
Public-Key Cryptography

Public-Key Cryptography
Lecture 7

Public-Key Encryption

Public-Key Cryptography
Lecture 7

Public-Key Encryption
Diffie-Hellman Key-Exchange, El Gamal Encryption

PKE scheme

PKE scheme
SKE:

Syntax

KeyGen outputs
K ← K

Enc: M ×K →C

Enc: C ×K → M

Correctness

∀K ∈ Range(KeyGen),
Dec(Enc(m,K), K) = m

Security (IND-CPA)

PKE scheme
SKE:

Syntax

KeyGen outputs
K ← K

Enc: M ×K →C

Enc: C ×K → M

Correctness

∀K ∈ Range(KeyGen),
Dec(Enc(m,K), K) = m

Security (IND-CPA)

Shared/Symmetric-Key
Encryption  

(a.k.a. private-key
encryption)

PKE scheme
SKE:

Syntax

KeyGen outputs
K ← K

Enc: M ×K →C

Enc: C ×K → M

Correctness

∀K ∈ Range(KeyGen),
Dec(Enc(m,K), K) = m

Security (IND-CPA)

PKE

Shared/Symmetric-Key
Encryption  

(a.k.a. private-key
encryption)

PKE scheme
SKE:

Syntax

KeyGen outputs
K ← K

Enc: M ×K →C

Enc: C ×K → M

Correctness

∀K ∈ Range(KeyGen),
Dec(Enc(m,K), K) = m

Security (IND-CPA)

PKE

Shared/Symmetric-Key
Encryption  

(a.k.a. private-key
encryption)

a.k.a. asymmetric-key encryption

PKE scheme
SKE:

Syntax

KeyGen outputs
K ← K

Enc: M ×K →C

Enc: C ×K → M

Correctness

∀K ∈ Range(KeyGen),
Dec(Enc(m,K), K) = m

Security (IND-CPA)

PKE

Syntax

Shared/Symmetric-Key
Encryption  

(a.k.a. private-key
encryption)

a.k.a. asymmetric-key encryption

PKE scheme
SKE:

Syntax

KeyGen outputs
K ← K

Enc: M ×K →C

Enc: C ×K → M

Correctness

∀K ∈ Range(KeyGen),
Dec(Enc(m,K), K) = m

Security (IND-CPA)

PKE

Syntax

KeyGen outputs
(PK,SK) ← PK ×SK

Shared/Symmetric-Key
Encryption  

(a.k.a. private-key
encryption)

a.k.a. asymmetric-key encryption

PKE scheme
SKE:

Syntax

KeyGen outputs
K ← K

Enc: M ×K →C

Enc: C ×K → M

Correctness

∀K ∈ Range(KeyGen),
Dec(Enc(m,K), K) = m

Security (IND-CPA)

PKE

Syntax

KeyGen outputs
(PK,SK) ← PK ×SK

Enc: M ×PK →C

Shared/Symmetric-Key
Encryption  

(a.k.a. private-key
encryption)

a.k.a. asymmetric-key encryption

PKE scheme
SKE:

Syntax

KeyGen outputs
K ← K

Enc: M ×K →C

Enc: C ×K → M

Correctness

∀K ∈ Range(KeyGen),
Dec(Enc(m,K), K) = m

Security (IND-CPA)

PKE

Syntax

KeyGen outputs
(PK,SK) ← PK ×SK

Enc: M ×PK →C

Dec: C ×SK → M

Shared/Symmetric-Key
Encryption  

(a.k.a. private-key
encryption)

a.k.a. asymmetric-key encryption

PKE scheme
SKE:

Syntax

KeyGen outputs
K ← K

Enc: M ×K →C

Enc: C ×K → M

Correctness

∀K ∈ Range(KeyGen),
Dec(Enc(m,K), K) = m

Security (IND-CPA)

PKE

Syntax

KeyGen outputs
(PK,SK) ← PK ×SK

Enc: M ×PK →C

Dec: C ×SK → M

Correctness

Shared/Symmetric-Key
Encryption  

(a.k.a. private-key
encryption)

a.k.a. asymmetric-key encryption

PKE scheme
SKE:

Syntax

KeyGen outputs
K ← K

Enc: M ×K →C

Enc: C ×K → M

Correctness

∀K ∈ Range(KeyGen),
Dec(Enc(m,K), K) = m

Security (IND-CPA)

