Public-Key Cryptography

Public-Key Cryptography
Public-%lf::/u;c:ypﬁon

Public-Key Cryptography

Public-Key Encryption
Diffie-Hellman Key-Exchange, E| Gamal Encryption

PKE scheme

@ SKE:
@ Syntax

@ KeyGen outputs
K< &

@ Enc: xK—C

@ Enc: CxHK— M

@ Correctness

@ VK € Range(KeyGen),
Dec(Enc(m,K), K) = m

@ Security (IND-CPA)

-

\

Shared/Symmetric-Key
Encryption
(a.k.a. private-key
encryption)

~

V
@ SKE:
@ Syntax

PKE scheme

@ KeyGen outputs

K< &

@ Enc: xK—C

@ Enc: CxHK— M

@ Correctness

@ VK € Range(KeyGen),
Dec(Enc(m,K), K) = m

@ Security (IND-CPA)

-

\

Shared/Symmetric-Key
Encryption
(a.k.a. private-key
encryption)

~

V
@ SKE:
@ Syntax

PKE scheme

o PKE

@ KeyGen outputs

K< &

@ Enc: xK—C

@ Enc: CxHK— M

@ Correctness

@ VK € Range(KeyGen),
Dec(Enc(m,K), K) = m

@ Security (IND-CPA)

-

\.

Shared/Symmetric-Key
Encryption
(a.k.a. private-key
encryption)

~

V
@ SKE:
@ Syntax

PKE scheme

& PKE <(a.k.a. asymmetric-key encryption J

@ KeyGen outputs

K< &

@ Enc: MIxHK—C

@ Enc: CxXK— M

@ Correctness

@ VK € Range(KeyGen),
Dec(Enc(m,K), K) = m

@ Security (IND-CPA)

-

\.

Shared/Symmetric-Key
Encryption
(a.k.a. private-key
encryption)

~

V
@ SKE:
@ Syntax

PKE scheme

o PKE <(a.k.a. asymmetric-key encryption J

@ Syntax

@ KeyGen outputs

K< &

@ Enc: MIxHK—C

@ Enc: CxXK— M

@ Correctness

@ VK € Range(KeyGen),
Dec(Enc(m,K), K) = m

@ Security (IND-CPA)

-

\.

Shared/Symmetric-Key
Encryption
(a.k.a. private-key
encryption)

~

V
@ SKE:
@ Syntax

@ KeyGen outputs

K< &

PKE scheme

o PKE <(a.k.a. asymmetric-key encryption J

@ Syntax

@ KeyGen outputs
(PK,SK) < Pxx %

@ Enc: MIxHK—C

@ Enc: CxXK— M

@ Correctness

@ VK € Range(KeyGen),
Dec(Enc(m,K), K) = m

@ Security (IND-CPA)

-

\.

Shared/Symmetric-Key
Encryption
(a.k.a. private-key
encryption)

~

V
@ SKE:
@ Syntax

PKE

@ KeyGen outputs

K< &

@ Enc: MIxHK—C

@ Enc: CxXK— M

@ Correctness

@ VK € Range(KeyGen),
Dec(Enc(m,K), K) = m

@ Security (IND-CPA)

scheme

o PKE <(a.k.a. asymmetric-key encryption J

@ Syntax

@ KeyGen outputs
(PK,SK) < Pxx %

@ Enc: M xPK—C

-

\.

Shared/Symmetric-Key
Encryption
(a.k.a. private-key
encryption)

~

V
@ SKE:
@ Syntax

PKE

@ KeyGen outputs

K< &

@ Enc: MIxHK—C

@ Enc: CxXK— M

@ Correctness

@ VK € Range(KeyGen),
Dec(Enc(m,K), K) = m

@ Security (IND-CPA)

scheme

o PKE <(a.k.a. asymmetric-key encryption J

@ Syntax

@ KeyGen outputs
(PK,SK) < Pxx %

@ Enc: M xPK—C

@ Dec: CxSK— M

-

\.

Shared/Symmetric-Key
Encryption
(a.k.a. private-key
encryption)

~

V
@ SKE:
@ Syntax

@ KeyGen outputs

PKE scheme

o PKE <(a.k.a. asymmetric-key encryption J

@ Syntax

@ KeyGen outputs

K< % (PK,SK) < P xS%
@ Enc: xK—>C @ Enc: I xPHK—C
@ Enc: CXK—> P @ Dec: CxSK— 77

@ Correctness

@ Correctness

@ VK € Range(KeyGen),
Dec(Enc(m,K), K) = m

@ Security (IND-CPA)

-

\.

