Public-Key Cryptography

Public-Key Cryptography

Lecture 7
Public-Key Encryption

Public-Key Cryptography

Lecture 7
Public-Key Encryption
Diffie-Hellman Key-Exchange, El Gamal Encryption

PKE scheme

PKE scheme

- SKE:
 - Syntax
 - KeyGen outputs $K \leftarrow \mathcal{K}$
 - Enc:
 M×K→C
 - Enc: $C \times \mathcal{H} \rightarrow \mathcal{M}$
 - Correctness
 - ∀K ∈ Range(KeyGen),
 Dec(Enc(m,K), K) = m
 - Security (IND-CPA)

PKE scheme

- SKE:
 - Syntax
 - KeyGen outputs $K \leftarrow \mathcal{H}$
 - Enc: $\mathcal{M} \times \mathcal{H} \rightarrow \mathcal{C}$
 - Enc: $C \times \mathcal{H} \rightarrow \mathcal{M}$
 - Correctness
 - ∀K ∈ Range(KeyGen),
 Dec(Enc(m,K), K) = m
 - Security (IND-CPA)

PKE scheme

PKE

- SKE:
 - Syntax
 - KeyGen outputsK ← %
 - Enc: $\mathcal{M} \times \mathcal{H} \rightarrow \mathcal{C}$
 - Enc: $C \times \mathcal{H} \rightarrow \mathcal{M}$
 - Correctness
 - ∀K ∈ Range(KeyGen),
 Dec(Enc(m,K), K) = m
 - Security (IND-CPA)

PKE scheme

- SKE:
 - Syntax
 - KeyGen outputsK ← K
 - Enc: $\mathcal{M} \times \mathcal{H} \rightarrow \mathcal{C}$
 - Enc: $C \times \mathcal{H} \rightarrow \mathcal{M}$
 - Correctness
 - ∀K ∈ Range(KeyGen),
 Dec(Enc(m,K), K) = m
 - Security (IND-CPA)

PKE scheme

- SKE:
 - Syntax
 - KeyGen outputsK ← K
 - Enc: $\mathcal{M} \times \mathcal{H} \rightarrow \mathcal{C}$
 - Enc: $C \times \mathcal{H} \rightarrow \mathcal{M}$
 - Correctness
 - ∀K ∈ Range(KeyGen),
 Dec(Enc(m,K), K) = m
 - Security (IND-CPA)

PKE < a.k.a. asymmetric-key encryption

Syntax

PKE scheme

- SKE:
 - Syntax
 - KeyGen outputs $K \leftarrow \mathcal{H}$
 - Enc: $\mathcal{M} \times \mathcal{H} \rightarrow \mathcal{C}$
 - Enc: $C \times \mathcal{H} \rightarrow \mathcal{M}$
 - Correctness
 - ∀K ∈ Range(KeyGen),
 Dec(Enc(m,K), K) = m
 - Security (IND-CPA)

- Syntax
 - KeyGen outputs $(PK,SK) \leftarrow PK \times SK$

PKE scheme

- SKE:
 - Syntax

 - Enc: $\mathcal{M} \times \mathcal{H} \rightarrow \mathcal{C}$
 - Enc: $C \times \mathcal{H} \rightarrow \mathcal{M}$
 - Correctness
 - ∀K ∈ Range(KeyGen),
 Dec(Enc(m,K), K) = m
 - Security (IND-CPA)

- Syntax
 - KeyGen outputs $(PK,SK) \leftarrow PK \times SK$
 - Enc: M×PK→C

PKE scheme

- SKE:
 - Syntax
 - KeyGen outputs
 K ←
 K
 - Enc: $\mathcal{M} \times \mathcal{H} \rightarrow \mathcal{C}$
 - Enc: $C \times \mathcal{H} \rightarrow \mathcal{M}$
 - Correctness
 - ∀K ∈ Range(KeyGen),
 Dec(Enc(m,K), K) = m
 - Security (IND-CPA)

- Syntax
 - KeyGen outputs $(PK,SK) \leftarrow PK \times SK$
 - Enc: M×PK→C
 - Dec: C×S%→ M