PKE

Syntax

KeyGen outputs
(PK,SK) ← PK ×SK

Enc: M ×PK →C

Dec: C ×SK → M

Correctness

∀(PK,SK) ∈ Range(KeyGen),
Dec(Enc(m,PK), SK) = m

Shared/Symmetric-Key
Encryption  

(a.k.a. private-key
encryption)

a.k.a. asymmetric-key encryption

PKE scheme
SKE:

Syntax

KeyGen outputs
K ← K

Enc: M ×K →C

Enc: C ×K → M

Correctness

∀K ∈ Range(KeyGen),
Dec(Enc(m,K), K) = m

Security (IND-CPA)

PKE

Syntax

KeyGen outputs
(PK,SK) ← PK ×SK

Enc: M ×PK →C

Dec: C ×SK → M

Correctness

∀(PK,SK) ∈ Range(KeyGen),
Dec(Enc(m,PK), SK) = m

Security (IND-CPA, PKE version)

Shared/Symmetric-Key
Encryption  

(a.k.a. private-key
encryption)

a.k.a. asymmetric-key encryption

SIM-CPA (PKE Version)

Secure (and
correct) if:

∀

∃ s.t.

∀

output of is
distributed
indistinguishably in
REAL and IDEAL

Enc

!
PK

SK
Dec

Env

Send Recv

Env
REAL

IDEAL

m m

m

m m

SIM-CPA (PKE Version)

Secure (and
correct) if:

∀

∃ s.t.

∀

output of is
distributed
indistinguishably in
REAL and IDEAL

Enc

!
PK

SK
Dec

Env

Send Recv

Env
REAL

IDEAL

m m

m

m m

PK

PK

IND-CPA (PKE version)
Experiment picks a random bit b. It also
runs KeyGen to get a key (PK,SK). Adv
given PK

Adv sends two messages m0, m1 to
the experiment

Expt returns Enc(mb,K) to the
adversary

Adversary returns a guess b’

Experiment outputs 1 iff b’=b

IND-CPA secure if for all PPT
adversaries Pr[b’=b] - 1/2 ≤ ν(k)

!
PK

Enc

b←{0,1}

IND-CPA (PKE version)
Experiment picks a random bit b. It also
runs KeyGen to get a key (PK,SK). Adv
given PK

Adv sends two messages m0, m1 to
the experiment

Expt returns Enc(mb,K) to the
adversary

Adversary returns a guess b’

Experiment outputs 1 iff b’=b

IND-CPA secure if for all PPT
adversaries Pr[b’=b] - 1/2 ≤ ν(k)

!
PK

Enc

b←{0,1}

PK

IND-CPA (PKE version)
Experiment picks a random bit b. It also
runs KeyGen to get a key (PK,SK). Adv
given PK

Adv sends two messages m0, m1 to
the experiment

Expt returns Enc(mb,K) to the
adversary

Adversary returns a guess b’

Experiment outputs 1 iff b’=b

IND-CPA secure if for all PPT
adversaries Pr[b’=b] - 1/2 ≤ ν(k)

!
PK

Enc

b←{0,1}

m0,m1

PK

IND-CPA (PKE version)
Experiment picks a random bit b. It also
runs KeyGen to get a key (PK,SK). Adv
given PK

Adv sends two messages m0, m1 to
the experiment

Expt returns Enc(mb,K) to the
adversary

Adversary returns a guess b’

Experiment outputs 1 iff b’=b

IND-CPA secure if for all PPT
adversaries Pr[b’=b] - 1/2 ≤ ν(k)

!
PK

Enc

b←{0,1}

m0,m1

mb

PK

IND-CPA (PKE version)
Experiment picks a random bit b. It also
runs KeyGen to get a key (PK,SK). Adv
given PK

Adv sends two messages m0, m1 to
the experiment

Expt returns Enc(mb,K) to the
adversary

Adversary returns a guess b’

Experiment outputs 1 iff b’=b

IND-CPA secure if for all PPT
adversaries Pr[b’=b] - 1/2 ≤ ν(k)

!
PK

Enc

b←{0,1}

m0,m1

mb

Enc(mb,PK)PK

IND-CPA (PKE version)
Experiment picks a random bit b. It also
runs KeyGen to get a key (PK,SK). Adv
given PK

Adv sends two messages m0, m1 to
the experiment

Expt returns Enc(mb,K) to the
adversary

Adversary returns a guess b’

Experiment outputs 1 iff b’=b

IND-CPA secure if for all PPT
adversaries Pr[b’=b] - 1/2 ≤ ν(k)

!
PK

Enc

b←{0,1}

m0,m1

mb

Enc(mb,PK)

b’

Yes/No

PK

b’=b?

