enc(M_b)=(g^x, M_bg^z)$
Security of El Gamal

- El Gamal IND-CPA secure if DDH holds (for the collection of groups used)

- Construct a DDH adversary A^* given an IND-CPA adversary A

 $A^*(G,g; g^x, g^y, g^z)$ (where $(G,g) \leftarrow \text{GroupGen}$, x,y random and $z=xy$ or random) plays the IND-CPA experiment with A:

 - But sets $PK=(G,g,g^y)$ and $Enc(M_b)=(g^x, M_bg^z)$

 - Outputs 1 if experiment outputs 1 (i.e. if $b=b'$)
Security of El Gamal

El Gamal IND-CPA secure if DDH holds (for the collection of groups used)

Construct a DDH adversary A^* given an IND-CPA adversary A

$A^*(G,g; g^x,g^y,g^z)$ (where $(G,g) \leftarrow \text{GroupGen}$, x,y random and $z=xy$ or random) plays the IND-CPA experiment with A:

But sets $\text{PK}=(G,g,g^y)$ and $\text{Enc}(M_b)=(g^x,M_bg^z)$

Outputs 1 if experiment outputs 1 (i.e. if $b=b'$)

When $z=$random, A^* outputs 1 with probability $= 1/2$
Security of El Gamal

El Gamal IND-CPA secure if DDH holds (for the collection of groups used)

Construct a DDH adversary A^* given an IND-CPA adversary A:

$A^*(G,g; g^x, g^y, g^z)$ (where $(G,g) \leftarrow \text{GroupGen}$, x,y random and $z=xy$ or random) plays the IND-CPA experiment with A:

But sets $PK=(G,g,g^y)$ and $Enc(M_b)=(g^x, M_b g^z)$

Outputs 1 if experiment outputs 1 (i.e. if $b=b'$)

When $z=$ random, A^* outputs 1 with probability $= 1/2$

When $z=xy$, exactly IND-CPA experiment: A^* outputs 1 with probability $= 1/2 + \text{advantage of } A$.

Abstracting El Gamal

KeyGen: $PK=(G,g,Y)$, $SK=(G,g,y)$

$Enc_{(G,g,Y)}(M) = (X=g^x, C=MY^x)$

$Dec_{(G,g,y)}(X,C) = CX^{-y}$
Abstracting El Gamal

KeyGen: $PK = (G, g, Y)$, $SK = (G, g, y)$

Enc

Dec
Abstracting El Gamal

- Trapdoor PRG:

Random x → $X = g$ → $K = Y$

Random y → $Y = g$ → $K = X$

$C = MK$ → $M = CK$

KeyGen: $PK = (G, g, Y)$, $SK = (G, g, y)$

Enc

Dec
Abstracting El Gamal

- **Trapdoor PRG:**
- **KeyGen:** a pair (PK, SK)

KeyGen: PK = (G, g, Y), SK = (G, g, y)

Enc

Dec

KeyGen: (PK, SK)
Abstracting El Gamal

Trapdoor PRG:
- **KeyGen:** a pair (PK, SK)
- Three functions: $G_{PK}(.)$ (a PRG) and $T_{PK}(.)$ (make trapdoor info) and $R_{SK}(.)$ (opening the trapdoor)

KeyGen: $PK=(G,g,Y)$, $SK=(G,g,y)$

Enc

Dec

KeyGen: (PK, SK)
Abstracting El Gamal

Trapdoor PRG:

- **KeyGen:** a pair \((PK, SK)\)
- Three functions: \(G_{PK}(.)\) (a PRG) and \(T_{PK}(.)\) (make trapdoor info) and \(R_{SK}(.)\) (opening the trapdoor)

\[
\text{KeyGen: } PK=(G,g,Y), \ SK=(G,g,y)
\]

Enc

Dec

\[
\text{KeyGen: } (PK,SK)
\]

\[
\text{Enc}_{PK}(M) = (X=T_{PK}(x), C=M.G_{PK}(x))
\]
Abstracting El Gamal

Trapdoor PRG:

- **KeyGen**: a pair \((PK,SK)\)
- Three functions: \(G_{PK}(.)\) (a PRG) and \(T_{PK}(.)\) (make trapdoor info)
 and \(R_{SK}(.)\) (opening the trapdoor)

KeyGen: \(PK=(G,g,Y), \ SK=(G,g,y)\)

Enc

Dec

KeyGen: \((PK,SK)\)

\[Enc_{PK}(M) = (X=T_{PK}(x), \ C=M.G_{PK}(x)) \]

\[Dec_{SK}(X,C) = C/R_{SK}(T_{PK}(x)) \]
Abstracting El Gamal

Trapdoor PRG:

- **KeyGen**: a pair \((PK, SK)\)
- **Three functions**: \(G_{PK}(.)\) (a PRG) and \(T_{PK}(.)\) (make trapdoor info) and \(R_{SK}(.)\) (opening the trapdoor)
- \(G_{PK}(x)\) is pseudorandom even given \(T_{PK}(x)\) and \(PK\)

\[
\begin{align*}
\text{KeyGen: } PK &= (G, g, Y), \ SK &= (G, g, y) \\
\text{Enc} \quad X &= \text{T}_{PK}(x), \quad C &= M \cdot G_{PK}(x) \\
\text{Dec} \quad X/C &= R_{SK}(T_{PK}(x))
\end{align*}
\]
Abstracting El Gamal

Trapdoor PRG:

KeyGen: a pair \((PK, SK)\)