PKE scheme

- SKE:
 - Syntax
 - KeyGen outputs $K \leftarrow \mathcal{H}$
 - Enc: $\mathcal{M} \times \mathcal{H} \rightarrow \mathcal{C}$
 - Enc: $C \times \mathcal{H} \rightarrow \mathcal{M}$
 - Correctness
 - ∀K ∈ Range(KeyGen),
 Dec(Enc(m,K), K) = m
 - Security (IND-CPA)

- Syntax
 - KeyGen outputs(PK,SK) ← PK×SK
 - Enc: M×PK→C
 - o Dec: C×SK→ M
- Correctness

PKE scheme

- SKE:
 - Syntax
 - KeyGen outputs $K \leftarrow \mathcal{H}$
 - © Enc: M×K→C
 - Enc: $C \times \mathcal{H} \rightarrow \mathcal{M}$
 - Correctness
 - ∀K ∈ Range(KeyGen),
 Dec(Enc(m,K), K) = m
 - Security (IND-CPA)

- Syntax
 - KeyGen outputs $(PK,SK) \leftarrow PK \times SK$
 - Enc: M×PK→C
 - Dec: CxS
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
 C
- Correctness
 - ∀(PK,SK) ∈ Range(KeyGen),
 Dec(Enc(m,PK), SK) = m

PKE scheme

- SKE:
 - Syntax
 - KeyGen outputs $K \leftarrow \mathcal{H}$
 - © Enc: M×K→C
 - Enc: $C \times \mathcal{H} \rightarrow \mathcal{M}$
 - Correctness
 - ∀K ∈ Range(KeyGen),
 Dec(Enc(m,K), K) = m
 - Security (IND-CPA)

- Syntax
 - KeyGen outputs $(PK,SK) \leftarrow PK \times SK$
 - Enc: M×PK→C
 - o Dec: C×SK→ M
- Correctness
 - ∀(PK,SK) ∈ Range(KeyGen),
 Dec(Enc(m,PK), SK) = m
- Security (IND-CPA, PKE version)

SIM-CPA (PKE Version)

SIM-CPA (PKE Version)

Experiment picks a random bit b. It also runs KeyGen to get a key (PK,SK). Adv given PK

- Adv sends two messages m₀, m₁ to the experiment
- Expt returns Enc(m_b,K) to the adversary
- Adversary returns a guess b'
- Experiment outputs 1 iff b'=b
- IND-CPA secure if for all PPT adversaries $Pr[b'=b] 1/2 \le \nu$ (k)

b←{0,1}

- Experiment picks a random bit b. It also runs KeyGen to get a key (PK,SK). Adv given PK
 - Adv sends two messages m₀, m₁ to the experiment
 - Expt returns Enc(m_b,K) to the adversary
 - Adversary returns a guess b'
 - Experiment outputs 1 iff b'=b
- IND-CPA secure if for all PPT adversaries $Pr[b'=b] 1/2 \le \nu$ (k)

- Experiment picks a random bit b. It also runs KeyGen to get a key (PK,SK). Adv given PK
 - Adv sends two messages m₀, m₁ to the experiment
 - Expt returns Enc(m_b,K) to the adversary
 - Adversary returns a guess b'
 - Experiment outputs 1 iff b'=b
- IND-CPA secure if for all PPT adversaries $Pr[b'=b] 1/2 \le \nu$ (k)

- Adv sends two messages m₀, m₁ to the experiment
- Expt returns Enc(m_b,K) to the adversary
- Adversary returns a guess b'
- Experiment outputs 1 iff b'=b
- IND-CPA secure if for all PPT adversaries $Pr[b'=b] 1/2 \le \nu$ (k)

- Adv sends two messages m₀, m₁ to the experiment
- Expt returns Enc(m_b,K) to the adversary
- Adversary returns a guess b'
- Experiment outputs 1 iff b'=b
- IND-CPA secure if for all PPT adversaries $Pr[b'=b] 1/2 \le \nu$ (k)

- Adv sends two messages m₀, m₁ to the experiment
- Expt returns Enc(m_b,K) to the adversary
- Adversary returns a guess b'
- Experiment outputs 1 iff b'=b
- IND-CPA secure if for all PPT adversaries $Pr[b'=b] 1/2 \le \nu$ (k)