Shared/Symmetric-Key
Encryption
(a.k.a. private-key
encryption)

~

V
@ SKE:
@ Syntax

@ KeyGen outputs

PKE scheme

& PKE <(a.k.a. asymmetric-key encryption J

@ Syntax

@ KeyGen outputs

K< % (PK,SK) < P xS%
@ Enc: xK—>C @ Enc: I xPHK—C
@ Enc: CXK—> P @ Dec: CxSK— 77

@ Correctness

@ VK € Range(KeyGen),
Dec(Enc(m,K), K) = m

@ Correctness

@ V(PK,SK) € Range(KeyGen),
Dec(Enc(m,PK), SK) = m

@ Security (IND-CPA)

-

\.

Shared/Symmetric-Key
Encryption
(a.k.a. private-key
encryption)

~

V
@ SKE:
@ Syntax

@ KeyGen outputs

PKE scheme

& PKE <(a.k.a. asymmetric-key encryption J

@ Syntax

@ KeyGen outputs

K< % (PK,SK) < P xS%
@ Enc: xK—>C @ Enc: I xPHK—C
@ Enc: CXK—> P @ Dec: CxSK— 77

@ Correctness

@ VK € Range(KeyGen),
Dec(Enc(m,K), K) = m

@ Security (IND-CPA)

@ Correctness

@ V(PK,SK) € Range(KeyGen),
Dec(Enc(m,PK), SK) = m

@ Security (IND-CPA. PKE version)

SIM-CPA (PKE Version)

R T et
‘ V

: x e\ ﬂ
T-’ 3 x s.t. T

ou’rpu’r of @ is
distributed
indistinguishably in
REAL
IDEAL REAL and IDEAL

SIM-CPA (PKE Version)

PK

o dacke N -
AT A =8

‘ V
: x e\ ﬂ

T-’ 3 x s.t. T

ou’rpu’r of @ is
distributed
indistinguishably in
REAL
IDEAL REAL and IDEAL

IND-CPA (PKE version)

@ Experiment picks a random bit b. It also
runs KeyGen to get a key (PK,SK). Adv EP'K
given PK

@ Adv sends two messages mo, m; fo
the experiment

@ Expt returns Enc(my,K) to the ‘
adversary

@ Adversary returns a guess b’
o Experiment outputs 1 iff b’=b [b<{0,1} J

@ IND-CPA secure if for all PPT
adversaries Pr[b’=b] - 1/2 < v (k)

IND-CPA (PKE version)

@ Experiment picks a random bit b. It also
runs KeyGen to get a key (PK,SK). Adv /&<

given PK
PK
@ Adv sends two messages mo, m; fo

the experiment

@ Expt returns Enc(my,K) to the ‘
adversary

@ Adversary returns a guess b’
o Experiment outputs 1 iff b’=b [b<{0,1} J

@ IND-CPA secure if for all PPT
adversaries Pr[b’=b] - 1/2 < v (k)

IND-CPA (PKE version)

@ Experiment picks a random bit b. It also
runs KeyGen to get a key (PK,SK). Adv /&<

given PK
PK
@ Adv sends two messages mo, m; fo

the experiment

@ Expt returns Enc(my,K) to the ‘
adversary

Mo, My
@ Adversary returns a guess b’ l
o Experiment outputs 1 iff b’=b [b<{0,1} J

@ IND-CPA secure if for all PPT
adversaries Pr[b’=b] - 1/2 < v (k)

IND-CPA (PKE version)

@ Experiment picks a random bit b. It also
runs KeyGen to get a key (PK,SK). Adv /&<

given PK
PK
@ Adv sends two messages mo, m; fo

the experiment Mb

@ Expt returns Enc(my,K) to the ‘
adversary

Mo, My
@ Adversary returns a guess b’ l
o Experiment outputs 1 iff b’=b [b<{0,1} J

@ IND-CPA secure if for all PPT
adversaries Pr[b’=b] - 1/2 < v (k)

IND-CPA (PKE version)

@ Experiment picks a random bit b. It also
runs KeyGen to get a key (PK,SK). Adv x ------

given PK s
PK 'EEnc(mb,PK)

@ Adv sends two messages mo, m; fo

the experiment Mb o
@ Expt returns Enc(my,K) to the ‘
adversary it
@ Adversary returns a guess b’ l
o Experiment outputs 1 iff b'=b [b<{0,1} J
@ IND-CPA secure if for all PPT

adversaries Pr[b’=b] - 1/2 < v (k)

IND-CPA (PKE version)

@ Experiment picks a random bit b. It also
runs KeyGen to get a key (PK,SK). Adv /%,

given PK s
PK 'EEnc(mb,PK)

@ Adv sends two messages mo, m; fo

the experiment Mb o
@ Expt returns Enc(my,K) to the ‘
adversary it
@ Adversary returns a guess b’ lb'
o Experiment outputs 1 iff b'=b [b<{0,1} J
o IND-CPA secure if for all PPT =i

adversaries Pr[b’=b] - 1/2 < v (K) lyes/No

IND-CPA (PKE version)

Note: no multiple accesses. J

For PKE, it doesnt change the

@ Experiment picks a random bit b. It also security definition

runs KeyGen to get a key (PK,SK). Adv /z<
given PK

@ Adv sends two messages mo, m; fo
the experiment Mb

@ Expt returns Enc(my,K) to the
adversary

@ Adversary returns a guess b’
o Experiment outputs 1 iff b’=b [b<{0,1} J

o IND-CPA secure if for all PPT _ b'=b?
adversaries Pr[b’=b] - 1/2 < v (K) lyes/No

Perfect Secrecy?