Three functions: \(G_{PK}(.)\) (a PRG) and \(T_{PK}(.)\) (make trapdoor info) and \(R_{SK}(.)\) (opening the trapdoor)

\(G_{PK}(x)\) is pseudorandom even given \(T_{PK}(x)\) and \(PK\)

\((PK, T_{PK}(x), G_{PK}(x)) \approx (PK, T_{PK}(x), r)\)
Abstracting El Gamal

Trapdoor PRG:

- **KeyGen:** a pair (PK, SK)
- **Three functions:** $G_{PK}(.)$ (a PRG) and $T_{PK}(.)$ (make trapdoor info) and $R_{SK}(.)$ (opening the trapdoor)

 - $G_{PK}(x)$ is pseudorandom even given $T_{PK}(x)$ and PK
 - $(PK, T_{PK}(x), G_{PK}(x)) \approx (PK, T_{PK}(x), r)$
 - $T_{PK}(x)$ hides $G_{PK}(x)$. SK opens it.

Enc

$$Enc_{PK}(M) = (X = T_{PK}(x), C = M.G_{PK}(x))$$

Dec

$$Dec_{SK}(X, C) = C/R_{SK}(T_{PK}(x))$$

KeyGen:

$$PK = (G, g, Y), \quad SK = (G, g, y)$$
Abstracting El Gamal

Trapdoor PRG:
- **KeyGen:** a pair (PK, SK)
- Three functions: \(G_{PK}(.) \) (a PRG) and \(T_{PK}(.) \) (make trapdoor info) and \(R_{SK}(.) \) (opening the trapdoor)
- \(G_{PK}(x) \) is pseudorandom even given \(T_{PK}(x) \) and PK
- \((PK,T_{PK}(x),G_{PK}(x)) \approx (PK,T_{PK}(x),r) \)
- \(T_{PK}(x) \) hides \(G_{PK}(x) \). SK opens it.
- \(R_{SK}(T_{PK}(x)) = G_{PK}(x) \)

Encryption and Decryption:
- **KeyGen:** \(PK=(G,g,Y), \ SK=(G,g,y) \)
- **Enc:** \(Enc_{PK}(M) = (X=T_{PK}(x),\ C=M.G_{PK}(x)) \)
- **Dec:** \(Dec_{SK}(X,C) = C/R_{SK}(T_{PK}(x)) \)
Abstracting El Gamal

Trapdoor PRG:

- **KeyGen:** a pair (PK,SK)
- Three functions: \(G_{PK}(.)\) (a PRG) and \(T_{PK}(.)\) (make trapdoor info) and \(R_{SK}(.)\) (opening the trapdoor)
- \(G_{PK}(x)\) is pseudorandom even given \(T_{PK}(x)\) and \(PK\)
- \((PK,T_{PK}(x),G_{PK}(x)) \approx (PK,T_{PK}(x),r)\)
- \(T_{PK}(x)\) hides \(G_{PK}(x)\). SK opens it.
- \(R_{SK}(T_{PK}(x)) = G_{PK}(x)\)
- Enough for an IND-CPA secure PKE scheme

Encryption and Decryption:

- **KeyGen:** \(PK=(G,g,Y), SK=(G,g,y)\)
- \(Enc_{PK}(M) = (X=T_{PK}(x), C=M.G_{PK}(x))\)
- \(Dec_{SK}(X,C) = C/R_{SK}(T_{PK}(x))\)
Abstracting El Gamal

- **Trapdoor PRG:**
 - **KeyGen:** a pair (PK, SK)
 - Three functions: $G_{PK}(.)$ (a PRG) and $T_{PK}(.)$ (make trapdoor info) and $R_{SK}(.)$ (opening the trapdoor)
 - $G_{PK}(x)$ is pseudorandom even given $T_{PK}(x)$ and PK
 - $(PK,T_{PK}(x),G_{PK}(x)) \approx (PK,T_{PK}(x),r)$
 - $T_{PK}(x)$ hides $G_{PK}(x)$. SK opens it.
 - $R_{SK}(T_{PK}(x)) = G_{PK}(x)$

- Enough for an IND-CPA secure PKE scheme (cf. Security of El Gamal)

\[\begin{align*}
\text{KeyGen: } & PK=(G,g,Y), \ SK=(G,g,y) \\
\text{Enc: } & X=T_{PK}(x) \quad C=M \cdot G_{PK}(x) \\
\text{Dec: } & X/T_{PK}(x) = C/R_{SK}(T_{PK}(x))
\end{align*}\]
Trapdoor PRG from Generic Assumption?

\[\text{KeyGen} \]

\((PK, T_{PK}(x), G_{PK}(x)) \approx (PK, T_{PK}(x), r) \)
Trapdoor PRG from Generic Assumption?

PRG constructed from OWP (or OWF)

\[(PK, T_{PK}(x), G_{PK}(x)) \approx (PK, T_{PK}(x), r) \]
Trapdoor PRG from Generic Assumption?

- PRG constructed from OWP (or OWF)
- Allows us to instantiate the construction with several candidates

\[(PK, T_{PK}(x), G_{PK}(x)) \approx (PK, T_{PK}(x), r)\]
Trapdoor PRG from Generic Assumption?

- PRG constructed from OWP (or OWF)
- Allows us to instantiate the construction with several candidates
- Is there a similar construction for TPRG from OWP?

\[
(PK, T_{PK}(x), G_{PK}(x)) \approx (PK, T_{PK}(x), r)
\]
Trapdoor PRG from Generic Assumption?