- Adv sends two messages m₀, m₁ to the experiment
- Expt returns Enc(m_b,K) to the adversary
- Adversary returns a guess b'
- Experiment outputs 1 iff b'=b
- IND-CPA secure if for all PPT adversaries $Pr[b'=b] 1/2 \le \nu$ (k)

No perfectly secret and correct PKE (even for one-time encryption)

- No perfectly secret and correct PKE (even for one-time encryption)
 - Public-key and ciphertext (the total shared information between Alice and Bob at the end) should together have entire information about the message

- No perfectly secret and correct PKE (even for one-time encryption)
 - Public-key and ciphertext (the total shared information between Alice and Bob at the end) should together have entire information about the message
 - Intuition: If Eve thinks Bob could decrypt it as two messages based on different SKs, Alice should be concerned too

- No perfectly secret and correct PKE (even for one-time encryption)
 - Public-key and ciphertext (the total shared information between Alice and Bob at the end) should together have entire information about the message
 - Intuition: If Eve thinks Bob could decrypt it as two messages based on different SKs, Alice should be concerned too
 - i.e., Alice conveys same information to Bob and Eve

- No perfectly secret and correct PKE (even for one-time encryption)
 - Public-key and ciphertext (the total shared information between Alice and Bob at the end) should together have entire information about the message
 - Intuition: If Eve thinks Bob could decrypt it as two messages based on different SKs, Alice should be concerned too
 - i.e., Alice conveys same information to Bob and Eve
 - [Exercise]

- No perfectly secret and correct PKE (even for one-time encryption)
 - Public-key and ciphertext (the total shared information between Alice and Bob at the end) should together have entire information about the message
 - Intuition: If Eve thinks Bob could decrypt it as two messages based on different SKs, Alice should be concerned too
 - i.e., Alice conveys same information to Bob and Eve
 - [Exercise]
- PKE only with computational security

- No perfectly secret and correct PKE (even for one-time encryption)
 - Public-key and ciphertext (the total shared information between Alice and Bob at the end) should together have entire information about the message
 - Intuition: If Eve thinks Bob could decrypt it as two messages based on different SKs, Alice should be concerned too
 - i.e., Alice conveys same information to Bob and Eve
 - [Exercise]
- PKE only with computational security

A candidate for how Alice and Bob could generate a shared key, which is "hidden" from Eve

A candidate for how Alice and Bob could generate a shared key, which is "hidden" from Eve

A candidate for how Alice and Bob could generate a shared key, which is "hidden" from Eve

Random x

A candidate for how Alice and Bob could generate a shared key, which is "hidden" from Eve

> Random x X=g^x

Given gx, gy for random x, y, gxy should be "hidden"

- Given gx, gy for random x, y, gxy should be "hidden"
 - i.e., could still be used as a pseudorandom element

- Given gx, gy for random x, y, gxy should be "hidden"
 - o i.e., could still be used as a pseudorandom element
 - i.e., $(g^x, g^y, g^{xy}) \approx (g^x, g^y, R)$

- Given gx, gy for random x, y, gxy should be "hidden"
 - o i.e., could still be used as a pseudorandom element
 - i.e., $(g^x, g^y, g^{xy}) \approx (g^x, g^y, R)$
- Is that reasonable to expect?

- Given gx, gy for random x, y, gxy should be "hidden"
 - o i.e., could still be used as a pseudorandom element
 - i.e., $(g^x, g^y, g^{xy}) \approx (g^x, g^y, R)$
- Is that reasonable to expect?
 - Depends on the "group"

A set G (for us finite, unless otherwise specified) and a "group operation" * that is associative, has an identity, is invertible, and (for us) commutative

- A set G (for us finite, unless otherwise specified) and a "group operation" * that is associative, has an identity, is invertible, and (for us) commutative
- Examples: \mathbb{Z} = (integers, +) (this is an infinite group), \mathbb{Z}_N = (integers modulo N, + mod N), G^n = (Cartesian product of a group G, coordinate-wise operation)