@ No perfectly secret and correct PKE (even for one-time encryption)

Perfect Secrecy?

@ No perfectly secret and correct PKE (even for one-time encryption)

@ Public-key and ciphertext (the total shared information between
Alice and Bob at the end) should together have entire
information about the message

Perfect Secrecy?

@ No perfectly secret and correct PKE (even for one-time encryption)

@ Public-key and ciphertext (the total shared information between
Alice and Bob at the end) should together have entire
information about the message

@ Intuition: If Eve thinks Bob could decrypt it as two messages
based on different SKs, Alice should be concerned too

Perfect Secrecy?

@ No perfectly secret and correct PKE (even for one-time encryption)

@ Public-key and ciphertext (the total shared information between
Alice and Bob at the end) should together have entire
information about the message

@ Intuition: If Eve thinks Bob could decrypt it as two messages
based on different SKs, Alice should be concerned too

@ i.e., Alice conveys same information to Bob and Eve

Perfect Secrecy?

@ No perfectly secret and correct PKE (even for one-time encryption)

@ Public-key and ciphertext (the total shared information between
Alice and Bob at the end) should together have entire
information about the message

@ Intuition: If Eve thinks Bob could decrypt it as two messages
based on different SKs, Alice should be concerned too

@ i.e., Alice conveys same information to Bob and Eve

@ [Exercise]

Perfect Secrecy?

@ No perfectly secret and correct PKE (even for one-time encryption)

@ Public-key and ciphertext (the total shared information between
Alice and Bob at the end) should together have entire
information about the message

@ Intuition: If Eve thinks Bob could decrypt it as two messages
based on different SKs, Alice should be concerned too

@ i.e., Alice conveys same information to Bob and Eve
@ [Exercise]

@ PKE only with computational security

Perfect Secrecy?

@ No perfectly secret and correct PKE (even for one-time encryption)

@ Public-key and ciphertext (the total shared information between
Alice and Bob at the end) should together have entire
information about the message

@ Intuition: If Eve thinks Bob could decrypt it as two messages
based on different SKs, Alice should be concerned too

@ i.e., Alice conveys same information to Bob and Eve
@ [Exercise]

@ PKE only with computational security

Diffie-Hellman
Key-exchange

Diffie-Hellman
Key-exchange

@ A candidate for how Alice and Bob could generate a
shared key, which is "hidden” from Eve

Diffie-Hellman
Key-exchange

@ A candidate for how Alice and Bob could generate a
shared key, which is "hidden” from Eve

Diffie-Hellman
Key-exchange

@ A candidate for how Alice and Bob could generate a
shared key, which is "hidden” from Eve

Random x

Diffie-Hellman
Key-exchange

@ A candidate for how Alice and Bob could generate a
shared key, which is "hidden” from Eve

Random x
X=g*

Diffie-Hellman
Key-exchange

@ A candidate for how Alice and Bob could generate a
shared key, which is "hidden” from Eve

Random x
X:gx X

>

Diffie-Hellman
Key-exchange

@ A candidate for how Alice and Bob could generate a
shared key, which is "hidden” from Eve

Random x
ngx X >
W Random y &

Diffie-Hellman
Key-exchange

@ A candidate for how Alice and Bob could generate a
shared key, which is "hidden” from Eve

Random x
ngx X >

W Random y &
Y=g’

Diffie-Hellman
Key-exchange

@ A candidate for how Alice and Bob could generate a
shared key, which is "hidden” from Eve

Random x
X=g" >
W Random y &
Y Y=g

A

Diffie-Hellman
Key-exchange

@ A candidate for how Alice and Bob could generate a
shared key, which is "hidden” from Eve

Random x
X=g" >
W Random y &
Y Y=g

Output Y*

Diffie-Hellman
Key-exchange

@ A candidate for how Alice and Bob could generate a
shared key, which is "hidden” from Eve

Random x
X=g" >
W Random y &
Y Y=g

Output Y* Output XY

Diffie-Hellman
Key-exchange

@ A candidate for how Alice and Bob could generate a
shared key, which is "hidden” from Eve

Random x
X=g" >
W Random y &
Y Y=g

Output Y* Output XY

9o g% g’
A

Diffie-Hellman
Key-exchange

@ A candidate for how Alice and Bob could generate a
shared key, which is "hidden” from Eve

Random x
X=g* >
W Random y &
< : Y=g’
Output Y* Output XY
®o g*, g’

‘ g ??