- PRG constructed from OWP (or OWF)
- Allows us to instantiate the construction with several candidates
- Is there a similar construction for TPRG from OWP?
- Trapdoor property seems fundamentally different: generic OWP does not suffice

\[
(PK, T_{PK}(x), G_{PK}(x)) \approx (PK, T_{PK}(x), r)
\]
Trapdoor PRG from Generic Assumption?

- PRG constructed from OWP (or OWF)
 - Allows us to instantiate the construction with several candidates
- Is there a similar construction for TPRG from OWP?
 - Trapdoor property seems fundamentally different: generic OWP does not suffice
- Will start with “Trapdoor OWP”

```
(PK, TPK(x), GPK(x)) ≈ (PK, TPK(x), r)
```
(KeyGen, f, f') (all PPT) is a trapdoor one-way permutation (TOWP) if
(KeyGen, f, f') (all PPT) is a trapdoor one-way permutation (TOWP) if

For all (PK, SK) \leftarrow KeyGen
Trapdoor OWP

(KeyGen, f, f') (all PPT) is a trapdoor one-way permutation (TOWP) if

- For all $(PK, SK) \xleftarrow{} \text{KeyGen}$
- f_{PK} a permutation
Trapdoor OWP

(KeyGen,f,f') (all PPT) is a trapdoor one-way permutation (TOWP) if

- For all $(PK,SK) \leftarrow \text{KeyGen}$
- f_{PK} a permutation
- f'_{SK} is the inverse of f_{PK}
Trapdoor OW P

(KeyGen, f, f') (all PPT) is a trapdoor one-way permutation (TOWP) if

- For all $(PK, SK) \xleftarrow{\text{KeyGen}}$
 - f_{PK} a permutation
 - f'_{SK} is the inverse of f_{PK}
- For all PPT adversary, probability of success in the TOWP experiment is negligible
Trapdoor OWP

\((\text{KeyGen}, f, f')\) (all PPT) is a trapdoor one-way permutation (TOWP) if

- For all \((\text{PK}, \text{SK}) \leftarrow \text{KeyGen}\)
 - \(f_{\text{PK}}\) a permutation
 - \(f'_{\text{SK}}\) is the inverse of \(f_{\text{PK}}\)
- For all PPT adversary, probability of success in the TOWP experiment is negligible
Trapdoor OWP

(KeyGen, f, f') (all PPT) is a trapdoor one-way permutation (TOWP) if

- For all $(PK, SK) \gets \text{KeyGen}$
 - f_{PK} a permutation
 - f'_{SK} is the inverse of f_{PK}

For all PPT adversary, probability of success in the TOWP experiment is negligible

Hardcore predicate:

- B_{PK} s.t. $(PK, f_{PK}(x), B_{PK}(x)) \approx (PK, f_{PK}(x), r)$
Trapdoor PRG from Trapdoor OWP

\[(PK, T_{PK}(x), G_{PK}(x)) \approx (PK, T_{PK}(x), r)\]
Trapdoor PRG from Trapdoor OWP

Same construction as PRG from OWP

\[(PK, T_{PK}(x), G_{PK}(x)) \approx (PK, T_{PK}(x), r)\]
Trapdoor PRG from Trapdoor OWP

- Same construction as PRG from OWP
- One bit TPRG

\[(PK, T_{PK}(x), G_{PK}(x)) \approx (PK, T_{PK}(x), r)\]
Trapdoor PRG from Trapdoor OWP

- Same construction as PRG from OWP
- One bit TPRG
- KeyGen same as TOWP's KeyGen

\[(PK, T_{PK}(x), G_{PK}(x)) \approx (PK, T_{PK}(x), r)\]
Trapdoor PRG from Trapdoor OWP

- Same construction as PRG from OWP
- One bit TPRG
 - KeyGen same as TOWP’s KeyGen
 - $G_{PK}(x) := B_{PK}(x)$. $T_{PK}(x) := f_{PK}(x)$. $R_{SK}(y) := G_{PK}(f'_{SK}(y))$
Same construction as PRG from OWP

One bit TPRG

KeyGen same as TOWP’s KeyGen

$G_{PK}(x) := B_{PK}(x)$. $T_{PK}(x) := f_{PK}(x)$. $R_{SK}(y) := G_{PK}(f’_{SK}(y))$
Trapdoor PRG from Trapdoor OWP

- Same construction as PRG from OWP
- One bit TPRG
 - KeyGen same as TOWP's KeyGen

 \[G_{PK}(x) := B_{PK}(x). \quad T_{PK}(x) := f_{PK}(x). \]

 \[R_{SK}(y) := G_{PK}(f'_{SK}(y)) \]

 (SK assumed to contain PK)
Same construction as PRG from OWP

One bit TPRG

KeyGen same as TOWP’s KeyGen

$G_{PK}(x) := B_{PK}(x)$. $T_{PK}(x) := f_{PK}(x)$.