IND-CPA (PKE version)
Experiment picks a random bit b. It also
runs KeyGen to get a key (PK,SK). Adv
given PK

Adv sends two messages m0, m1 to
the experiment

Expt returns Enc(mb,K) to the
adversary

Adversary returns a guess b’

Experiment outputs 1 iff b’=b

IND-CPA secure if for all PPT
adversaries Pr[b’=b] - 1/2 ≤ ν(k)

!
PK

Enc

b←{0,1}

m0,m1

mb

Enc(mb,PK)

b’

Yes/No

PK

b’=b?

Note: no multiple accesses.
For PKE, it doesn’t change the

security definition

Perfect Secrecy?

Perfect Secrecy?

No perfectly secret and correct PKE (even for one-time encryption)

Perfect Secrecy?

No perfectly secret and correct PKE (even for one-time encryption)

Public-key and ciphertext (the total shared information between
Alice and Bob at the end) should together have entire
information about the message

Perfect Secrecy?

No perfectly secret and correct PKE (even for one-time encryption)

Public-key and ciphertext (the total shared information between
Alice and Bob at the end) should together have entire
information about the message

Intuition: If Eve thinks Bob could decrypt it as two messages
based on different SKs, Alice should be concerned too

Perfect Secrecy?

No perfectly secret and correct PKE (even for one-time encryption)

Public-key and ciphertext (the total shared information between
Alice and Bob at the end) should together have entire
information about the message

Intuition: If Eve thinks Bob could decrypt it as two messages
based on different SKs, Alice should be concerned too

i.e., Alice conveys same information to Bob and Eve

Perfect Secrecy?

No perfectly secret and correct PKE (even for one-time encryption)

Public-key and ciphertext (the total shared information between
Alice and Bob at the end) should together have entire
information about the message

Intuition: If Eve thinks Bob could decrypt it as two messages
based on different SKs, Alice should be concerned too

i.e., Alice conveys same information to Bob and Eve

[Exercise]

Perfect Secrecy?

No perfectly secret and correct PKE (even for one-time encryption)

Public-key and ciphertext (the total shared information between
Alice and Bob at the end) should together have entire
information about the message

Intuition: If Eve thinks Bob could decrypt it as two messages
based on different SKs, Alice should be concerned too

i.e., Alice conveys same information to Bob and Eve

[Exercise]

PKE only with computational security

Perfect Secrecy?

No perfectly secret and correct PKE (even for one-time encryption)

Public-key and ciphertext (the total shared information between
Alice and Bob at the end) should together have entire
information about the message

Intuition: If Eve thinks Bob could decrypt it as two messages
based on different SKs, Alice should be concerned too

i.e., Alice conveys same information to Bob and Eve

[Exercise]

PKE only with computational security

Unless assumptions of
imperfect

eavesdropping

Diffie-Hellman
Key-exchange

Diffie-Hellman
Key-exchange

A candidate for how Alice and Bob could generate a
shared key, which is “hidden” from Eve

Diffie-Hellman
Key-exchange

A candidate for how Alice and Bob could generate a
shared key, which is “hidden” from Eve

Diffie-Hellman
Key-exchange

A candidate for how Alice and Bob could generate a
shared key, which is “hidden” from Eve

Random x

Diffie-Hellman
Key-exchange

A candidate for how Alice and Bob could generate a
shared key, which is “hidden” from Eve

Random x
X=gx

Diffie-Hellman
Key-exchange

A candidate for how Alice and Bob could generate a
shared key, which is “hidden” from Eve

Random x
XX=gx

Diffie-Hellman
Key-exchange

A candidate for how Alice and Bob could generate a
shared key, which is “hidden” from Eve

Random x
X

Random y
X=gx

Diffie-Hellman
Key-exchange

A candidate for how Alice and Bob could generate a
shared key, which is “hidden” from Eve

Random x
X

Random y
X=gx

Y=gy

Diffie-Hellman
Key-exchange

A candidate for how Alice and Bob could generate a
shared key, which is “hidden” from Eve