Why DH-Key-exchange
could be secure

Why DH-Key-exchange
could be secure

o Given g%, g’ for random X, y, g*¥ should be “hidden”

Why DH-Key-exchange
could be secure

o Given g%, g’ for random X, y, g*¥ should be “hidden”

@ i.e., could sftill be used as a pseudorandom element

Why DH-Key-exchange
could be secure

o Given g%, g’ for random X, y, g*¥ should be “hidden”

@ i.e., could sftill be used as a pseudorandom element

o i.e., (g%, g, g¥) = (g%, g’. R)

Why DH-Key-exchange
could be secure

o Given g%, g’ for random X, y, g*¥ should be “hidden”
@ i.e., could sftill be used as a pseudorandom element
o i.e., (g%, g, g¥) = (g%, g’. R)

@ Is that reasonable to expect?

Why DH-Key-exchange
could be secure

o Given g%, g’ for random X, y, g*¥ should be “hidden”
@ i.e., could sftill be used as a pseudorandom element
o i.e., (g%, g, g¥) = (g%, g’. R)

@ Is that reasonable to expect?

o Depends on the “group”

Groups, by examples

Groups, by examples

o A set G (for us finite, unless otherwise specified) and a “group
operation” * that is associative, has an identity, is invertible, and

(for us) commutative

Groups, by examples

o A set G (for us finite, unless otherwise specified) and a “group
operation” * that is associative, has an identity, is invertible, and

(for us) commutative

o Examples: Z = (integers, +) (this is an infinite group),
AN = (integers modulo N, + mod N),
G" = (Cartesian product of a group G, coordinate-wise operation)

Groups, by examples

o A set G (for us finite, unless otherwise specified) and a “group
operation” * that is associative, has an identity, is invertible, and

(for us) commutative

o Examples: Z = (integers, +) (this is an infinite group),
AN = (integers modulo N, + mod N),
G" = (Cartesian product of a group G, coordinate-wise operation)

@ Order of a group G: |G| = number of elements in G

Groups, by examples

o A set G (for us finite, unless otherwise specified) and a “group
operation” * that is associative, has an identity, is invertible, and

(for us) commutative

o Examples: Z = (integers, +) (this is an infinite group),
AN = (integers modulo N, + mod N),
G" = (Cartesian product of a group G, coordinate-wise operation)

@ Order of a group G: |G| = number of elements in G

@ For any aeG, a'l = a*a*..%a (|G| times) = identity

Groups, by examples

o A set G (for us finite, unless otherwise specified) and a “group
operation” * that is associative, has an identity, is invertible, and

(for us) commutative

o Examples: Z = (integers, +) (this is an infinite group),
AN = (integers modulo N, + mod N),
G" = (Cartesian product of a group G, coordinate-wise operation)

@ Order of a group G: |G| = number of elements in G

@ For any aeG, a'l = a*a*..%a (|G| times) = identity

Groups, by examples

o A set G (for us finite, unless otherwise specified) and a “group
operation” * that is associative, has an identity, is invertible, and

(for us) commutative

o Examples: Z = (integers, +) (this is an infinite group),
AN = (integers modulo N, + mod N),
G" = (Cartesian product of a group G, coordinate-wise operation)

@ Order of a group G: |G| = number of elements in G

@ For any aeG, a'l = a*a*..%a (|G| times) = identity

@ Finite Cyclic group (in multiplicative notation): there
is one element g such that G = {¢°, ¢!, g% ... g'°'}

Groups, by examples

o A set G (for us finite, unless otherwise specified) and a “group
operation” * that is associative, has an identity, is invertible, and

(for us) commutative

o Examples: Z = (integers, +) (this is an infinite group),
AN = (integers modulo N, + mod N),
G" = (Cartesian product of a group G, coordinate-wise operation)

@ Order of a group G: |G| = number of elements in G

@ For any aeG, a'l = a*a*..%a (|G| times) = identity

@ Finite Cyclic group (in multiplicative notation): there
is one element g such that G = {¢°, ¢!, g% ... g'°'}

Groups, by examples

o A set G (for us finite, unless otherwise specified) and a “group
operation” * that is associative, has an identity, is invertible, and

(for us) commutative

o Examples: Z = (integers, +) (this is an infinite group),
AN = (integers modulo N, + mod N),
G" = (Cartesian product of a group G, coordinate-wise operation)

@ Order of a group G: |G| = number of elements in G

@ For any aeG, a'l = a*a*..%a (|G| times) = identity

@ Finite Cyclic group (in multiplicative notation): there
is one element g such that G = {¢°, ¢!, g% ... g'°'}

o Prototype: Zn (additive group), with g=1

Groups, by examples

o A set G (for us finite, unless otherwise specified) and a “group
operation” * that is associative, has an identity, is invertible, and

