Symmetric-Key Encryption: constructions
Lecture 4
OWF, PRG, Stream Cipher
One-Way Function, Hardcore Predicate
One-Way Function, Hardcore Predicate

\(f_k : \{0,1\}^k \rightarrow \{0,1\}^{n(k)} \) is a one-way function (OWF) if

- \(f \) is polynomial time computable
- For all (non-uniform) PPT adversary, probability of success in the "OWF experiment" is negligible
- But \(x \) may not be completely hidden by \(f(x) \)

RECALL
One-Way Function, Hardcore Predicate

\(f_k : \{0,1\}^k \rightarrow \{0,1\}^{n(k)} \) is a one-way function (OWF) if

- \(f \) is polynomial time computable
- For all (non-uniform) PPT adversary, probability of success in the “OWF experiment” is negligible
- But \(x \) may not be completely hidden by \(f(x) \)

\(B \) is a hardcore predicate of a OWF \(f \) if

- \(B \) is polynomial time computable
- For all (non-uniform) PPT adversary, advantage in the Hardcore-predicate experiment is negligible
- \(B(x) \) remains “completely” hidden, given \(f(x) \)
One-Way Function
Candidates
One-Way Function Candidates

Integer factorization:
One-Way Function Candidates

Integer factorization:

\[f_{\text{mult}}(x, y) = x \cdot y \]
One-Way Function Candidates

Integer factorization:

\[f_{\text{mult}}(x,y) = x \cdot y \]

Input distribution: \((x,y)\) random \(k\)-bit primes
One-Way Function Candidates

- Integer factorization:
 \[f_{\text{mult}}(x,y) = x \cdot y \]
- Input distribution: \((x,y)\) random \(k\)-bit primes
- Fact: taking input domain to be the set of all \(k\)-bit integers, with input distribution being uniform over it, will also work (if \(k\)-bit primes distribution works)
One-Way Function Candidates

Integer factorization:

\[f_{\text{mult}}(x,y) = x \cdot y \]

Input distribution: (x,y) random k-bit primes

Fact: taking input domain to be the set of all k-bit integers, with input distribution being uniform over it, will also work (if k-bit primes distribution works)

Important that we require \(|x|=|y|=k\), not \(|x \cdot y|=k\) (otherwise, 2 is a valid factor of \(x \cdot y\) with \(3/4\) probability)
One-Way Function Candidates
One-Way Function Candidates

Solving Subset Sum:
One-Way Function Candidates

Solving Subset Sum:

\[f_{\text{subsum}}(x_1...x_k, S) = (x_1...x_k, \sum_{i \in S} x_i) \]
One-Way Function Candidates

Solving Subset Sum:

\[f_{\text{subsum}}(x_1...x_k, S) = (x_1...x_k, \sum_{i \in S} x_i) \]

Input distribution: \(x_i \) k-bit integers, \(S \subseteq \{1...k\} \). Uniform
One-Way Function Candidates

Solving Subset Sum:

- $f_{\text{subsum}}(x_1...x_k, S) = (x_1...x_k, \sum_{i \in S} x_i)$

Input distribution: x_i k-bit integers, $S \subseteq \{1...k\}$. Uniform

Inverting f_{subsum} known to be NP-complete, but assuming that it is a OWF is “stronger” than assuming $P \neq NP$
One-Way Function Candidates
One-Way Function Candidates

Rabin OWF: $f_{\text{Rabin}}(x; n) = (x^2 \mod n, n)$, where $n = pq$, and p, q are random k-bit primes, and x is uniform from $\{0...n\}$
One-Way Function Candidates

Rabin OWF: \(f_{Rabin}(x; n) = (x^2 \mod n, n) \), where \(n = pq \), and \(p, q \) are random \(k \)-bit primes, and \(x \) is uniform from \(\{0...n\} \)

Note: \(n \) is part of the input and the output (i.e., \(n \) is “public”). This OWF can be used as a “OWF collection” indexed by \(n \) (many functions for the same \(k \), using different \(n \)
One-Way Function Candidates

Rabin OWF: \(f_{\text{Rabin}}(x; n) = (x^2 \mod n, n) \), where \(n = pq \), and \(p, q \) are random \(k \)-bit primes, and \(x \) is uniform from \(\{0...n\} \)

Note: \(n \) is part of the input and the output (i.e., \(n \) is “public”). This OWF can be used as a “OWF collection” indexed by \(n \) (many functions for the same \(k \), using different \(n \))

More: e.g, **Discrete Logarithm** (uses as index: a group & generator), **RSA function** (uses as index: \(n=pq \) & an exponent \(e \)).
One-Way Function Candidates

Rabin OWF: $f_{\text{Rabin}}(x; n) = (x^2 \mod n, n)$, where $n = pq$, and p, q are random k-bit primes, and x is uniform from $\{0...n\}$

Note: n is part of the input and the output (i.e., n is “public”). This OWF can be used as a “OWF collection” indexed by n (many functions for the same k, using different n).