Random x
X

Random y
Y

X=gx

Y=gy

Diffie-Hellman
Key-exchange

A candidate for how Alice and Bob could generate a
shared key, which is “hidden” from Eve

Random x
X

Random y
Y

X=gx

Output Yx

Y=gy

Diffie-Hellman
Key-exchange

A candidate for how Alice and Bob could generate a
shared key, which is “hidden” from Eve

Random x
X

Random y
Y

X=gx

Output Yx Output Xy

Y=gy

Diffie-Hellman
Key-exchange

A candidate for how Alice and Bob could generate a
shared key, which is “hidden” from Eve

Random x
X

Random y
Y

X=gx

Output Yx Output Xy

Y=gy

gx, gy

Diffie-Hellman
Key-exchange

A candidate for how Alice and Bob could generate a
shared key, which is “hidden” from Eve

Random x
X

Random y
Y

X=gx

Output Yx Output Xy

Y=gy

gx, gy

gxy ??

Why DH-Key-exchange
could be secure

Why DH-Key-exchange
could be secure

Given gx, gy for random x, y, gxy should be “hidden”

Why DH-Key-exchange
could be secure

Given gx, gy for random x, y, gxy should be “hidden”

i.e., could still be used as a pseudorandom element

Why DH-Key-exchange
could be secure

Given gx, gy for random x, y, gxy should be “hidden”

i.e., could still be used as a pseudorandom element

i.e., (gx, gy, gxy) ≈ (gx, gy, R)

Why DH-Key-exchange
could be secure

Given gx, gy for random x, y, gxy should be “hidden”

i.e., could still be used as a pseudorandom element

i.e., (gx, gy, gxy) ≈ (gx, gy, R)

Is that reasonable to expect?

Why DH-Key-exchange
could be secure

Given gx, gy for random x, y, gxy should be “hidden”

i.e., could still be used as a pseudorandom element

i.e., (gx, gy, gxy) ≈ (gx, gy, R)

Is that reasonable to expect?

Depends on the “group”

Groups, by examples

A set G (for us finite, unless otherwise specified) and a “group
operation” ＊ that is associative, has an identity, is invertible, and

(for us) commutative

Groups, by examples

A set G (for us finite, unless otherwise specified) and a “group
operation” ＊ that is associative, has an identity, is invertible, and

(for us) commutative

Examples: Z = (integers, +) (this is an infinite group),  

ZN = (integers modulo N, + mod N),  

Gn = (Cartesian product of a group G, coordinate-wise operation)

Groups, by examples

A set G (for us finite, unless otherwise specified) and a “group
operation” ＊ that is associative, has an identity, is invertible, and

(for us) commutative

Examples: Z = (integers, +) (this is an infinite group),  

ZN = (integers modulo N, + mod N),  

Gn = (Cartesian product of a group G, coordinate-wise operation)

Order of a group G: |G| = number of elements in G

Groups, by examples

A set G (for us finite, unless otherwise specified) and a “group
operation” ＊ that is associative, has an identity, is invertible, and

(for us) commutative

Examples: Z = (integers, +) (this is an infinite group),  

ZN = (integers modulo N, + mod N),  

Gn = (Cartesian product of a group G, coordinate-wise operation)

Order of a group G: |G| = number of elements in G

For any a∈G, a|G| = a＊a＊...＊a (|G| times) = identity

Groups, by examples

A set G (for us finite, unless otherwise specified) and a “group
operation” ＊ that is associative, has an identity, is invertible, and

(for us) commutative

Examples: Z = (integers, +) (this is an infinite group),  

ZN = (integers modulo N, + mod N),  

Gn = (Cartesian product of a group G, coordinate-wise operation)

Order of a group G: |G| = number of elements in G

For any a∈G, a|G| = a＊a＊...＊a (|G| times) = identity

Groups, by examples

A set G (for us finite, unless otherwise specified) and a “group
operation” ＊ that is associative, has an identity, is invertible, and

(for us) commutative

Examples: Z = (integers, +) (this is an infinite group),  

ZN = (integers modulo N, + mod N),  

Gn = (Cartesian product of a group G, coordinate-wise operation)

Order of a group G: |G| = number of elements in G

For any a∈G, a|G| = a＊a＊...＊a (|G| times) = identity

Finite Cyclic group (in multiplicative notation): there  
is one element g such that G = {g0, g1, g2, ... g|G|-1}

Groups, by examples

A set G (for us finite, unless otherwise specified) and a “group
operation” ＊ that is associative, has an identity, is invertible, and

(for us) commutative

Examples: Z = (integers, +) (this is an infinite group),  

ZN = (integers modulo N, + mod N),  

Gn = (Cartesian product of a group G, coordinate-wise operation)

Order of a group G: |G| = number of elements in G

For any a∈G, a|G| = a＊a＊...＊a (|G| times) = identity

Finite Cyclic group (in multiplicative notation): there  
is one element g such that G = {g0, g1, g2, ... g|G|-1}

Groups, by examples

g0

g2

g3

g1

gN-2
gN-1

. .
.
...