(for us) commutative

o Examples: Z = (integers, +) (this is an infinite group),
AN = (integers modulo N, + mod N),
G" = (Cartesian product of a group G, coordinate-wise operation)

@ Order of a group G: |G| = number of elements in G

@ For any aeG, a'l = a*a*..%a (|G| times) = identity

@ Finite Cyclic group (in multiplicative notation): there
is one element g such that G = {¢°, ¢!, g% ... g'°'}

o Prototype: Zn (additive group), with g=1
@ or any g s.t. gcd(g,N) =1

Groups, by examples

Groups, by examples

o AN = (generators of Zy, multiplication mod N)

Groups, by examples

o AN = (generators of Zy, multiplication mod N)

@ Numbers in {0,..,N-1} which have a multiplicative inverse mod N

Groups, by examples

o AN = (generators of Zy, multiplication mod N)

@ Numbers in {0,..,N-1} which have a multiplicative inverse mod N

o If N is prime, Zy" is a cyclic group, of order N-1

Groups, by examples

o AN = (generators of Zy, multiplication mod N)
@ Numbers in {0,..,N-1} which have a multiplicative inverse mod N
o If N is prime, Zy" is a cyclic group, of order N-1

o e.g. Zs ={1,2,3,4} is generated by 2 (as 1,2,4,3), and
by 3 (as 1,3,4,2)

Groups, by examples

o AN = (generators of Zy, multiplication mod N)
@ Numbers in {0,..,N-1} which have a multiplicative inverse mod N
o If N is prime, Zy" is a cyclic group, of order N-1

o e.g. Zs ={1,2,3,4} is generated by 2 (as 1,2,4,3), and
by 3 (as 1,3,4,2)

@ (Also cyclic for certain other values of N)

Discrete Log Assumption

Discrete Log Assumption

@ Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = g* (x € {0,1,...,1G|-1})

Discrete Log Assumption

@ Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = g* (x € {0,1,...,1G|-1})

@ In a (computationally efficient) group, given standard representation

of g and x, can efficiently find the standard representation of X=g*
(How?)

Discrete Log Assumption "

@ Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = g* (x € {0,1,...,1G|-1})

@ In a (computationally efficient) group, given standard representation

of g and x, can efficiently find the standard representation of X=g*
(How?)

Discrete Log Assumption "

@ Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = g* (x € {0,1,...,1G|-1})

@ In a (computationally efficient) group, given standard representation

of g and x, can efficiently find the standard representation of X=g*
(How?)

@ But given X and g, may not be easy to find x (depending on G)

Discrete Log Assumption "

@ Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = g* (x € {0,1,...,1G|-1})

@ In a (computationally efficient) group, given standard representation

of g and x, can efficiently find the standard representation of X=g*
(How?)

@ But given X and g, may not be easy to find x (depending on G)

® DLA: Every PPT Adv has negligible success probability in the
DL Expt: (G,g)<—GroupGen; X<G; Adv(G,g,X)—z; g*=X?

Discrete Log Assumption "

@ Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = g* (x € {0,1,...,1G|-1})

@ In a (computationally efficient) group, given standard representation

of g and x, can efficiently find the standard representation of X=g*
(How?)

@ But given X and g, may not be easy to find x (depending on G)

® DLA: Every PPT Adv has negligible success probability in the
DL Expt: (G,g)<—GroupGen; X<G; Adv(G,g,X)—z; gZ=XTOWF collec’rion}

Raise(x;G,g)
= (g*;G,9)

Discrete Log Assumption "

@ Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = g* (x € {0,1,...,1G|-1})

@ In a (computationally efficient) group, given standard representation

of g and x, can efficiently find the standard representation of X=g*
(How?)

@ But given X and g, may not be easy to find x (depending on G)

® DLA: Every PPT Adv has negligible success probability in the
DL Expt: (G,g)<—GroupGen; X<G; Adv(G,g,X)—z; gZ=XTOWF collec’rion}

Raise(x;G,g)

o If DLA broken, then Diffie-Hellman key-exchange broken| =(99)

Discrete Log Assumption "

@ Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = g* (x € {0,1,...,1G|-1})

@ In a (computationally efficient) group, given standard representation

of g and x, can efficiently find the standard representation of X=g*
(How?)

@ But given X and g, may not be easy to find x (depending on G)

® DLA: Every PPT Adv has negligible success probability in the
DL Expt: (G,g)<—GroupGen; X<G; Adv(G,g,X)—z; gZ=XTOWF collec’rion}

Raise(x;G,g)

o If DLA broken, then Diffie-Hellman key-exchange broken| =(99)

@ Eve gets x, y from g*, g’ (sometimes) and can compute g’ herself

Discrete Log Assumption "

@ Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = g* (x € {0,1,...,1G|-1})

@ In a (computationally efficient) group, given standard representation

of g and x, can efficiently find the standard representation of X=g*
(How?)