- A set G (for us finite, unless otherwise specified) and a "group operation" * that is associative, has an identity, is invertible, and (for us) commutative
- Examples: \mathbb{Z} = (integers, +) (this is an infinite group), \mathbb{Z}_N = (integers modulo N, + mod N), G^n = (Cartesian product of a group G, coordinate-wise operation)
- Order of a group G: |G| = number of elements in G

- A set G (for us finite, unless otherwise specified) and a "group operation" * that is associative, has an identity, is invertible, and (for us) commutative
- Examples: \mathbb{Z} = (integers, +) (this is an infinite group), \mathbb{Z}_N = (integers modulo N, + mod N), G^n = (Cartesian product of a group G, coordinate-wise operation)
- Order of a group G: |G| = number of elements in G
- For any $a \in G$, $a^{|G|} = a * a * ... * a (|G| times) = identity$

- A set G (for us finite, unless otherwise specified) and a "group operation" * that is associative, has an identity, is invertible, and (for us) commutative
- Examples: \mathbb{Z} = (integers, +) (this is an infinite group), \mathbb{Z}_N = (integers modulo N, + mod N), G^n = (Cartesian product of a group G, coordinate-wise operation)
- Order of a group G: |G| = number of elements in G
- For any $a \in G$, $a^{|G|} = a * a * ... * a (|G| times) = identity$

- A set G (for us finite, unless otherwise specified) and a "group operation" * that is associative, has an identity, is invertible, and (for us) commutative
- Examples: \mathbb{Z} = (integers, +) (this is an infinite group), \mathbb{Z}_N = (integers modulo N, + mod N), G^n = (Cartesian product of a group G, coordinate-wise operation)
- Order of a group G: |G| = number of elements in G
- For any $a \in G$, $a^{|G|} = a * a * ... * a (|G| times) = identity$
- Finite Cyclic group (in multiplicative notation): there is one element g such that $G = \{g^0, g^1, g^2, ... g^{|G|-1}\}$

- A set G (for us finite, unless otherwise specified) and a "group operation" * that is associative, has an identity, is invertible, and (for us) commutative
- Examples: \mathbb{Z} = (integers, +) (this is an infinite group), \mathbb{Z}_N = (integers modulo N, + mod N), G^n = (Cartesian product of a group G, coordinate-wise operation)
- Order of a group G: |G| = number of elements in G
- For any $a \in G$, $a^{|G|} = a * a * ... * a (|G| times) = identity$
- Finite Cyclic group (in multiplicative notation): there is one element g such that $G = \{g^0, g^1, g^2, ... g^{|G|-1}\}$

- A set G (for us finite, unless otherwise specified) and a "group operation" * that is associative, has an identity, is invertible, and (for us) commutative
- Examples: \mathbb{Z} = (integers, +) (this is an infinite group), \mathbb{Z}_N = (integers modulo N, + mod N), G^n = (Cartesian product of a group G, coordinate-wise operation)
- Order of a group G: |G| = number of elements in G
- For any $a \in G$, $a^{|G|} = a * a * ... * a (|G| times) = identity$
- Finite Cyclic group (in multiplicative notation): there is one element g such that $G = \{g^0, g^1, g^2, ... g^{|G|-1}\}$
 - \bullet Prototype: \mathbb{Z}_N (additive group), with g=1

- A set G (for us finite, unless otherwise specified) and a "group operation" * that is associative, has an identity, is invertible, and (for us) commutative
- Examples: \mathbb{Z} = (integers, +) (this is an infinite group), \mathbb{Z}_N = (integers modulo N, + mod N), G^n = (Cartesian product of a group G, coordinate-wise operation)
- Order of a group G: |G| = number of elements in G
- For any $a \in G$, $a^{|G|} = a * a * ... * a (|G| times) = identity$
- Finite Cyclic group (in multiplicative notation): there is one element g such that $G = \{g^0, g^1, g^2, ... g^{|G|-1}\}$
 - \bullet Prototype: \mathbb{Z}_N (additive group), with g=1
 - or any g s.t. gcd(g,N) = 1

Numbers in {0,..,N-1} which have a multiplicative inverse mod N

- Numbers in {0,..,N-1} which have a multiplicative inverse mod N
- \bullet If N is prime, ${\mathbb{Z}_N}^*$ is a cyclic group, of order N-1