A set G (for us finite, unless otherwise specified) and a “group
operation” ＊ that is associative, has an identity, is invertible, and

(for us) commutative

Examples: Z = (integers, +) (this is an infinite group),  

ZN = (integers modulo N, + mod N),  

Gn = (Cartesian product of a group G, coordinate-wise operation)

Order of a group G: |G| = number of elements in G

For any a∈G, a|G| = a＊a＊...＊a (|G| times) = identity

Finite Cyclic group (in multiplicative notation): there  
is one element g such that G = {g0, g1, g2, ... g|G|-1}

Prototype: ZN (additive group), with g=1

Groups, by examples

g0

g2

g3

g1

gN-2
gN-1

. .
.
...

A set G (for us finite, unless otherwise specified) and a “group
operation” ＊ that is associative, has an identity, is invertible, and

(for us) commutative

Examples: Z = (integers, +) (this is an infinite group),  

ZN = (integers modulo N, + mod N),  

Gn = (Cartesian product of a group G, coordinate-wise operation)

Order of a group G: |G| = number of elements in G

For any a∈G, a|G| = a＊a＊...＊a (|G| times) = identity

Finite Cyclic group (in multiplicative notation): there  
is one element g such that G = {g0, g1, g2, ... g|G|-1}

Prototype: ZN (additive group), with g=1

or any g s.t. gcd(g,N) = 1

Groups, by examples

g0

g2

g3

g1

gN-2
gN-1

. .
.
...

g0

g2

g3

g1

gN-2
gN-1

.

.

.

..
.

Groups, by examples

ZN
* = (generators of ZN, multiplication mod N)

g0

g2

g3

g1

gN-2
gN-1

.

.

.

..
.

Groups, by examples

ZN
* = (generators of ZN, multiplication mod N)

Numbers in {0,..,N-1} which have a multiplicative inverse mod N

g0

g2

g3

g1

gN-2
gN-1

.

.

.

..
.

Groups, by examples

ZN
* = (generators of ZN, multiplication mod N)

Numbers in {0,..,N-1} which have a multiplicative inverse mod N

If N is prime, ZN
* is a cyclic group, of order N-1

g0

g2

g3

g1

gN-2
gN-1

.

.

.

..
.

Groups, by examples

ZN
* = (generators of ZN, multiplication mod N)

Numbers in {0,..,N-1} which have a multiplicative inverse mod N

If N is prime, ZN
* is a cyclic group, of order N-1

e.g. Z5
* = {1,2,3,4} is generated by 2 (as 1,2,4,3), and 

by 3 (as 1,3,4,2)

g0

g2

g3

g1

gN-2
gN-1

.

.

.

..
.

Groups, by examples

ZN
* = (generators of ZN, multiplication mod N)

Numbers in {0,..,N-1} which have a multiplicative inverse mod N

If N is prime, ZN
* is a cyclic group, of order N-1

e.g. Z5
* = {1,2,3,4} is generated by 2 (as 1,2,4,3), and 

by 3 (as 1,3,4,2)

(Also cyclic for certain other values of N)

g0

g2

g3

g1

gN-2
gN-1

.

.

.

..
.

Groups, by examples

Discrete Log Assumption

Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = gx (x ∈ {0,1,...,|G|-1})

Discrete Log Assumption

Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = gx (x ∈ {0,1,...,|G|-1})

In a (computationally efficient) group, given standard representation
of g and x, can efficiently find the standard representation of X=gx
(How?)

Discrete Log Assumption

Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = gx (x ∈ {0,1,...,|G|-1})

In a (computationally efficient) group, given standard representation
of g and x, can efficiently find the standard representation of X=gx
(How?)