More: e.g, Discrete Logarithm (uses as index: a group & generator), RSA function (uses as index: $n=pq$ & an exponent e).

Later
Hardcore Predicates
Hardcore Predicates

For candidate OWFs, often hardcore predicates known
Hardcore Predicates

For candidate OWFs, often hardcore predicates known

e.g. if $f_{\text{Rabin}}(x;n)$ (with certain restrictions on sampling x and n) is a OWF, then $\text{LSB}(x)$ is a hardcore predicate for it
Hardcore Predicates

For candidate OWFs, often hardcore predicates known
e.g. if \(f_{\text{Rabin}}(x;n) \) (with certain restrictions on sampling \(x \) and \(n \)) is a OWF, then \(\text{LSB}(x) \) is a hardcore predicate for it

Reduction: Given an algorithm for finding \(\text{LSB}(x) \) from \(f_{\text{Rabin}}(x;n) \) for random \(x \), show how to invert \(f_{\text{Rabin}} \)
Goldreich-Levin Predicate
Goldreich-Levin Predicate

Given any OWF f, can slightly modify it to get a OWF g_f such that
Goldreich-Levin Predicate

Given any OWF f, can slightly modify it to get a OWF g_f such that g_f has a simple hardcore predicate.
Goldreich-Levin Predicate

Given any OWF \(f \), can slightly modify it to get a OWF \(g_f \) such that:

- \(g_f \) has a simple hardcore predicate
- \(g_f \) is almost as efficient as \(f \); is a permutation if \(f \) is one
Goldreich-Levin Predicate

Given any OWF f, can slightly modify it to get a OWF g_f such that

- g_f has a simple hardcore predicate
- g_f is almost as efficient as f; is a permutation if f is one
- $g_f(x,r) = (f(x), r)$, where $|r| = |x|$
Goldreich-Levin Predicate

Given any OWF f, can slightly modify it to get a OWF g_f such that

- g_f has a simple hardcore predicate
- g_f is almost as efficient as f; is a permutation if f is one
- $g_f(x, r) = (f(x), r)$, where $|r| = |x|$

Input distribution: x as for f, and r independently random
Goldreich-Levin Predicate

Given any OWF \(f \), can slightly modify it to get a OWF \(g_f \) such that:

- \(g_f \) has a simple hardcore predicate
- \(g_f \) is almost as efficient as \(f \); is a permutation if \(f \) is one

\[
g_f(x,r) = (f(x), r), \text{ where } |r|=|x|
\]

Input distribution: \(x \) as for \(f \), and \(r \) independently random

GL-predicate: \(B(x,r) = \langle x, r \rangle \) (dot product of bit vectors)
Goldreich-Levin Predicate

Given any OWF f, can slightly modify it to get a OWF g_f such that:
- g_f has a simple hardcore predicate
- g_f is almost as efficient as f; is a permutation if f is one
- $g_f(x, r) = (f(x), r)$, where $|r| = |x|$
- Input distribution: x as for f, and r independently random
- GL-predicate: $B(x, r) = \langle x, r \rangle$ (dot product of bit vectors)
- Can show that a predictor of $B(x, r)$ with non-negligible advantage can be turned into an inversion algorithm for f
Goldreich-Levin Predicate

Given any OWF f, can slightly modify it to get a OWF g_f such that:

- g_f has a simple hardcore predicate
- g_f is almost as efficient as f; is a permutation if f is one

$$g_f(x,r) = (f(x), r), \text{ where } |r| = |x|$$

Input distribution: x as for f, and r independently random

GL-predicate: $B(x,r) = \langle x, r \rangle$ (dot product of bit vectors)

Can show that a predictor of $B(x,r)$ with non-negligible advantage can be turned into an inversion algorithm for f