- Numbers in {0,..,N-1} which have a multiplicative inverse mod N
- If N is prime, \mathbb{Z}_N^* is a cyclic group, of order N-1
 - e.g. $\mathbb{Z}_5^* = \{1,2,3,4\}$ is generated by 2 (as 1,2,4,3), and by 3 (as 1,3,4,2)

- - Numbers in {0,..,N-1} which have a multiplicative inverse mod N
 - If N is prime, \mathbb{Z}_N^* is a cyclic group, of order N-1
 - e.g. $\mathbb{Z}_5^* = \{1,2,3,4\}$ is generated by 2 (as 1,2,4,3), and by 3 (as 1,3,4,2)
 - (Also cyclic for certain other values of N)

Discrete Log Assumption

Discrete Log Assumption

Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated by g: $DL_g(X)$:= unique x such that $X = g^x$ (x \in {0,1,...,|G|-1})

Discrete Log Assumption

- Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated by g: $DL_g(X)$:= unique x such that $X = g^x$ (x \in {0,1,...,|G|-1})
- In a (computationally efficient) group, given standard representation of g and x, can efficiently find the standard representation of X=g^x (How?)

Discrete Log Assumption Repeated squaring

- Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated by g: $DL_q(X) := unique x such that X = q^x (x \in \{0,1,...,|G|-1\})$
- In a (computationally efficient) group, given standard representation of q and x, can efficiently find the standard representation of $X=q^{x}$ (How?)

Discrete Log Assumption Repeated squaring

- Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated by g: $DL_q(X) := unique x such that X = q^x (x \in \{0,1,...,|G|-1\})$
- In a (computationally efficient) group, given standard representation of q and x, can efficiently find the standard representation of X=gx (How?)
 - But given X and g, may not be easy to find x (depending on G)

- Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated by g: $DL_q(X) := unique x such that X = q^x (x \in \{0,1,...,|G|-1\})$
- In a (computationally efficient) group, given standard representation of q and x, can efficiently find the standard representation of $X=g^{x}$ (How?)
 - But given X and g, may not be easy to find x (depending on G)
 - DLA: Every PPT Adv has negligible success probability in the DL Expt: $(G,g) \leftarrow GroupGen; X \leftarrow G; Adv(G,g,X) \rightarrow z; q^z = X?$

- Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated by g: $DL_q(X) := unique \times such that X = q^x (x \in \{0,1,...,|G|-1\})$
- In a (computationally efficient) group, given standard representation of q and x, can efficiently find the standard representation of $X=g^{x}$ (How?)
 - But given X and g, may not be easy to find x (depending on G)
 - DLA: Every PPT Adv has negligible success probability in the DL Expt: $(G,g)\leftarrow GroupGen; X\leftarrow G; Adv(G,g,X)\rightarrow z; g^z=X? OWF collection:$ Raise(x;G,g) $= (q^x;G,q)$

- Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated by g: $DL_q(X) := unique \times such that X = q^x (x \in \{0,1,...,|G|-1\})$
- In a (computationally efficient) group, given standard representation of q and x, can efficiently find the standard representation of X=gx (How?)
 - But given X and g, may not be easy to find x (depending on G)
 - DLA: Every PPT Adv has negligible success probability in the DL Expt: $(G,g)\leftarrow GroupGen; X\leftarrow G; Adv(G,q,X)\rightarrow z; q^z=X?$ OWF collection:
- o If DLA broken, then Diffie-Hellman key-exchange broken

Raise(x;G,g) $= (g^x;G,g)$

- Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated by q: $DL_q(X) := unique \times such that X = q^x (x \in \{0,1,...,|G|-1\})$
- In a (computationally efficient) group, given standard representation of q and x, can efficiently find the standard representation of $X=g^{x}$ (How?)
 - But given X and g, may not be easy to find x (depending on G)
 - DLA: Every PPT Adv has negligible success probability in the DL Expt: $(G,g)\leftarrow GroupGen; X\leftarrow G; Adv(G,q,X)\rightarrow z; q^z=X?$ OWF collection: Raise(x;G,g)
- If DLA broken, then Diffie-Hellman key-exchange broken
 - Eve gets x, y from g^x, g^y (sometimes) and can compute g^{xy} herself

- Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated by g: $DL_q(X) := unique \times such that X = q^x (x \in \{0,1,...,|G|-1\})$
- In a (computationally efficient) group, given standard representation of q and x, can efficiently find the standard representation of $X=g^{x}$ (How?)
 - But given X and g, may not be easy to find x (depending on G)
 - DLA: Every PPT Adv has negligible success probability in the DL Expt: $(G,q)\leftarrow GroupGen; X\leftarrow G; Adv(G,q,X)\rightarrow z; q^z=X?$ OWF collection: Raise(x;G,g)
- If DLA broken, then Diffie-Hellman key-exchange broken
 - Eve gets x, y from gx, gy (sometimes) and can compute gxy herself
 - A "key-recovery" attack

- Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated by g: $DL_q(X) := unique \times such that X = q^x (x \in \{0,1,...,|G|-1\})$
- In a (computationally efficient) group, given standard representation of q and x, can efficiently find the standard representation of $X=g^{x}$ (How?)
 - But given X and g, may not be easy to find x (depending on G)
 - DLA: Every PPT Adv has negligible success probability in the DL Expt: $(G,g)\leftarrow GroupGen; X\leftarrow G; Adv(G,g,X)\rightarrow z; q^z=X?$ OWF collection: Raise(x;G,g)
- If DLA broken, then Diffie-Hellman key-exchange broken
 - Eve gets x, y from gx, gy (sometimes) and can compute gxy herself A "key-recovery" attack
 - Note: could break pseudorandomness without breaking DLA too

- At least as strong as DLA

- At least as strong as DLA
 - If DDH assumption holds, then DLA holds [Why?]

- At least as strong as DLA
 - If DDH assumption holds, then DLA holds [Why?]
- But possible that DLA holds and DDH assumption doesn't

- At least as strong as DLA
 - If DDH assumption holds, then DLA holds [Why?]
- But possible that DLA holds and DDH assumption doesn't
 - e.g.: DLA is widely assumed to hold in \mathbb{Z}_p^* (p prime), but DDH assumption doesn't hold there!

**Consider \mathbb{QR}_P^* : subgroup of Quadratic Residues ("even power" elements) of \mathbb{Z}_P^*

**Consider \mathbb{QR}_P^* : subgroup of Quadratic Residues ("even power" elements) of \mathbb{Z}_P^*

- Consider \mathbb{QRp}^* : subgroup of Quadratic Residues ("even power" elements) of \mathbb{Zp}^*
- Easy to check if an element is a QR or not: check if raising to |G|/2 gives 1 (identity element)

- **Consider \mathbb{QR}_P^* : subgroup of Quadratic Residues ("even power" elements) of \mathbb{Z}_P^*
- Easy to check if an element is a QR or not: check if raising to |G|/2 gives 1 (identity element)
- o DDH does not hold in \mathbb{Z}_{P}^{*} : g^{xy} is a QR w/ prob. 3/4; g^{z} is QR only w/ prob. 1/2.

- \circ Consider \mathbb{QR}_P^* : subgroup of Quadratic Residues ("even power" elements) of \mathbb{Z}_P^*
- Easy to check if an element is a QR or not: check if raising to |G|/2 gives 1 (identity element)
- DDH does not hold in \mathbb{Z}_P^* : g^{xy} is a QR w/ prob. 3/4; g^z is QR only w/ prob. 1/2.
- How about in QRp*?

- **Consider \mathbb{QR}_P^* : subgroup of Quadratic Residues ("even power" elements) of \mathbb{Z}_P^*
- Easy to check if an element is a QR or not: check if raising to |G|/2 gives 1 (identity element)
- DDH does not hold in \mathbb{Z}_P^* : g^{xy} is a QR w/ prob. 3/4; g^z is QR only w/ prob. 1/2.
- How about in QRp*?
 - \circ Could check if cubic residue in \mathbb{Z}_{P}^{*} !