@ But given X and g, may not be easy to find x (depending on G)

® DLA: Every PPT Adv has negligible success probability in the
DL Expt: (G,g)<—GroupGen; X<G; Adv(G,g,X)—z; gZ=XTOWF collec’rion}

Raise(x;G,g)

o If DLA broken, then Diffie-Hellman key-exchange broken| =(99)

@ Eve gets x, y from g*, g’ (sometimes) and can compute g’ herself

@ A "key-recovery” attack

Discrete Log Assumption "

@ Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = g* (x € {0,1,...,1G|-1})

@ In a (computationally efficient) group, given standard representation

of g and x, can efficiently find the standard representation of X=g*
(How?)

@ But given X and g, may not be easy to find x (depending on G)

® DLA: Every PPT Adv has negligible success probability in the
DL Expt: (G,g)<—GroupGen; X<G; Adv(G,g,X)—z; gZ=XTOWF collec’rion}

Raise(x;G,g)

o If DLA broken, then Diffie-Hellman key-exchange broken| =(99)

@ Eve gets x, y from g*, g’ (sometimes) and can compute g’ herself

@ A "key-recovery” attack

@ Note: could break pseudorandomness without breaking DLA too

Decisional Diffie-Hellman
(DDH) Assumption

Decisional Diffie-Hellman
(DDH) Assumption

° {(gx, gy, gxy)}(G,g)eGroquen; x,y—[lGl] = {(gx, gy, gr)}(G,g)<—Groquen; x,y,r<—[IGl]

Decisional Diffie-Hellman
(DDH) Assumption

° {(gx, gy, gxy)}(G,g)eGroquen; x,y—[lGl] = {(gx, gy, gr)}(G,g)<—Groquen; x,y,r<—[IGl]

® At least as strong as DLA

Decisional Diffie-Hellman
(DDH) Assumption

° {(gx, gy, gxy)}(G,g)eGroquen; x,y—[lGl] = {(gx, gy, gr)}(G,g)<—Groquen; x,y,r<—[IGl]

® At least as strong as DLA
@ If DDH assumption holds, then DLA holds [Why?]

Decisional Diffie-Hellman
(DDH) Assumption

° {(gx, gy, gxy)}(G,g)eGroquen; x,y—[lGl] = {(gx, gy, gr)}(G,g)<—Groquen; x,y,r<—[IGl]

® At least as strong as DLA
@ If DDH assumption holds, then DLA holds [Why?]
@ But possible that DLA holds and DDH assumption doesnt

Decisional Diffie-Hellman
(DDH) Assumption

° {(gx, gy, gxy)}(G,g)eGroquen; x,y—[lGl] = {(gx, gy, gr)}(G,g)<—Groquen; x,y,r<—[IGl]

® At least as strong as DLA
@ If DDH assumption holds, then DLA holds [Why?]
@ But possible that DLA holds and DDH assumption doesnt

o e.g.: DLA is widely assumed to hold in Z, (p prime), but
DDH assumption doesnt hold there!

A Candidate DDH Group

8 7
9 5
6 2
4 3
10

A Candidate DDH Group

o Consider @QRp : subgroup of Quadratic Residues

(“even power” elements) of Zp"

A Candidate DDH Group

o Consider @QRp : subgroup of Quadratic Residues

(“even power” elements) of Zp"

A Candidate DDH Group

o Consider @QRp" : subgroup of Quadrahc Residues

(“even power” elements) of Z

@ Easy to check if an element is a QR or not:
check if raising to |G|/2 gives 1 (identity element)

A Candidate DDH Group

o Consider @QRp" : subgroup of Quadrahc Residues

(“even power” elements) of Z

@ Easy to check if an element is a QR or not:
check if raising to |G|/2 gives 1 (identity element)

o DDH does not hold in Zp" : g* is a QR w/ prob. 3/4;
g® is QR only w/ prob. 1/2.

A Candidate DDH Group

o Consider @QRp" : subgroup of Quadrahc Residues

(“even power” elements) of Z

@ Easy to check if an element is a QR or not:
check if raising to |G|/2 gives 1 (identity element)

o DDH does not hold in Zp" : g* is a QR w/ prob. 3/4;
g® is QR only w/ prob. 1/2.

o How about in QRp ?

A Candidate DDH Group

o Consider @QRp" : subgroup of Quadrahc Residues

(“even power” elements) of Z

@ Easy to check if an element is a QR or not:
check if raising to |G|/2 gives 1 (identity element)

o DDH does not hold in Zp" : g* is a QR w/ prob. 3/4;
g® is QR only w/ prob. 1/2.

o How about in QRp ?

%

@ Could check if cubic residue in Zp'!