$R_{SK}(y) := G_{PK}(f'_{SK}(y))$

(SK assumed to contain PK)

More generally, last permutation output serves as T_{PK}
Trapdoor PRG from Trapdoor OWP

Same construction as PRG from OWP

One bit TPRG

- KeyGen same as TOWP’s KeyGen
- $G_{PK}(x) := B_{PK}(x)$. $T_{PK}(x) := f_{PK}(x)$.
- $R_{SK}(y) := G_{PK}(f’_{SK}(y))$
- (SK assumed to contain PK)

More generally, last permutation output serves as T_{PK}
Candidate TOWPs
Candidate TOWPs

From some (candidate) OWP collections, with index as public-key
Candidate TOWPs

- From some (candidate) OWP collections, with index as public-key
- Recall candidate OWF collections
Candidate TOWPs

From some (candidate) OWP collections, with index as public-key

Recall candidate OWF collections

Rabin OWF: $f_{\text{Rabin}}(x; N) = x^2 \mod N$, where $N = PQ$, and P, Q are k-bit primes (and x uniform from $\{0...N\}$)
Candidate TOWPs

From some (candidate) OWP collections, with index as public-key

Recall candidate OWF collections

Rabin OWF: \(f_{\text{Rabin}}(x; N) = x^2 \mod N \), where \(N = PQ \), and \(P, Q \) are \(k \)-bit primes (and \(x \) uniform from \(\{0...N\} \))

Fact: \(f_{\text{Rabin}}(.; N) \) is a permutation among quadratic residues, when \(P, Q \) are \(\equiv 3 \pmod{4} \)
Candidate TOWPs

From some (candidate) OWP collections, with index as public-key

Recall candidate OWF collections

Rabin OWF: \(f_{\text{Rabin}}(x; N) = x^2 \mod N \), where \(N = PQ \), and \(P, Q \) are \(k \)-bit primes (and \(x \) uniform from \(\{0...N\} \))

Fact: \(f_{\text{Rabin}}(.; N) \) is a permutation among quadratic residues, when \(P, Q \) are \(\equiv 3 \pmod{4} \)

Fact: Can invert \(f_{\text{Rabin}}(.; N) \) given factorization of \(N \)
Candidate TOWPs

From some (candidate) OWP collections, with index as public-key

Recall candidate OWF collections

Rabin OWF: \(f_{Rabin}(x; N) = x^2 \mod N \), where \(N = PQ \), and \(P, Q \) are \(k \)-bit primes (and \(x \) uniform from \(\{0...N\} \))

- **Fact**: \(f_{Rabin}(.; N) \) is a permutation among quadratic residues, when \(P, Q \) are \(\equiv 3 \pmod{4} \)
- **Fact**: Can invert \(f_{Rabin}(.; N) \) given factorization of \(N \)

RSA function: \(f_{RSA}(x; N,e) = x^e \mod N \) where \(N=PQ \), \(P,Q \) \(k \)-bit primes, \(e \) s.t. \(\gcd(e, \phi(N)) = 1 \) (and \(x \) uniform from \(\{0...N\} \))
Candidate TOWPs

From some (candidate) OWP collections, with index as public-key

Recall candidate OWF collections

Rabin OWF: \(f_{\text{Rabin}}(x; N) = x^2 \mod N \), where \(N = PQ \), and \(P, Q \) are \(k \)-bit primes (and \(x \) uniform from \(\{0...N\} \))

Fact: \(f_{\text{Rabin}}(.; N) \) is a permutation among quadratic residues, when \(P, Q \) are \(\equiv 3 \) (mod 4)

Fact: Can invert \(f_{\text{Rabin}}(.; N) \) given factorization of \(N \)

RSA function: \(f_{\text{RSA}}(x; N,e) = x^e \mod N \) where \(N=PQ \), \(P,Q \) k-bit primes, \(e \) s.t. \(\gcd(e, \phi(N)) = 1 \) (and \(x \) uniform from \(\{0...N\} \))

Fact: \(f_{\text{RSA}}(.; N,e) \) is a permutation
Candidate TOWPs

From some (candidate) OWP collections, with index as public-key

Recall candidate OWF collections

Rabin OWF: \(f_{\text{Rabin}}(x; N) = x^2 \mod N \), where \(N = PQ \), and \(P, Q \) are \(k \)-bit primes (and \(x \) uniform from \{0...N\})

- **Fact**: \(f_{\text{Rabin}}(.; N) \) is a permutation among quadratic residues, when \(P, Q \equiv 3 \pmod{4} \)
- **Fact**: Can invert \(f_{\text{Rabin}}(.; N) \) given factorization of \(N \)

RSA function: \(f_{\text{RSA}}(x; N,e) = x^e \mod N \) where \(N=PQ \), \(P, Q \) \(k \)-bit primes, \(e \) s.t. \(\gcd(e, \phi(N)) = 1 \) (and \(x \) uniform from \{0...N\})

- **Fact**: \(f_{\text{RSA}}(.; N,e) \) is a permutation
- **Fact**: While picking \((N,e)\), can also pick \(d \) s.t. \(x^{ed} = x \)
Candidate TOWPs

From some (candidate) OWP collections, with index as public-key

Recall candidate OWF collections

Rabin OWF: \(f_{\text{Rabin}}(x; N) = x^2 \mod N \), where \(N = PQ \), and \(P, Q \) are \(k \)-bit primes (and \(x \) uniform from \(\{0...N\} \))

Fact: \(f_{\text{Rabin}}(.; N) \) is a permutation among quadratic residues, when \(P, Q \equiv 3 \pmod 4 \)

Fact: Can invert \(f_{\text{Rabin}}(.; N) \) given factorization of \(N \)

RSA function: \(f_{\text{RSA}}(x; N,e) = x^e \mod N \) where \(N=PQ \), \(P,Q \) \(k \)-bit primes, \(e \) s.t. \(\gcd(e, \phi(N)) = 1 \) (and \(x \) uniform from \(\{0...N\} \))