- **Consider \mathbb{QR}_P^* : subgroup of Quadratic Residues ("even power" elements) of \mathbb{Z}_P^*
- Easy to check if an element is a QR or not: check if raising to |G|/2 gives 1 (identity element)
- DDH does not hold in \mathbb{Z}_P^* : g^{xy} is a QR w/ prob. 3/4; g^z is QR only w/ prob. 1/2.
- How about in QRp*?
 - \bullet Could check if cubic residue in \mathbb{Z}_{P}^{*} !
 - But if (P-1) is not divisible by 3, all elements in \mathbb{Z}_P^* are cubic residues!

- **Consider \mathbb{QR}_P^* : subgroup of Quadratic Residues ("even power" elements) of \mathbb{Z}_P^*
- Easy to check if an element is a QR or not:
 check if raising to |G|/2 gives 1 (identity element)
- DDH does not hold in \mathbb{Z}_P^* : g^{xy} is a QR w/ prob. 3/4; g^z is QR only w/ prob. 1/2.
- How about in QRp*?
 - \circ Could check if cubic residue in \mathbb{Z}_{P}^{*} !
 - But if (P-1) is not divisible by 3, all elements in \mathbb{Z}_P^* are cubic residues!
 - Safe" if (P-1)/2 is also prime: P called a safe-prime

- \circ Consider \mathbb{QR}_P^* : subgroup of Quadratic Residues ("even power" elements) of \mathbb{Z}_P^*
- Easy to check if an element is a QR or not:
 check if raising to |G|/2 gives 1 (identity element)
- 9 8 7 9 5 6 2 4 3
- o DDH does not hold in \mathbb{Z}_P^* : g^{xy} is a QR w/ prob. 3/4; g^z is QR only w/ prob. 1/2.

 DDH Candidate:
- How about in QRp*?
 - Could check if cubic residue in \(\mathbb{Z}_P^*\)!
- QRp*
 where P is a safe-prime
- But if (P-1) is not divisible by 3, all elements in \mathbb{Z}_P^* are cubic residues!
- Safe" if (P-1)/2 is also prime: P called a safe-prime

Based on DH key-exchange

- Based on DH key-exchange
 - Alice, Bob generate a key using DH key-exchange

- Based on DH key-exchange
 - Alice, Bob generate a key using DH key-exchange

- Based on DH key-exchange
 - Alice, Bob generate a key using DH key-exchange

- Based on DH key-exchange
 - Alice, Bob generate a key using DH key-exchange

- Based on DH key-exchange
 - Alice, Bob generate a key using DH key-exchange

- Based on DH key-exchange
 - Alice, Bob generate a key using DH key-exchange

- Based on DH key-exchange
 - Alice, Bob generate a key using DH key-exchange

- Then use it as a one-time pad
- Bob's "message" in the keyexchange is his PK

- Based on DH key-exchange
 - Alice, Bob generate a key using DH key-exchange

- Then use it as a one-time pad
- Bob's "message" in the keyexchange is his PK
- Alice's message in the keyexchange and the ciphertext of the one-time pad together form a single ciphertext

- Based on DH key-exchange
 - Alice, Bob generate a key using DH key-exchange

- Then use it as a one-time pad
- Bob's "message" in the keyexchange is his PK
- Alice's message in the keyexchange and the ciphertext of the one-time pad together form a single ciphertext

KeyGen: PK=(G,g,Y), SK=(G,g,y)

- Based on DH key-exchange
 - Alice, Bob generate a key using DH key-exchange

- Then use it as a one-time pad
- Bob's "message" in the keyexchange is his PK
- Alice's message in the keyexchange and the ciphertext of the one-time pad together form a single ciphertext

KeyGen:
$$PK=(G,g,Y)$$
, $SK=(G,g,y)$
 $Enc_{(G,q,Y)}(M) = (X=q^x, C=MY^x)$

- Based on DH key-exchange
 - Alice, Bob generate a key using DH key-exchange

- Then use it as a one-time pad
- Bob's "message" in the keyexchange is his PK
- Alice's message in the keyexchange and the ciphertext of the one-time pad together form a single ciphertext

KeyGen: PK=(G,g,Y), SK=(G,g,y)
Enc_(G,g,Y)(M) = (X=g^x, C=MY^x)
Dec_(G,g,y)(X,C) =
$$CX^{-y}$$