A Candidate DDH Group

o Consider @QRp" : subgroup of Quadrahc Residues

(“even power” elements) of Z

@ Easy to check if an element is a QR or not:
check if raising to |G|/2 gives 1 (identity element)

o DDH does not hold in Zp" : g* is a QR w/ prob. 3/4;
g® is QR only w/ prob. 1/2.

o How about in QRp ?

%

@ Could check if cubic residue in Zp'!

o But if (P-1) is not divisible by 3, all elements in Z
are cubic residues!

A Candidate DDH Group

o Consider @QRp" : subgroup of Quadrahc Residues

(“even power” elements) of Z

@ Easy to check if an element is a QR or not:
check if raising to |G|/2 gives 1 (identity element)

o DDH does not hold in Zp" : g* is a QR w/ prob. 3/4;
g® is QR only w/ prob. 1/2.

o How about in QRp ?

%

@ Could check if cubic residue in Zp'!

o But if (P-1) is not divisible by 3, all elements in Z
are cubic residues!

o "Safe” if (P-1)/2 is also prime: P called a safe-prime

A Candidate DDH Group

o Consider @QRp" : subgroup of Quadrahc Residues

(“even power” elements) of Z

@ Easy to check if an element is a QR or not:
check if raising to |G|/2 gives 1 (identity element)

o DDH does not hold in Zp" : g¥¥ is a QR w/ prob 3/4;

g® is QR only w/ prob. 1/2. DDH TR

o How about in QRp™? QRo
where P is a safe-prime

%

@ Could check if cubic residue in Zp'!

o But if (P-1) is not divisible by 3, all elements in Z
are cubic residues!

o "Safe” if (P-1)/2 is also prime: P called a safe-prime

El Gamal Encryption

El Gamal Encryption

@ Based on DH key-exchange

El Gamal Encryption

@ Based on DH key-exchange

@ Alice, Bob generate a key
using DH key-exchange

El Gamal Encryption

Random vy
<€ Y:gy
® Based on DH key-exchange Random x
X
Alice, Bob te a k - ;
@ Alice, Bob generate a key - I

using DH key-exchange

El Gamal Encryption

Random vy

<€ Y:gy
® Based on DH key-exchange Random x
X

X:gx >

@ Alice, Bob generate a key
using DH key-exchange

K=YX K=XY

@ Then use it as a one-time pad

El Gamal Encryption

Random vy
< Y=g’
® Based on DH key-exchange Random x
W X=g" e <
@ Alice, Bob generate a key o K=XY
using DH key-exchange C=MK

@ Then use it as a one-time pad

El Gamal Encryption

@ Based on DH key-exchange

@ Alice, Bob generate a key
using DH key-exchange

@ Then use it as a one-time pad

Random vy

<€
Random x
X
X=g*
K=YX
C
C=MK

Y=g’

K=XY

El Gamal Encryption

@ Based on DH key-exchange

@ Alice, Bob generate a key
using DH key-exchange

@ Then use it as a one-time pad

Random vy

<€
Random x
X
X=g*
K=YX
C
C=MK

Y=g’

K=XY

M=CK-!

El Gamal Encryption

@ Based on DH key-exchange

@ Alice, Bob generate a key
using DH key-exchange

@ Then use it as a one-time pad

@ Bobs "message” in the key-
exchange is his PK

<

Random vy

Random x
X=g*

K=YX
C=MK

Y=g’

K=XY

M=CK-"!

El Gamal Encryption

@ Based on DH key-exchange

@ Alice, Bob generate a key
using DH key-exchange

@ Then use it as a one-time pad

@ Bobs "message” in the key-
exchange is his PK

o Alice’s message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

<

Random vy

Random x
X=g*

K=YX
C=MK

Y=g’

K=XY

M=CK-"!

El Gamal Encryption

Random vy
< Y=g’
® Based on DH key-exchange Random x
o X=g . >
@ Alice, Bob generate a key - 9
using DH key-exchange AT ¢ <
M=CK-!
@ Then use it as a one-time pad
@ Bobs "message” in the key- KeyGen: PK=(G,g,Y), SK=(G,g.y)

exchange is his PK

o Alice’s message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

El Gamal Encryption

Random vy
<€ Y:gy
® Based on DH key-exchange Random x
o X=g . >
@ Alice, Bob generate a key B v
using DH key-exchange AT ¢ <
M=CK-!
@ Then use it as a one-time pad
@ Bobs "message” in the key- KeyGen: PK=(G,g,Y), SK=(G,g.y)
exchange is his PK Enci,qy) (M) = (X=g*, C=MYX)

o Alice’s message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

El Gamal Encryption

Random vy
<€ Y:gy
® Based on DH key-exchange Random x
o X=g . >
@ Alice, Bob generate a key B v
using DH key-exchange AT ¢ <
M=CK-!
@ Then use it as a one-time pad
@ Bobs "message” in the key- KeyGen: PK=(G,g,Y), SK=(G,g.y)
exchange is his PK Enci,qy) (M) = (X=g*, C=MYX)