Fact: \(f_{\text{RSA}}(.; N,e) \) is a permutation

Fact: While picking \((N,e) \), can also pick \(d \) s.t. \(x^{ed} = x \)
Recap
Recap

CPA-secure PKE
Recap

- CPA-secure PKE
- DH Key-exchange, El Gamal and DDH assumption
Recap

- CPA-secure PKE
- DH Key-exchange, El Gamal and DDH assumption
- Trapdoor PRG
Recap

CPA-secure PKE
DH Key-exchange, El Gamal and DDH assumption
Trapdoor PRG
Abstracts what DDH gives for El Gamal
Recap

- CPA-secure PKE
- DH Key-exchange, El Gamal and DDH assumption
- Trapdoor PRG
 - Abstracts what DDH gives for El Gamal
 - With a secret-key, trapdoor information can also yield the pseudorandom string
Recap

- CPA-secure PKE
- DH Key-exchange, El Gamal and DDH assumption
- Trapdoor PRG
 - Abstracts what DDH gives for El Gamal
 - With a secret-key, trapdoor information can also yield the pseudorandom string
 - Can be used to get IND-CPA secure PKE scheme
Recap

- CPA-secure PKE
- DH Key-exchange, El Gamal and DDH assumption
- Trapdoor PRG
 - Abstracts what DDH gives for El Gamal
 - With a secret-key, trapdoor information can also yield the pseudorandom string
 - Can be used to get IND-CPA secure PKE scheme
- Trapdoor OWP
Recap

- CPA-secure PKE
- DH Key-exchange, El Gamal and DDH assumption
- Trapdoor PRG
 - Abstracts what DDH gives for El Gamal
 - With a secret-key, trapdoor information can also yield the pseudorandom string
 - Can be used to get IND-CPA secure PKE scheme
- Trapdoor OWP
 - With a secret-key, invert the OWP
Recap

- CPA-secure PKE
- DH Key-exchange, El Gamal and DDH assumption
- Trapdoor PRG
 - Abstracts what DDH gives for El Gamal
 - With a secret-key, trapdoor information can also yield the pseudorandom string
 - Can be used to get IND-CPA secure PKE scheme
- Trapdoor OWP
 - With a secret-key, invert the OWP
 - Can be used to construct Trapdoor PRG
Recap

- CPA-secure PKE
- DH Key-exchange, El Gamal and DDH assumption
- Trapdoor PRG
 - Abstracts what DDH gives for El Gamal
 - With a secret-key, trapdoor information can also yield the pseudorandom string
 - Can be used to get IND-CPA secure PKE scheme
- Trapdoor OWP
 - With a secret-key, invert the OWP
 - Can be used to construct Trapdoor PRG
- Next: CCA secure PKE
CCA Secure PKE

In SKE, to get CCA security, we used a MAC
CCA Secure PKE

In SKE, to get CCA security, we used a MAC.

Bob would accept only messages from Alice.
CCA Secure PKE

In SKE, to get CCA security, we used a MAC

Bob would accept only messages from Alice

But in PKE, Bob wants to receive messages from Eve as well
CCA Secure PKE

- In SKE, to get CCA security, we used a MAC
 - Bob would accept only messages from Alice
- But in PKE, Bob wants to receive messages from Eve as well
 - Only if it is indeed Eve’s own message: she should know her own message!
Chosen Ciphertext Attack
Chosen Ciphertext Attack

Suppose Enc SIM-CPA secure
Chosen Ciphertext Attack

Suppose Enc SIM-CPA secure

A subtle e-mail attack
Chosen Ciphertext Attack

Suppose Enc SIM-CPA secure

A subtle e-mail attack
Chosen Ciphertext Attack

Suppose Enc SIM-CPA secure

A subtle e-mail attack

I look around for your eyes shining
I seek you in everything...
Chosen Ciphertext Attack

Suppose Enc SIM-CPA secure

Alice → Bob: Enc(m)

A subtle e-mail attack
Chosen Ciphertext Attack

Suppose Enc SIM-CPA secure

Alice \rightarrow Bob: $\text{Enc}(m)$
Chosen Ciphertext Attack

Suppose Enc SIM-CPA secure

Alice → Bob: Enc(m)

A subtle e-mail attack
Chosen Ciphertext Attack

Suppose Enc SIM-CPA secure

Alice → Bob: Enc(m)
Eve: Hack(Enc(m)) = Enc(m*)

I look around for your eyes shining
I seek you in everything...
Chosen Ciphertext Attack

Suppose Enc SIM-CPA secure

Alice \rightarrow Bob: $\text{Enc}(m)$
Eve: $\text{Hack}(\text{Enc}(m)) = \text{Enc}(m^*)$
(where m^* = Reverse of m)
Chosen Ciphertext Attack

Suppose Enc SIM-CPA secure

Suppose encrypts a character at a time (still secure)

Alice \rightarrow Bob: Enc(m)
Eve: Hack(Enc(m)) = Enc(m*)
(where m* = Reverse of m)
Chosen Ciphertext Attack

Suppose Enc SIM-CPA secure

Suppose encrypts a character at a time (still secure)

Alice → Bob: Enc(m)
Eve: Hack(Enc(m)) = Enc(m*)
 (where m* = Reverse of m)
Eve → Bob: Enc(m*)
Chosen Ciphertext Attack

Suppose Enc SIM-CPA secure

Suppose encrypts a character at a time (still secure)

Alice \rightarrow Bob: $\text{Enc}(m)$
Eve: $\text{Hack(Enc}(m)) = \text{Enc}(m^*)$
 (where $m^* =$ Reverse of m)
Eve \rightarrow Bob: $\text{Enc}(m^*)$

A subtle e-mail attack

I look around for your eyes shining
I seek you in everything...
Chosen Ciphertext Attack

Suppose Enc SIM-CPA secure

Suppose encrypts a character at a time (still secure)

Alice → Bob: Enc(m)
Eve: Hack(Enc(m)) = Enc(m*)
(where m* = Reverse of m)
Eve → Bob: Enc(m*)
Bob → Eve: “what’s this: m*?”