Predictor for $B(x,r)$ is a “noisy channel” through which x, encoded as $(\langle x,0 \rangle, \langle x,1 \rangle \ldots \langle x,2^{|x|-1} \rangle)$ (Walsh-Hadamard code), is transmitted. Can recover x by error-correction (local list decoding)
Pseudorandomness
Generator (PRG)

Expand a short random seed to a "random-looking" string

So that we can build "stream ciphers" (to encrypt a stream of data, using just one short shared key)

First, PRG with fixed stretch: \(G_k: \{0,1\}^k \rightarrow \{0,1\}^{n(k)}, n(k) > k\)

Random-looking:

Next-Bit Unpredictability: PPT adversary can't predict \(i^{th}\) bit of a sample from its first \((i-1)\) bits (for every \(i \in \{0,1,...,n-1\}\))

A "more correct" definition:

PPT adversary can't distinguish between a sample from \(\{G_k(x)\}_{x \leftarrow \{0,1\}^k}\) and one from \(\{0,1\}^{n(k)}\)

Turns out they are equivalent!
Computational Indistinguishability
Computational Indistinguishability

Distribution ensemble: A sequence of distributions (typically on a growing sample-space) indexed by k. Denoted \(\{X_k\} \)
Computational Indistinguishability

Distribution ensemble: A sequence of distributions (typically on a growing sample-space) indexed by k. Denoted $\{X_k\}$

E.g., ciphertext distributions, indexed by security parameter
Computational Indistinguishability

Distribution ensemble: A sequence of distributions (typically on a growing sample-space) indexed by k. Denoted $\{X_k\}$

- E.g., ciphertext distributions, indexed by security parameter

Two distribution ensembles $\{X_k\}$ and $\{X'_k\}$ are said to be computationally indistinguishable if
Computational Indistinguishability

Distribution ensemble: A sequence of distributions (typically on a growing sample-space) indexed by k. Denoted $\{X_k\}$

- E.g., ciphertext distributions, indexed by security parameter

Two distribution ensembles $\{X_k\}$ and $\{X'_k\}$ are said to be **computationally indistinguishable** if

- \exists negligible $\nu(k)$ such that \forall (non-uniform) PPT distinguisher D
Computational Indistinguishability

Distribution ensemble: A sequence of distributions (typically on a growing sample-space) indexed by k. Denoted \(\{X_k\} \)

E.g., ciphertext distributions, indexed by security parameter

Two distribution ensembles \(\{X_k\} \) and \(\{X'_k\} \) are said to be computationally indistinguishable if

\[\exists \text{ negligible } \nu(k) \text{ such that } \forall \text{ (non-uniform) PPT distinguisher } D \]

\[| \Pr_{x \sim X_k}[D(x) = 1] - \Pr_{x \sim X'_k}[D(x) = 1] | \leq \nu(k) \]
Computational Indistinguishability

Distribution ensemble: A sequence of distributions (typically on a growing sample-space) indexed by k. Denoted $\{X_k\}$

E.g., ciphertext distributions, indexed by security parameter

Two distribution ensembles $\{X_k\}$ and $\{X'_k\}$ are said to be computationally indistinguishable if

$$\exists \text{ negligible } \nu(k) \text{ such that } \forall \text{ (non-uniform) PPT distinguisher } D$$

$$| \Pr_{x \leftarrow X_k}[D(x)=1] - \Pr_{x \leftarrow X'_k}[D(x)=1] | \leq \nu(k)$$

$$\Delta_{\text{PPT}}(X_k, X'_k) := \max_{\text{PPT } D} | \Pr_{x \leftarrow X_k}[D(x)=1] - \Pr_{x \leftarrow X'_k}[D(x)=1] |$$
Computational Indistinguishability

Distribution ensemble: A sequence of distributions (typically on a growing sample-space) indexed by k. Denoted $\{X_k\}$

E.g., ciphertext distributions, indexed by security parameter

Two distribution ensembles $\{X_k\}$ and $\{X'_k\}$ are said to be computationally indistinguishable if

\exists negligible $\nu(k)$ such that \forall (non-uniform) PPT distinguisher D

$| \Pr_{x \leftarrow X_k}[D(x) = 1] - \Pr_{x \leftarrow X'_k}[D(x) = 1] | \leq \nu(k)$

$\Delta_{\text{PPT}}(X_k, X'_k) := \max_{\text{PPT } D} | \Pr_{x \leftarrow X_k}[D(x) = 1] - \Pr_{x \leftarrow X'_k}[D(x) = 1] |$
Computational Indistinguishability
Computational Indistinguishability