Discrete Log Assumption Repeated
squaring

Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = gx (x ∈ {0,1,...,|G|-1})

In a (computationally efficient) group, given standard representation
of g and x, can efficiently find the standard representation of X=gx
(How?)

But given X and g, may not be easy to find x (depending on G)

Discrete Log Assumption Repeated
squaring

Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = gx (x ∈ {0,1,...,|G|-1})

In a (computationally efficient) group, given standard representation
of g and x, can efficiently find the standard representation of X=gx
(How?)

But given X and g, may not be easy to find x (depending on G)

DLA: Every PPT Adv has negligible success probability in the
DL Expt: (G,g)←GroupGen; X←G; Adv(G,g,X)→z; gz=X?

Discrete Log Assumption Repeated
squaring

Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = gx (x ∈ {0,1,...,|G|-1})

In a (computationally efficient) group, given standard representation
of g and x, can efficiently find the standard representation of X=gx
(How?)

But given X and g, may not be easy to find x (depending on G)

DLA: Every PPT Adv has negligible success probability in the
DL Expt: (G,g)←GroupGen; X←G; Adv(G,g,X)→z; gz=X?

Discrete Log Assumption Repeated
squaring

OWF collection:
Raise(x;G,g)  
 = (gx;G,g)

Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = gx (x ∈ {0,1,...,|G|-1})

In a (computationally efficient) group, given standard representation
of g and x, can efficiently find the standard representation of X=gx
(How?)

But given X and g, may not be easy to find x (depending on G)

DLA: Every PPT Adv has negligible success probability in the
DL Expt: (G,g)←GroupGen; X←G; Adv(G,g,X)→z; gz=X?

If DLA broken, then Diffie-Hellman key-exchange broken

Discrete Log Assumption Repeated
squaring

OWF collection:
Raise(x;G,g)  
 = (gx;G,g)

Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = gx (x ∈ {0,1,...,|G|-1})

In a (computationally efficient) group, given standard representation
of g and x, can efficiently find the standard representation of X=gx
(How?)

But given X and g, may not be easy to find x (depending on G)

DLA: Every PPT Adv has negligible success probability in the
DL Expt: (G,g)←GroupGen; X←G; Adv(G,g,X)→z; gz=X?

If DLA broken, then Diffie-Hellman key-exchange broken

Eve gets x, y from gx, gy (sometimes) and can compute gxy herself

Discrete Log Assumption Repeated
squaring

OWF collection:
Raise(x;G,g)  
 = (gx;G,g)

Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = gx (x ∈ {0,1,...,|G|-1})

In a (computationally efficient) group, given standard representation
of g and x, can efficiently find the standard representation of X=gx
(How?)

But given X and g, may not be easy to find x (depending on G)

DLA: Every PPT Adv has negligible success probability in the
DL Expt: (G,g)←GroupGen; X←G; Adv(G,g,X)→z; gz=X?

If DLA broken, then Diffie-Hellman key-exchange broken

Eve gets x, y from gx, gy (sometimes) and can compute gxy herself

A “key-recovery” attack

Discrete Log Assumption Repeated
squaring

OWF collection:
Raise(x;G,g)  
 = (gx;G,g)

Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated
by g: DLg(X) := unique x such that X = gx (x ∈ {0,1,...,|G|-1})

In a (computationally efficient) group, given standard representation
of g and x, can efficiently find the standard representation of X=gx
(How?)

But given X and g, may not be easy to find x (depending on G)

DLA: Every PPT Adv has negligible success probability in the
DL Expt: (G,g)←GroupGen; X←G; Adv(G,g,X)→z; gz=X?

If DLA broken, then Diffie-Hellman key-exchange broken

Eve gets x, y from gx, gy (sometimes) and can compute gxy herself

A “key-recovery” attack

Note: could break pseudorandomness without breaking DLA too

Discrete Log Assumption Repeated
squaring

OWF collection:
Raise(x;G,g)  
 = (gx;G,g)

Decisional Diffie-Hellman
(DDH) Assumption

Decisional Diffie-Hellman
(DDH) Assumption

{(gx, gy, gxy)}(G,g)←GroupGen; x,y←[|G|] ≈ {(gx, gy, gr)}(G,g)←GroupGen; x,y,r←[|G|]

Decisional Diffie-Hellman
(DDH) Assumption

{(gx, gy, gxy)}(G,g)←GroupGen; x,y←[|G|] ≈ {(gx, gy, gr)}(G,g)←GroupGen; x,y,r←[|G|]

At least as strong as DLA

Decisional Diffie-Hellman
(DDH) Assumption

{(gx, gy, gxy)}(G,g)←GroupGen; x,y←[|G|] ≈ {(gx, gy, gr)}(G,g)←GroupGen; x,y,r←[|G|]

At least as strong as DLA

If DDH assumption holds, then DLA holds [Why?]