Hey Eve,

What’s this that you sent me?
> ...gnihtyreve ni
> uoy kees I
> gnnihis seye ruoy rof
> dnuora kool I

I look around
for your eyes shining
I seek you
in everything...
Chosen Ciphertext Attack

Suppose Enc SIM-CPA secure

Suppose encrypts a character at a time (still secure)

Alice → Bob: Enc(m)
Eve: Hack(Enc(m)) = Enc(m*)
(\text{where } m* = \text{Reverse of } m)
Eve → Bob: Enc(m*)
Bob → Eve: “what’s this: m*?”
Eve: Reverse m* to find m!

Hey Eve,

What’s this that you sent me?

> …gnihtyreve ni
> uoy kees l
> gninihs seye ruoy rof
> dnuora kool l
Malleability
Malleability

Malleability: Eve can “malleate” a ciphertext (without having to decrypt it) to produce a new ciphertext that would decrypt to a “related” message.
Malleability: Eve can “malleate” a ciphertext (without having to decrypt it) to produce a new ciphertext that would decrypt to a “related” message

E.g.: Malleability of El Gamal
Malleability

Malleability: Eve can “malleate” a ciphertext (without having to decrypt it) to produce a new ciphertext that would decrypt to a “related” message

E.g.: Malleability of El Gamal

Recall: $\text{Enc}_{(G,g,Y)}(m) = (g^x,M.Y^x)$
Malleability

Malleability: Eve can “malleate” a ciphertext (without having to decrypt it) to produce a new ciphertext that would decrypt to a “related” message.

E.g.: Malleability of El Gamal

Recall: \(\text{Enc}_{(G,g,Y)}(m) = (g^x,M.Y^x)\)

Given \((X,C)\) change it to \((X,TC)\): will decrypt to TM.
Malleability

Malleability: Eve can “malleate” a ciphertext (without having to decrypt it) to produce a new ciphertext that would decrypt to a “related” message.

E.g.: Malleability of El Gamal

Recall: $\text{Enc}_{(G, g, Y)}(m) = (g^x, M.Y^x)$

Given (X, C) change it to (X, TC): will decrypt to TM

Or change (X, C) to (X^a, C^a): will decrypt to M^a
Malleability

Malleability: Eve can “malleate” a ciphertext (without having to decrypt it) to produce a new ciphertext that would decrypt to a “related” message.

E.g.: Malleability of El Gamal

Recall: $\text{Enc}_{(G,g,Y)}(m) = (g^x, M.Y^x)$

Given (X,C) change it to (X,TC): will decrypt to TM

Or change (X,C) to (X^a,C^a): will decrypt to M^a

If chosen-ciphertext attack possible
Malleability

Malleability: Eve can “malleate” a ciphertext (without having to decrypt it) to produce a new ciphertext that would decrypt to a “related” message

E.g.: Malleability of El Gamal

Recall: \(\text{Enc}_{(G,g,Y)}(m) = (g^x, M.Y^x) \)

Given \((X,C)\) change it to \((X,TC)\): will decrypt to TM

Or change \((X,C)\) to \((X^a, C^a)\): will decrypt to \(M^a\)

If chosen-ciphertext attack possible

i.e., Eve can get a ciphertext of her choice decrypted
Malleability

Malleability: Eve can “malleate” a ciphertext (without having to decrypt it) to produce a new ciphertext that would decrypt to a “related” message

E.g.: Malleability of El Gamal

Recall: $\text{Enc}_{(G,g,Y)}(m) = (g^x, M.Y^x)$

Given (X,C) change it to (X,TC): will decrypt to TM

Or change (X,C) to (X^a,C^a): will decrypt to M^a

If chosen-ciphertext attack possible

i.e., Eve can get a ciphertext of her choice decrypted

Then Eve can exploit malleability to learn something “related to” Alice’s messages
Malleability

Malleability: Eve can “malleate” a ciphertext (without having to decrypt it) to produce a new ciphertext that would decrypt to a “related” message

E.g.: Malleability of El Gamal

Recall: \(\text{Enc}_{(G, g, Y)}(m) = (g^x, M.Y^x)\)

Given \((X, C)\) change it to \((X, TC)\): will decrypt to \(TM\)

Or change \((X, C)\) to \((X^a, C^a)\): will decrypt to \(M^a\)

If chosen-ciphertext attack possible

i.e., Eve can get a ciphertext of her choice decrypted

Then Eve can exploit malleability to learn something “related to” Alice’s messages

More subtly, the 1 bit - valid or invalid - may leak information on message or SK
Hey Eve,

What's this that you sent me?

I look around for your eyes shining
I seek you in everything...

...gnihtyreve ni uoy kees I gninihs seye ruoy rof dnuora kool I

Chosen Ciphertext Attack
SIM-CCA: does capture this attack
Hey Eve,

What’s this that you sent me?

...gnihtyreve ni uoy kees I gninihs seye ruoy rof dnuora kool I

I look around for your eyes shining I seek you in everything...
Hey Eve,

What's this that you sent me?