Two distribution ensembles \(\{X_k\} \) and \(\{X'_k\} \) are said to be computationally indistinguishable if
Computational Indistinguishability

Two distribution ensembles \(\{X_k\} \) and \(\{X'_k\} \) are said to be computationally indistinguishable if

\[\exists \text{ negligible } \nu(k) \text{ such that } \Delta_{\text{PPT}}(X_k, X'_k) \leq \nu(k) \]
Computational Indistinguishability

Two distribution ensembles \{X_k\} and \{X'_k\} are said to be computationally indistinguishable if

\[\exists \text{ negligible } \nu(k) \text{ such that } \Delta_{\text{PPT}}(X_k, X'_k) \leq \nu(k) \]

\[\Delta_{\text{PPT}}(X_k, X'_k) := \sup_{\text{PPT } D} \left| \Pr_{x \leftarrow X_k}[D(x) = 1] - \Pr_{x \leftarrow X'_k}[D(x) = 1] \right| \]
Computational Indistinguishability

Two distribution ensembles \(\{X_k\} \) and \(\{X'_k\} \) are said to be computationally indistinguishable if

\[\exists \text{ negligible } \nu (k) \text{ such that } \Delta_{\text{PPT}}(X_k, X'_k) \leq \nu (k) \]

\[\Delta_{\text{PPT}}(X_k, X'_k) := \sup_{\text{PPT } D} | \Pr_{x \leftarrow X_k}[D(x)=1] - \Pr_{x \leftarrow X'_k}[D(x)=1] | \]
Computational Indistinguishability

Two distribution ensembles \(\{X_k\} \) and \(\{X'_k\} \) are said to be computationally indistinguishable if

\[
\exists \text{ negligible } \nu(k) \text{ such that } \Delta_{\text{PPT}}(X_k, X'_k) \leq \nu(k)
\]

\[
\Delta_{\text{PPT}}(X_k, X'_k) := \sup_{\text{PPT } D} | \Pr_{x \sim X_k}[D(x)=1] - \Pr_{x \sim X'_k}[D(x)=1] |
\]

cf.: Two distribution ensembles \(\{X_k\} \) and \(\{X'_k\} \) are said to be statistically indistinguishable if \(\Delta(X_k, X'_k) \leq \nu(k) \)
Computational Indistinguishability

Two distribution ensembles \(\{X_k\} \) and \(\{X'_k\} \) are said to be computationally indistinguishable if

\[\exists \text{ negligible } \nu(k) \text{ such that } \Delta_{\text{PPT}}(X_k, X'_k) \leq \nu(k) \]

\[\Delta_{\text{PPT}}(X_k, X'_k) := \sup_{\text{PPT } D} | \Pr_{x \leftarrow X_k}[D(x) = 1] - \Pr_{x \leftarrow X'_k}[D(x) = 1] | \]

cf.: Two distribution ensembles \(\{X_k\} \) and \(\{X'_k\} \) are said to be statistically indistinguishable if \(\Delta(X_k, X'_k) \leq \nu(k) \)

\[\Delta(X_k, X'_k) := \max_T | \Pr_{x \leftarrow X_k}[T(x) = 1] - \Pr_{x \leftarrow X'_k}[T(x) = 1] | \]
Computational Indistinguishability

Two distribution ensembles \(\{X_k\} \) and \(\{X'_k\} \) are said to be computationally indistinguishable if

\[\exists \text{ negligible } \nu(k) \text{ such that } \Delta_{\text{PPT}}(X_k, X'_k) \leq \nu(k) \]

\[\Delta_{\text{PPT}}(X_k, X'_k) := \sup_{\text{PPT } D} | \Pr_{x \leftarrow X_k}[D(x)=1] - \Pr_{x \leftarrow X'_k}[D(x)=1] | \]

cf.: Two distribution ensembles \(\{X_k\} \) and \(\{X'_k\} \) are said to be statistically indistinguishable if \(\Delta(X_k, X'_k) \leq \nu(k) \)

\[\Delta(X_k, X'_k) := \max_{T} | \Pr_{x \leftarrow X_k}[T(x)=1] - \Pr_{x \leftarrow X'_k}[T(x)=1] | \]