Decisional Diffie-Hellman
(DDH) Assumption

{(gx, gy, gxy)}(G,g)←GroupGen; x,y←[|G|] ≈ {(gx, gy, gr)}(G,g)←GroupGen; x,y,r←[|G|]

At least as strong as DLA

If DDH assumption holds, then DLA holds [Why?]

But possible that DLA holds and DDH assumption doesn’t

Decisional Diffie-Hellman
(DDH) Assumption

{(gx, gy, gxy)}(G,g)←GroupGen; x,y←[|G|] ≈ {(gx, gy, gr)}(G,g)←GroupGen; x,y,r←[|G|]

At least as strong as DLA

If DDH assumption holds, then DLA holds [Why?]

But possible that DLA holds and DDH assumption doesn’t

e.g.: DLA is widely assumed to hold in Zp
* (p prime), but

DDH assumption doesn’t hold there!

A Candidate DDH Group
1

5

2

7

3
10

4

6

9

8

A Candidate DDH Group
Consider QRP

* : subgroup of Quadratic Residues

(“even power” elements) of ZP
*

1

5

2

7

3
10

4

6

9

8

A Candidate DDH Group
Consider QRP

* : subgroup of Quadratic Residues

(“even power” elements) of ZP
*

1

5

2

7

3
10

4

6

9

8

A Candidate DDH Group
Consider QRP

* : subgroup of Quadratic Residues

(“even power” elements) of ZP
*

Easy to check if an element is a QR or not:
check if raising to |G|/2 gives 1 (identity element)

1

5

2

7

3
10

4

6

9

8

A Candidate DDH Group
Consider QRP

* : subgroup of Quadratic Residues

(“even power” elements) of ZP
*

Easy to check if an element is a QR or not:
check if raising to |G|/2 gives 1 (identity element)

DDH does not hold in ZP
* : gxy is a QR w/ prob. 3/4;

gz is QR only w/ prob. 1/2.

1

5

2

7

3
10

4

6

9

8

A Candidate DDH Group
Consider QRP

* : subgroup of Quadratic Residues

(“even power” elements) of ZP
*

Easy to check if an element is a QR or not:
check if raising to |G|/2 gives 1 (identity element)

DDH does not hold in ZP
* : gxy is a QR w/ prob. 3/4;

gz is QR only w/ prob. 1/2.

How about in QRP
*?

1

5

2

7

3
10

4

6

9

8

A Candidate DDH Group
Consider QRP

* : subgroup of Quadratic Residues

(“even power” elements) of ZP
*

Easy to check if an element is a QR or not:
check if raising to |G|/2 gives 1 (identity element)

DDH does not hold in ZP
* : gxy is a QR w/ prob. 3/4;

gz is QR only w/ prob. 1/2.

How about in QRP
*?

Could check if cubic residue in ZP
*!

1

5

2

7

3
10

4

6

9

8

A Candidate DDH Group
Consider QRP

* : subgroup of Quadratic Residues

(“even power” elements) of ZP
*

Easy to check if an element is a QR or not:
check if raising to |G|/2 gives 1 (identity element)

DDH does not hold in ZP
* : gxy is a QR w/ prob. 3/4;

gz is QR only w/ prob. 1/2.

How about in QRP
*?

Could check if cubic residue in ZP
*!

But if (P-1) is not divisible by 3, all elements in ZP
*

are cubic residues!

1

5

2

7

3
10

4

6

9

8

A Candidate DDH Group
Consider QRP

* : subgroup of Quadratic Residues

(“even power” elements) of ZP
*

Easy to check if an element is a QR or not:
check if raising to |G|/2 gives 1 (identity element)

DDH does not hold in ZP
* : gxy is a QR w/ prob. 3/4;

gz is QR only w/ prob. 1/2.

How about in QRP
*?

Could check if cubic residue in ZP
*!

But if (P-1) is not divisible by 3, all elements in ZP
*

are cubic residues!