Dec X,C) = CXY
@ Alices message in the key- Gan(X,C)

exchange and the ciphertext of
the one-time pad together form
a single ciphertext

El Gamal Encryption

Random vy
<€ Y:gy
® Based on DH key-exchange Random x
o X=g . >
@ Alice, Bob generate a key B v
using DH key-exchange AT ¢ <
M=CK-!
@ Then use it as a one-time pad
@ Bobs "message” in the key- KeyGen: PK=(G,g,Y), SK=(G,g.y)
exchange is his PK Enci,qy) (M) = (X=g*, C=MYX)

Dec X,C) = CXY
@ Alices message in the key- Gan(X,C)

exchange and the ciphertext of @ KeyGen uses GroupGen to get (G,g)
the one-time pad together form
a single ciphertext

El Gamal Encryption

@ Based on DH key-exchange

@ Alice, Bob generate a key
using DH key-exchange

@ Then use it as a one-time pad

@ Bobs "message” in the key-
exchange is his PK

o Alice’s message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

Random vy
< Y=g’
Random x
X
X:gx >
K=YX K=X"
C
C=MK >

M=CK-!

KeyGen: PK=(G,q,Y), SK=(G,g,y)
Enc(G,g,Y)(M) = (X=gx, C=N\Yx)
Dec(G,gy)(X,C) = CX

® KeyGen uses GroupGen to get (G,g)
® X, y uniform from [|Gl]

El Gamal Encryption

@ Based on DH key-exchange

@ Alice, Bob generate a key
using DH key-exchange

@ Then use it as a one-time pad

@ Bobs "message” in the key-
exchange is his PK

o Alice’s message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

Random vy
< Y=g’
Random x
> X
X:g > -
K=YX K=X"
C
C=MK >
M=CK-!

KeyGen: PK=(G,q,Y), SK=(G,g,y)
Enc(G,g,Y)(M) = (X=gx, C=N\Yx)
Dec(G,gy)(X,C) = CX

® KeyGen uses GroupGen to get (G,g)

® X, y uniform from [|Gl]

® Message encoded into group element, and
decoded

Security of El Gamal

Security of El Gamal

® El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

Security of El Gamal

® El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

@ Construct a DDH adversary A‘ given an IND-CPA adversary A

Security of El Gamal

@ El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

@ Construct a DDH adversary A‘ given an IND-CPA adversary A

o A(G,g; g5,9”.9°) (where (G,g) < GroupGen, x,y random and
z=xy or random) plays the IND-CPA experiment with A:

Security of El Gamal

@ El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

@ Construct a DDH adversary A‘ given an IND-CPA adversary A

o A(G,g; g5,9”.9°) (where (G,g) < GroupGen, x,y random and
z=xy or random) plays the IND-CPA experiment with A:

@ But sets PK=(G,q,g") and Enc(Ms)=(g*,Msbg?)

Security of El Gamal

@ El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

@ Construct a DDH adversary A‘ given an IND-CPA adversary A

o A(G,g; g5,9”.9°) (where (G,g) < GroupGen, x,y random and
z=xy or random) plays the IND-CPA experiment with A:

@ But sets PK=(G,q,g") and Enc(Ms)=(g*,Msbg?)

@ Outputs 1 if experiment outputs 1 (i.e. if b=b’)

Security of El Gamal

@ El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

@ Construct a DDH adversary A‘ given an IND-CPA adversary A

o A(G,g; g5,9”.9°) (where (G,g) < GroupGen, x,y random and
z=xy or random) plays the IND-CPA experiment with A:

o But sets PK=(G,g,g9”) and Enc(My)=(g*,Msg?)
@ Outputs 1 if experiment outputs 1 (i.e. if b=b’)

@ When z=random, A outputs 1 with probability = 1/2

Security of El Gamal

@ El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

@ Construct a DDH adversary A‘ given an IND-CPA adversary A

o A(G,g; g5,9”.9°) (where (G,g) < GroupGen, x,y random and
z=xy or random) plays the IND-CPA experiment with A:

o But sets PK=(G,g,g9”) and Enc(My)=(g*,Msg?)
@ Outputs 1 if experiment outputs 1 (i.e. if b=b’)
@ When z=random, A outputs 1 with probability = 1/2

@ When z=xy, exactly IND-CPA experiment: A* outputs 1 with
probability = 1/2 + advantage of A.

Today

@ Public Key Encryption
@ CPA security
@ Diffie-Hellman Key Exchange & El Gamal Encryption
® DDH Assumption

o Candidate group: @Rp" where P is a “safe prime”

Today

@ Public Key Encryption
@ CPA security
@ Diffie-Hellman Key Exchange & El Gamal Encryption
® DDH Assumption

o Candidate group: @Rp" where P is a “safe prime”

@ Next: Building CPA secure PKE, more generally.
CCA security for PKE.