If \(X_k, X'_k \) are short (say a single bit), \(X_k \approx X'_k \) iff \(X_k, X'_k \) are statistically indistinguishable (Exercise)
Pseudorandomness Generator (PRG)
Pseudorandomness Generator (PRG)

Takes a short seed and (deterministically) outputs a long string
Pseudorandomness
Generator (PRG)

Takes a short seed and (deterministically) outputs a long string

\[G_k : \{0,1\}^k \rightarrow \{0,1\}^{n(k)} \text{ where } n(k) > k \]
Pseudorandomness Generator (PRG)

Takes a short seed and (deterministically) outputs a long string

\[G_k : \{0,1\}^k \rightarrow \{0,1\}^{n(k)} \text{ where } n(k) > k \]

Security definition: Output distribution induced by random input seed should be “pseudorandom”
Pseudorandomness
Generator (PRG)

Takes a short seed and (deterministically) outputs a long string

\[G_k: \{0,1\}^k \rightarrow \{0,1\}^{n(k)} \text{ where } n(k) > k \]

Security definition: Output distribution induced by random input seed should be “pseudorandom”

i.e., Computationally indistinguishable from uniformly random
Pseudorandomness
Generator (PRG)

- Takes a short seed and (deterministically) outputs a long string
 \[G_k: \{0,1\}^k \rightarrow \{0,1\}^{n(k)} \text{ where } n(k) > k \]

- Security definition: Output distribution induced by random input seed should be "pseudorandom"
 - i.e., Computationally indistinguishable from uniformly random

 \[\{G_k(x)\}_{x \leftarrow \{0,1\}^k} \approx U_{n(k)} \]
Pseudorandomness Generator (PRG)

Takes a short seed and (deterministically) outputs a long string

\[G_k : \{0,1\}^k \rightarrow \{0,1\}^{n(k)} \text{ where } n(k) > k \]

Security definition: Output distribution induced by random input seed should be “pseudorandom”

i.e., \(\text{Computationally indistinguishable from uniformly random} \)

\[\{G_k(x)\}_{x \leftarrow \{0,1\}^k} \approx U_{n(k)} \]

Note: \(\{G_k(x)\}_{x \leftarrow \{0,1\}^k} \text{ cannot be statistically indistinguishable from } U_{n(k)} \text{ unless } n(k) \leq k \) (Exercise)
PRG from One-Way Permutations
PRG from One-Way Permutations

One-bit stretch PRG, G_k: $\{0,1\}^k \rightarrow \{0,1\}^{k+1}$
PRG from One-Way Permutations

One-bit stretch PRG, G_k: $\{0,1\}^k \rightarrow \{0,1\}^{k+1}$
PRG from One-Way Permutations

- One-bit stretch PRG, G_k: $\{0,1\}^k \rightarrow \{0,1\}^{k+1}$

- $G(x) = f(x) \circ B(x)$
PRG from One-Way Permutations

One-bit stretch PRG, $G_k: \{0,1\}^k \rightarrow \{0,1\}^{k+1}$

$G(x) = f(x) \circ B(x)$

Where $f: \{0,1\}^k \rightarrow \{0,1\}^k$ is a one-way permutation, and B a hardcore predicate for f
PRG from One-Way Permutations

- One-bit stretch PRG, \(G_k: \{0,1\}^k \rightarrow \{0,1\}^{k+1} \)

\[G(x) = f(x) \circ B(x) \]

Where \(f: \{0,1\}^k \rightarrow \{0,1\}^k \) is a one-way permutation, and \(B \) a hardcore predicate for \(f \)

For a random \(x \), \(f(x) \) is also random, and hence all of \(f(x) \) is next-bit unpredictable. \(B \) is a hardcore predicate, so \(B(x) \) remains unpredictable after seeing \(f(x) \)
PRG from One-Way Permutations

One-bit stretch PRG, $G_k: \{0,1\}^k \rightarrow \{0,1\}^{k+1}$

$G(x) = f(x) \circ B(x)$

Where $f: \{0,1\}^k \rightarrow \{0,1\}^k$ is a one-way permutation, and B a hardcore predicate for f

For a random x, $f(x)$ is also random, and hence all of $f(x)$ is next-bit unpredictable. B is a hardcore predicate, so $B(x)$ remains unpredictable after seeing $f(x)$

Important: holds only when the seed x is kept hidden, and is random
PRG from One-Way Permutations