“Safe” if (P-1)/2 is also prime: P called a safe-prime

1

5

2

7

3
10

4

6

9

8

A Candidate DDH Group
Consider QRP

* : subgroup of Quadratic Residues

(“even power” elements) of ZP
*

Easy to check if an element is a QR or not:
check if raising to |G|/2 gives 1 (identity element)

DDH does not hold in ZP
* : gxy is a QR w/ prob. 3/4;

gz is QR only w/ prob. 1/2.

How about in QRP
*?

Could check if cubic residue in ZP
*!

But if (P-1) is not divisible by 3, all elements in ZP
*

are cubic residues!

“Safe” if (P-1)/2 is also prime: P called a safe-prime

1

5

2

7

3
10

4

6

9

8

DDH Candidate:

QRP

*

where P is a safe-prime

El Gamal Encryption

El Gamal Encryption

Based on DH key-exchange

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-
exchange is his PK

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-
exchange is his PK

Alice’s message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-
exchange is his PK

Alice’s message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-
exchange is his PK

Alice’s message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-
exchange is his PK

Alice’s message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-
exchange is his PK

Alice’s message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

• KeyGen uses GroupGen to get (G,g)

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-
exchange is his PK

Alice’s message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

• KeyGen uses GroupGen to get (G,g)
• x, y uniform from [|G|]

El Gamal Encryption

Based on DH key-exchange

Alice, Bob generate a key
using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-
exchange is his PK

Alice’s message in the key-
exchange and the ciphertext of
the one-time pad together form
a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

 Enc(G,g,Y)(M) = (X=gx, C=MYx)

 Dec(G,g,y)(X,C) = CX-y

• KeyGen uses GroupGen to get (G,g)
• x, y uniform from [|G|]
• Message encoded into group element, and
decoded

Security of El Gamal

Security of El Gamal
El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

Security of El Gamal
El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

Construct a DDH adversary A* given an IND-CPA adversary A

Security of El Gamal
El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

Construct a DDH adversary A* given an IND-CPA adversary A

A*(G,g; gx,gy,gz) (where (G,g) ← GroupGen, x,y random and

z=xy or random) plays the IND-CPA experiment with A:

Security of El Gamal
El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

Construct a DDH adversary A* given an IND-CPA adversary A

A*(G,g; gx,gy,gz) (where (G,g) ← GroupGen, x,y random and

z=xy or random) plays the IND-CPA experiment with A:

But sets PK=(G,g,gy) and Enc(Mb)=(gx,Mbgz)

Security of El Gamal
El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

Construct a DDH adversary A* given an IND-CPA adversary A

A*(G,g; gx,gy,gz) (where (G,g) ← GroupGen, x,y random and

z=xy or random) plays the IND-CPA experiment with A:

But sets PK=(G,g,gy) and Enc(Mb)=(gx,Mbgz)

Outputs 1 if experiment outputs 1 (i.e. if b=b’)

Security of El Gamal
El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

Construct a DDH adversary A* given an IND-CPA adversary A

A*(G,g; gx,gy,gz) (where (G,g) ← GroupGen, x,y random and

z=xy or random) plays the IND-CPA experiment with A:

But sets PK=(G,g,gy) and Enc(Mb)=(gx,Mbgz)

Outputs 1 if experiment outputs 1 (i.e. if b=b’)

When z=random, A* outputs 1 with probability = 1/2

Security of El Gamal
El Gamal IND-CPA secure if DDH holds (for the collection of
groups used)

Construct a DDH adversary A* given an IND-CPA adversary A

A*(G,g; gx,gy,gz) (where (G,g) ← GroupGen, x,y random and

z=xy or random) plays the IND-CPA experiment with A:

But sets PK=(G,g,gy) and Enc(Mb)=(gx,Mbgz)

Outputs 1 if experiment outputs 1 (i.e. if b=b’)

When z=random, A* outputs 1 with probability = 1/2

When z=xy, exactly IND-CPA experiment: A* outputs 1 with
probability = 1/2 + advantage of A.

Today

Today

Public Key Encryption

CPA security

Diffie-Hellman Key Exchange & El Gamal Encryption

DDH Assumption

Candidate group: QRP
* where P is a “safe prime”

Today

Public Key Encryption

CPA security

Diffie-Hellman Key Exchange & El Gamal Encryption

DDH Assumption

Candidate group: QRP
* where P is a “safe prime”

Next: Building CPA secure PKE, more generally.  
 CCA security for PKE.