I look around for your eyes shining
I seek you in everything...

Chosen Ciphertext Attack

SIM-CCA: does capture this attack
Hey Eve,

What's this that you sent me?

...gnihtyreve ni uoy kees I gninihs seye ruoy rof dnuora kool I

I look around for your eyes shining I seek you in everything...

I look around for your eyes shining I seek you in everything...
Chosen Ciphertext Attack

SIM-CCA: does capture this attack

Hey Eve,

What's this that you sent me?

...gnihtyreve ni uoy kees I gninihs seye ruoy rof dnuora kool I

I look around for your eyes shining I seek you in everything...
Hey Eve,

What's this that you sent me?

...gnihtyreve ni uoy kees I gninihs seye ruoy rof dnuora kool I

I look around for your eyes shining I seek you in everything...

Chosen Ciphertext Attack

SIM-CCA: does capture this attack
Hey Eve,

What's this that you sent me?

I look around for your eyes shining
I seek you in everything...

...gnihtyreve ni uoy kees I
gninihs seye ruoy rof
dnuora kool I

Chosen Ciphertext Attack
SIM-CCA: does capture this attack
Hey Eve,

What's this that you sent me?

I look around for your eyes shining
I seek you in everything...

Chosen Ciphertext Attack

SIM-CCA: does capture this attack

...gnihtyreve ni uoy kees I
gninihs seye ruoy rof
 dnuora kool I

Hey Eve,

What's this that you sent me?
SIM-CCA Security (PKE)

Secure (and correct) if:
\[\forall \exists \text{s.t. } \forall \text{ output of is distributed identically in REAL and IDEAL} \]
SIM-CCA Security and Malleability
SIM-CCA Security and Malleability

If an adversary can cause Bob to output a message
SIM-CCA Security and Malleability

If \(\hat{\mathcal{A}} \) can cause Bob to output a message, then \(\hat{\mathcal{A}} \) can send such a message to Bob by itself.
SIM-CCA Security and Malleability

If \(\mathcal{A} \) can cause Bob to output a message, then \(\mathcal{A} \) can send such a message to Bob by itself.

Hence message not a result of malleating.
Constructing CCA Secure PKEs
Constructing CCA Secure PKEs

Possible from generic assumptions
Constructing CCA Secure PKEs

Possible from generic assumptions

e.g. Enhanced T-OWP, Lossy T-OWF, Correlation-secure T-OWF, Adaptive T-OWF/relation, ...
Constructing CCA Secure PKEs

Possible from generic assumptions

- e.g. Enhanced T-OWP, Lossy T-OWF, Correlation-secure T-OWF, Adaptive T-OWF/relation, ...

- e.g. Using a CPA secure PKE to create two ciphertexts and a "Non-Interactive Zero Knowledge proof" of consistency
Constructing CCA Secure PKEs

Possible from generic assumptions

- e.g. Enhanced T-OWP, Lossy T-OWF, Correlation-secure T-OWF, Adaptive T-OWF/relation, ...
- e.g. Using a CPA secure PKE to create two ciphertexts and a "Non-Interactive Zero Knowledge proof" of consistency
- e.g. Include a "NIZK proof of knowledge" of the plaintext
Constructing CCA Secure PKEs

- Possible from generic assumptions
 - e.g. Enhanced T-OWP, Lossy T-OWF, Correlation-secure T-OWF, Adaptive T-OWF/relation, ...
 - e.g. Using a CPA secure PKE to create two ciphertexts and a "Non-Interactive Zero Knowledge proof" of consistency
 - e.g. Include a "NIZK proof of knowledge" of the plaintext

- Much more efficient from specific number theoretic/algebraic assumptions
Constructing CCA Secure PKEs

Possible from generic assumptions

e.g. Enhanced T-OWP, Lossy T-OWF, Correlation-secure T-OWF, Adaptive T-OWF/relation, ...

e.g. Using a CPA secure PKE to create two ciphertexts and a "Non-Interactive Zero Knowledge proof" of consistency

e.g. Include a "NIZK proof of knowledge" of the plaintext

Much more efficient from specific number theoretic/algebraic assumptions

Even more efficient in the "Random Oracle Model"
Constructing CCA Secure PKEs

Possible from *generic assumptions*

- e.g. Enhanced T-OWP, Lossy T-OWF, Correlation-secure T-OWF, Adaptive T-OWF/relation, ...

- e.g. Using a CPA secure PKE to create two ciphertexts and a "Non-Interactive Zero Knowledge proof" of consistency

- e.g. Include a "NIZK proof of knowledge" of the plaintext

Much more efficient from specific *number theoretic/algebraic assumptions*

Even more efficient in the "Random Oracle Model"

Significant efficiency gain using "Hybrid Encryption"
Hybrid Encryption
Hybrid Encryption

PKE is far less efficient compared to SKE (CCA- or CPA-secure)
Hybrid Encryption

- PKE is far less efficient compared to SKE (CCA- or CPA-secure)
- SKE using Block Ciphers (e.g. AES) and MAC is very fast
Hybrid Encryption

- PKE is far less efficient compared to SKE (CCA- or CPA-secure)
- SKE using Block Ciphers (e.g. AES) and MAC is very fast
- El Gamal uses exponentiations (CCA-secure versions even more)
Hybrid Encryption

- PKE is far less efficient compared to SKE (CCA- or CPA-secure)
- SKE using Block Ciphers (e.g. AES) and MAC is very fast
- El Gamal uses exponentiations (CCA-secure versions even more)