One-bit stretch PRG, $G_k: \{0,1\}^k \rightarrow \{0,1\}^{k+1}$

$G(x) = f(x) \circ B(x)$

Where $f: \{0,1\}^k \rightarrow \{0,1\}^k$ is a one-way permutation, and B a hardcore predicate for f

For a random x, $f(x)$ is also random, and hence all of $f(x)$ is next-bit unpredictable. B is a hardcore predicate, so $B(x)$ remains unpredictable after seeing $f(x)$

Important: holds only when the seed x is kept hidden, and is random

... or pseudorandom
PRG from One-Way Permutations

One-bit stretch PRG, G_k: $\{0,1\}^k \rightarrow \{0,1\}^{k+1}$
PRG from One-Way Permutations

- One-bit stretch PRG, G_k: $\{0,1\}^k \rightarrow \{0,1\}^{k+1}$
- Increasing the stretch
PRG from One-Way Permutations

- One-bit stretch PRG, G_k: $\{0,1\}^k \rightarrow \{0,1\}^{k+1}$
- Increasing the stretch
- Can use part of the PRG output as a new seed
PRG from One-Way Permutations

- One-bit stretch PRG, G_k: $\{0,1\}^k \rightarrow \{0,1\}^{k+1}$
- Increasing the stretch
- Can use part of the PRG output as a new seed
PRG from One-Way Permutations

One-bit stretch PRG, G_k: $\{0,1\}^k \rightarrow \{0,1\}^{k+1}$

Increasing the stretch

Can use part of the PRG output as a new seed

If the intermediate seeds are never output, can keep stretching on demand (for any “polynomial length”)

Diagram:

- $R_k \rightarrow G \rightarrow G \rightarrow G \rightarrow G \rightarrow \ldots \rightarrow G$
- Each G box represents the function G_k for the respective seed R_k.
- The output of G_k is fed back as a new seed to G_{k+1}.
PRG from One-Way Permutations

One-bit stretch PRG, G_k: $\{0,1\}^k \rightarrow \{0,1\}^{k+1}$

Increasing the stretch

Can use part of the PRG output as a new seed

If the intermediate seeds are never output, can keep stretching on demand (for any “polynomial length”)

A stream cipher
One-time CPA-secure SKE with a Stream-Cipher
One-time CPA-secure SKE with a Stream-Cipher

-One-time Encryption with a stream-cipher:
One-time CPA-secure SKE with a Stream-Cipher

- One-time Encryption with a stream-cipher:
 - Generate a one-time pad from a short seed
One-time CPA-secure SKE with a Stream-Cipher

One-time Encryption with a stream-cipher:
- Generate a one-time pad from a short seed
- Can share just the seed as the key
One-time CPA-secure SKE with a Stream-Cipher

- One-time Encryption with a stream-cipher:
 - Generate a one-time pad from a short seed
 - Can share just the seed as the key
 - Mask message with the pseudorandom pad
One-time CPA-secure SKE with a Stream-Cipher

- One-time Encryption with a stream-cipher:
 - Generate a one-time pad from a short seed
 - Can share just the seed as the key
 - Mask message with the pseudorandom pad
One-time CPA-secure SKE with a Stream-Cipher

One-time Encryption with a stream-cipher:
- Generate a one-time pad from a short seed
- Can share just the seed as the key
- Mask message with the pseudorandom pad
- Decryption is symmetric: plaintext & ciphertext interchanged
One-time CPA-secure SKE with a Stream-Cipher

One-time Encryption with a stream-cipher:
- Generate a one-time pad from a short seed
- Can share just the seed as the key
- Mask message with the pseudorandom pad
- Decryption is symmetric: plaintext & ciphertext interchanged
- SC can spit out bits on demand, so the message can arrive bit by bit, and the length of the message doesn’t have to be a priori fixed
One-time CPA-secure SKE with a Stream-Cipher

One-time Encryption with a stream-cipher:
- Generate a one-time pad from a short seed
- Can share just the seed as the key
- Mask message with the pseudorandom pad
- Decryption is symmetric: plaintext & ciphertext interchanged
- SC can spit out bits on demand, so the message can arrive bit by bit, and the length of the message doesn’t have to be a priori fixed

Security: indistinguishability from using a truly random pad
One-time CPA-secure SKE with a Stream-Cipher

One-time Encryption with a stream-cipher:
- Generate a one-time pad from a short seed
- Can share just the seed as the key
- Mask message with the pseudorandom pad