- Based on DH key-exchange
 - Alice, Bob generate a key using DH key-exchange

- Then use it as a one-time pad
- Bob's "message" in the keyexchange is his PK
- Alice's message in the keyexchange and the ciphertext of the one-time pad together form a single ciphertext

KeyGen: PK=(G,g,Y), SK=(G,g,y)
Enc_(G,g,Y)(M) = (X=g^x, C=MY^x)
Dec_(G,g,y)(X,C) =
$$CX^{-y}$$

KeyGen uses GroupGen to get (G,g)

El Gamal Encryption

- Based on DH key-exchange
 - Alice, Bob generate a key using DH key-exchange

- Then use it as a one-time pad
- Bob's "message" in the keyexchange is his PK
- Alice's message in the keyexchange and the ciphertext of the one-time pad together form a single ciphertext

KeyGen: PK=(G,g,Y), SK=(G,g,y)
Enc_(G,g,Y)(M) = (X=g^x, C=MY^x)
Dec_(G,g,y)(X,C) =
$$CX^{-y}$$

- KeyGen uses GroupGen to get (G,g)
- x, y uniform from [|G|]

El Gamal Encryption

- Based on DH key-exchange
 - Alice, Bob generate a key using DH key-exchange

- Then use it as a one-time pad
- Bob's "message" in the keyexchange is his PK
- Alice's message in the keyexchange and the ciphertext of the one-time pad together form a single ciphertext

KeyGen: PK=(G,g,Y), SK=(G,g,y)
Enc_(G,g,Y)(M) = (X=g^x, C=MY^x)
Dec_(G,g,y)(X,C) =
$$CX^{-y}$$

- KeyGen uses GroupGen to get (G,g)
- x, y uniform from [|G|]
- Message encoded into group element, and decoded

El Gamal IND-CPA secure if DDH holds (for the collection of groups used)

- El Gamal IND-CPA secure if DDH holds (for the collection of groups used)
 - Construct a DDH adversary A* given an IND-CPA adversary A

- El Gamal IND-CPA secure if DDH holds (for the collection of groups used)
 - Construct a DDH adversary A* given an IND-CPA adversary A

- El Gamal IND-CPA secure if DDH holds (for the collection of groups used)
 - Construct a DDH adversary A* given an IND-CPA adversary A
 - - But sets $PK=(G,g,g^y)$ and $Enc(M_b)=(g^x,M_bg^z)$

- El Gamal IND-CPA secure if DDH holds (for the collection of groups used)
 - Construct a DDH adversary A* given an IND-CPA adversary A
 - - But sets $PK=(G,g,g^y)$ and $Enc(M_b)=(g^x,M_bg^z)$
 - Outputs 1 if experiment outputs 1 (i.e. if b=b')

- El Gamal IND-CPA secure if DDH holds (for the collection of groups used)
 - Construct a DDH adversary A* given an IND-CPA adversary A
 - - But sets $PK=(G,g,g^y)$ and $Enc(M_b)=(g^x,M_bg^z)$
 - Outputs 1 if experiment outputs 1 (i.e. if b=b')
 - When z=random, A* outputs 1 with probability = 1/2

- El Gamal IND-CPA secure if DDH holds (for the collection of groups used)
 - Construct a DDH adversary A* given an IND-CPA adversary A
 - - But sets $PK=(G,g,g^y)$ and $Enc(M_b)=(g^x,M_bg^z)$
 - Outputs 1 if experiment outputs 1 (i.e. if b=b')
 - When z=random, A* outputs 1 with probability = 1/2
 - When z=xy, exactly IND-CPA experiment: A^* outputs 1 with probability = 1/2 + advantage of A.

Today

Today

- Public Key Encryption
 - CPA security
 - Diffie-Hellman Key Exchange & El Gamal Encryption
 - DDH Assumption
 - Candidate group: QRp* where P is a "safe prime"

Today

- Public Key Encryption
 - CPA security
 - Diffie-Hellman Key Exchange & El Gamal Encryption
 - DDH Assumption
 - Candidate group: QRp* where P is a "safe prime"
- Next: Building CPA secure PKE, more generally.
 CCA security for PKE.