Hybrid encryption: Use (CCA secure) PKE to transfer a key (or key generation material) for the (CCA secure) SKE. Use SKE with this key for sending data
Hybrid Encryption

- PKE is far less efficient compared to SKE (CCA- or CPA-secure)
 - SKE using Block Ciphers (e.g. AES) and MAC is very fast
 - El Gamal uses exponentiations (CCA-secure versions even more)

Hybrid encryption: Use (CCA secure) PKE to transfer a key (or key generation material) for the (CCA secure) SKE. Use SKE with this key for sending data

- Hopefully the combination remains CCA secure
Hybrid Encryption

- PKE is far less efficient compared to SKE (CCA- or CPA-secure)
- SKE using Block Ciphers (e.g. AES) and MAC is very fast
- El Gamal uses exponentiations (CCA-secure versions even more)

Hybrid encryption: Use (CCA secure) PKE to transfer a key (or key generation material) for the (CCA secure) SKE. Use SKE with this key for sending data

- Hopefully the combination remains CCA secure
- PKE used to encrypt only a (short) key for the SKE
Hybrid Encryption

- PKE is far less efficient compared to SKE (CCA- or CPA-secure)
- SKE using Block Ciphers (e.g. AES) and MAC is very fast
- El Gamal uses exponentiations (CCA-secure versions even more)

Hybrid encryption: Use (CCA secure) PKE to transfer a key (or key generation material) for the (CCA secure) SKE. Use SKE with this key for sending data

- Hopefully the combination remains CCA secure
- PKE used to encrypt only a (short) key for the SKE
 - Relatively low overhead on top of the (fast) SKE encryption
Hybrid Encryption
Hybrid Encryption

Hybrid Encryption: KEM/DEM paradigm
Hybrid Encryption

Hybrid Encryption: KEM/DEM paradigm

Key Encapsulation Method: a public-key scheme to transfer a key
Hybrid Encryption

- Hybrid Encryption: KEM/DEM paradigm
- Key Encapsulation Method: a public-key scheme to transfer a key

Or to generate a key
Hybrid Encryption

- **Hybrid Encryption: KEM/DEM paradigm**
 - **Key Encapsulation Method**: a public-key scheme to transfer a key
 - **Data Encapsulation Method**: a shared-key scheme (using the key transferred using KEM)

Or to generate a key
Hybrid Encryption

Hybrid Encryption: KEM/DEM paradigm

- Key Encapsulation Method: a public-key scheme to transfer a key
- Data Encapsulation Method: a shared-key scheme (using the key transferred using KEM)

For what KEM/DEM is a hybrid encryption scheme CCA secure?
Hybrid Encryption

Hybrid Encryption: KEM/DEM paradigm

Key Encapsulation Method: a public-key scheme to transfer a key

Data Encapsulation Method: a shared-key scheme (using the key transferred using KEM)

For what KEM/DEM is a hybrid encryption scheme CCA secure?

Works if KEM is a SIM-CCA secure PKE scheme and DEM is a SIM-CCA secure SKE scheme
Hybrid Encryption

Hybrid Encryption: KEM/DEM paradigm

- **Key Encapsulation Method**: a public-key scheme to transfer a key
- **Data Encapsulation Method**: a shared-key scheme (using the key transferred using KEM)

For what KEM/DEM is a hybrid encryption scheme CCA secure?

- Works if KEM is a **SIM-CCA** secure PKE scheme and DEM is a **SIM-CCA** secure SKE scheme

 Easy to prove using “composition” properties of the SIM definition
Hybrid Encryption

Hybrid Encryption: KEM/DEM paradigm

Key Encapsulation Method: a public-key scheme to transfer a key

Data Encapsulation Method: a shared-key scheme (using the key transferred using KEM)

For what KEM/DEM is a hybrid encryption scheme CCA secure?

Works if KEM is a SIM-CCA secure PKE scheme and DEM is a SIM-CCA secure SKE scheme

Easy to prove using “composition” properties of the SIM definition

Less security sufficient: KEM used to transfer a random key; DEM uses a new key every time.
Today
Today

CPA secure PKE: Constructions
Today

- CPA secure PKE: Constructions
- El Gamal Encryption
Today

- CPA secure PKE: Constructions
- El Gamal Encryption
- TPRG and TOWP
Today

- CPA secure PKE: Constructions
- El Gamal Encryption
- TPRG and TOWP
- CCA secure PKE
Today

- CPA secure PKE: Constructions
- El Gamal Encryption
- TPRG and TOWP
- CCA secure PKE
- Motivating problem: Malleability
Today

- CPA secure PKE: Constructions
- El Gamal Encryption
- TPRG and TOWP
- CCA secure PKE
- Motivating problem: Malleability
- Hybrid Encryption: KEM/DEM
Today

- CPA secure PKE: Constructions
 - El Gamal Encryption
 - TPRG and TOWP
- CCA secure PKE
 - Motivating problem: Malleability
 - Hybrid Encryption: KEM/DEM
 - Given a basic (CCA secure) PKE, improves efficiency by combining with (CCA secure) SKE
Today

- CPA secure PKE: Constructions
 - El Gamal Encryption
 - TPRG and TOWP
- CCA secure PKE
 - Motivating problem: Malleability
 - Hybrid Encryption: KEM/DEM
 - Given a basic (CCA secure) PKE, improves efficiency by combining with (CCA secure) SKE
- Next: Constructions for CCA secure PKE