Decryption is symmetric: plaintext & ciphertext interchanged
- SC can spit out bits on demand, so the message can arrive bit by bit, and the length of the message doesn’t have to be a priori fixed

Security: indistinguishability from using a truly random pad
One-time CPA-secure SKE with a Stream-Cipher
One-time CPA-secure SKE with a Stream-Cipher

In IDEAL experiment, consider simulator that uses a truly random string as the ciphertext
One-time CPA-secure SKE with a Stream-Cipher

In IDEAL experiment, consider simulator that uses a truly random string as the ciphertext

To show $\text{REAL} \approx \text{IDEAL}$
One-time CPA-secure SKE with a Stream-Cipher

In IDEAL experiment, consider simulator that uses a truly random string as the ciphertext.

To show $\text{REAL} \approx \text{IDEAL}$.

Consider an intermediate world, HYBRID:
One-time CPA-secure SKE with a Stream-Cipher

In IDEAL experiment, consider simulator that uses a truly random string as the ciphertext.

To show $\text{REAL} \approx \text{IDEAL}$.

Consider an intermediate world, HYBRID:

Like REAL, but Enc/Dec use a (long) truly random pad, instead of the output from the stream-cipher.
One-time CPA-secure SKE with a Stream-Cipher

In IDEAL experiment, consider simulator that uses a truly random string as the ciphertext.

To show $\text{REAL} \approx \text{IDEAL}$

Consider an intermediate world, HYBRID:

Like REAL, but Enc/Dec use a (long) truly random pad, instead of the output from the stream-cipher.

$\text{HYBRID} = \text{IDEAL}$ (recall perfect security of one-time pad)
One-time CPA-secure SKE with a Stream-Cipher

In IDEAL experiment, consider simulator that uses a truly random string as the ciphertext.

To show $\text{REAL} \approx \text{IDEAL}$.

Consider an intermediate world, HYBRID:

- Like REAL, but Enc/Dec use a (long) truly random pad, instead of the output from the stream-cipher.

$\text{HYBRID} = \text{IDEAL}$ (recall perfect security of one-time pad).

Claim: $\text{REAL} \approx \text{HYBRID}$
One-time CPA-secure SKE with a Stream-Cipher

In IDEAL experiment, consider simulator that uses a truly random string as the ciphertext.

To show \(\text{REAL} \approx \text{IDEAL} \)

Consider an intermediate world, HYBRID:

Like REAL, but Enc/Dec use a (long) truly random pad, instead of the output from the stream-cipher.

\(\text{HYBRID} = \text{IDEAL} \) (recall perfect security of one-time pad)

Claim: \(\text{REAL} \approx \text{HYBRID} \)

Consider the experiments as a system that accepts the pad from outside \((R' = SC(K) \text{ for a random } K, \text{ or truly random } R) \) and outputs the environment’s output. This system is PPT, and so can’t distinguish pseudorandom from random.
Story So Far
Story So Far

OWF, OWP, Hardcore predicates
Story So Far

- OWF, OWP, Hardcore predicates
- Output of a PRG on a random (hidden) seed is computationally indistinguishable from random
Story So Far

- OWF, OWP, Hardcore predicates
- Output of a PRG on a random (hidden) seed is computationally indistinguishable from random
- A PRG can be constructed from a OWP and a hardcore predicate.
Story So Far

- OWF, OWP, Hardcore predicates

- Output of a PRG on a random (hidden) seed is computationally indistinguishable from random

- A PRG can be constructed from a OWP and a hardcore predicate.

- Possible from OWF too, but more complicated. (And, many candidate OWFs are in fact permutations.)
Story So Far

- OWF, OWP, Hardcore predicates
- Output of a PRG on a random (hidden) seed is computationally indistinguishable from random
 - A PRG can be constructed from a OWP and a hardcore predicate.
 - Possible from OWF too, but more complicated. (And, many candidate OWFs are in fact permutations.)
- Useful in SKE: Can use PRG to stretch a short key to a long (one-time) pad. Or use as a Stream Cipher.
OWF, OWP, Hardcore predicates

Output of a PRG on a random (hidden) seed is computationally indistinguishable from random

A PRG can be constructed from a OWP and a hardcore predicate.

Possible from OWF too, but more complicated. (And, many candidate OWFs are in fact permutations.)

Useful in SKE: Can use PRG to stretch a short key to a long (one-time) pad. Or use as a Stream Cipher.

Next: Constructing a proper (multi-message) SKE scheme