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KeyGen outputs            
(PK,SK) ← PK ×SK

Enc: M ×PK →C

Dec: C ×SK → M 

Correctness

∀(PK,SK) ∈ Range(KeyGen), 
Dec( Enc(m,PK), SK) = m

Security (IND-CPA, PKE version)

Shared/Symmetric-Key 
Encryption  

(a.k.a. private-key 
encryption)

a.k.a. asymmetric-key encryption
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Experiment picks a random bit b. It also 
runs KeyGen to get a key (PK,SK). Adv 
given PK


Adv sends two messages m0, m1 to 
the experiment


Expt returns Enc(mb,K) to the 
adversary


Adversary returns a guess b’


Experiment outputs 1 iff b’=b
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!
PK

Enc

b←{0,1}


m0,m1

mb

Enc(mb,PK)

b’

Yes/No

PK

b’=b?

Note: no multiple accesses. 
For PKE, it doesn’t change the 

security definition
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Perfect Secrecy?

No perfectly secret and correct PKE (even for one-time encryption)

Public-key and ciphertext (the total shared information between 
Alice and Bob at the end) should together have entire 
information about the message

Intuition: If Eve thinks Bob could decrypt it as two messages 
based on different SKs, Alice should be concerned too

i.e., Alice conveys same information to Bob and Eve

[Exercise]

PKE only with computational security

Unless assumptions of 
imperfect 

eavesdropping
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A candidate for how Alice and Bob could generate a 
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Random x
X

Random y
Y

X=gx

Output Yx Output Xy

Y=gy

gx, gy

gxy ??
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Why DH-Key-exchange 
could be secure

Given gx, gy for random x, y, gxy should be “hidden”

i.e., could still be used as a pseudorandom element

i.e., (gx, gy, gxy) ≈ (gx, gy, R)

Is that reasonable to expect?

Depends on the “group”
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(for us) commutative 

Examples: Z = (integers, +) (this is an infinite group),  

ZN = (integers modulo N, + mod N),  

Gn = (Cartesian product of a group G, coordinate-wise operation)

Order of a group G: |G| = number of elements in G

For any a∈G,  a|G| = a＊a＊...＊a (|G| times) = identity

Finite Cyclic group (in multiplicative notation): there  
is one element g such that G = {g0, g1, g2, ... g|G|-1}

Prototype: ZN (additive group), with g=1

or any g s.t. gcd(g,N) = 1
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Numbers in {0,..,N-1} which have a multiplicative inverse mod N

If N is prime, ZN
*  is a cyclic group, of order N-1

e.g. Z5
* = {1,2,3,4} is generated by 2 (as 1,2,4,3), and 

by 3 (as 1,3,4,2)

(Also cyclic for certain other values of N)
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Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated 
by g: DLg(X) := unique x such that X = gx  (x ∈ {0,1,...,|G|-1})

In a (computationally efficient) group, given standard representation 
of g and x, can efficiently find the standard representation of X=gx 
(How?)

But given X and g, may not be easy to find x (depending on G)
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Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated 
by g: DLg(X) := unique x such that X = gx  (x ∈ {0,1,...,|G|-1})

In a (computationally efficient) group, given standard representation 
of g and x, can efficiently find the standard representation of X=gx 
(How?)

But given X and g, may not be easy to find x (depending on G)

DLA: Every PPT Adv has negligible success probability in the    
DL Expt: (G,g)←GroupGen; X←G; Adv(G,g,X)→z; gz=X?

If DLA broken, then Diffie-Hellman key-exchange broken

Eve gets x, y from gx, gy (sometimes) and can compute gxy herself

A “key-recovery” attack

Note: could break pseudorandomness without breaking DLA too

Discrete Log Assumption Repeated 
squaring

OWF collection: 
Raise(x;G,g)  
 = (gx;G,g)



Decisional Diffie-Hellman 
(DDH) Assumption



Decisional Diffie-Hellman 
(DDH) Assumption

{(gx, gy, gxy)}(G,g)←GroupGen; x,y←[|G|]  ≈ {(gx, gy, gr)}(G,g)←GroupGen; x,y,r←[|G|]



Decisional Diffie-Hellman 
(DDH) Assumption

{(gx, gy, gxy)}(G,g)←GroupGen; x,y←[|G|]  ≈ {(gx, gy, gr)}(G,g)←GroupGen; x,y,r←[|G|]

At least as strong as DLA



Decisional Diffie-Hellman 
(DDH) Assumption

{(gx, gy, gxy)}(G,g)←GroupGen; x,y←[|G|]  ≈ {(gx, gy, gr)}(G,g)←GroupGen; x,y,r←[|G|]

At least as strong as DLA

If DDH assumption holds, then DLA holds [Why?]



Decisional Diffie-Hellman 
(DDH) Assumption

{(gx, gy, gxy)}(G,g)←GroupGen; x,y←[|G|]  ≈ {(gx, gy, gr)}(G,g)←GroupGen; x,y,r←[|G|]

At least as strong as DLA

If DDH assumption holds, then DLA holds [Why?]

But possible that DLA holds and DDH assumption doesn’t



Decisional Diffie-Hellman 
(DDH) Assumption

{(gx, gy, gxy)}(G,g)←GroupGen; x,y←[|G|]  ≈ {(gx, gy, gr)}(G,g)←GroupGen; x,y,r←[|G|]

At least as strong as DLA

If DDH assumption holds, then DLA holds [Why?]

But possible that DLA holds and DDH assumption doesn’t

e.g.: DLA is widely assumed to hold in Zp
* (p prime), but 

DDH assumption doesn’t hold there!
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(“even power” elements) of ZP
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Easy to check if an element is a QR or not:          
check if raising to |G|/2 gives 1 (identity element)

DDH does not hold in ZP
* : gxy is a QR w/ prob. 3/4;    

gz is QR only w/ prob. 1/2.

How about in QRP
*?

Could check if cubic residue in ZP
*!

But if (P-1) is not divisible by 3, all elements in ZP
* 

are cubic residues!

“Safe” if (P-1)/2 is also prime: P called a safe-prime
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where P is a safe-prime
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Based on DH key-exchange

Alice, Bob generate a key 
using DH key-exchange

Then use it as a one-time pad

Bob’s “message” in the key-
exchange is his PK

Alice’s message in the key-
exchange and the ciphertext of 
the one-time pad together form 
a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)

  Enc(G,g,Y)(M) = (X=gx, C=MYx)

  Dec(G,g,y)(X,C) = CX-y

• KeyGen uses GroupGen to get (G,g)
• x, y uniform from [|G|]
• Message encoded into group element, and  
decoded
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Security of El Gamal
El Gamal IND-CPA secure if DDH holds (for the collection of 
groups used)

Construct a DDH adversary A* given an IND-CPA adversary A

A*(G,g; gx,gy,gz)  (where (G,g) ← GroupGen, x,y random and      

z=xy or random) plays the IND-CPA experiment with A:

But sets PK=(G,g,gy) and Enc(Mb)=(gx,Mbgz)

Outputs 1 if experiment outputs 1 (i.e. if b=b’)

When z=random, A* outputs 1 with probability = 1/2

When z=xy, exactly IND-CPA experiment: A* outputs 1 with 
probability = 1/2 + advantage of A.
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Next: Building CPA secure PKE, more generally.  
       CCA security for PKE.


