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Lecture 15
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Homomorphic Encryption
Group Homomorphism: Two groups G and G’ are 
homomorphic if there exists a function (homomorphism) 
f:G→G’ such that for all x,y ∈ G,  f(x +G y) = f(x) +G’ f(y)

Homomorphic Encryption: A CPA secure encryption s.t.  
Dec (C +C D) = Dec(C) +M Dec(D) for ciphertexts C, D 

i.e. Enc(x) +C Enc(y) is like Enc(x +M y)

e.g. El Gamal: (gx1,m1Yx1) * (gx2,m2Yx2) = (gx3,m1m2Yx3)

Not covered: Fully Homomorphic Encryption, which supports 
ring homomorphism (addition and multiplication of messages)
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Often (but not always) another property is required of a 
homomorphic encryption scheme

Unlinkability

For any two ciphertexts cx=Enc(x) and cy=Enc(y), Add(cx,cy) 
should be identically distributed as Enc(x +M y). Add is a 
randomized operation

Alternately, a ReRand operation s.t. for all valid ciphertexts 
cx, ReRand(cx) is identically distributed as Enc(x)

Then, we can let Add(cx,cy) = ReRand(cx +c cy) where         
+c may be deterministic

Rerandomization useful even without homomorphism
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add(h1,h2)

m1+m2

E(m1), E(m2), ...

Add(c1,c2)

Considers only passive corruption

Functionality gives “handles” to messages posted; accepts 
requests for posting fresh messages, or derived messages

Unlinkability: Above, (honest-but-curious) receiver gets only 
the message m1+m2 in IDEAL; is not told if it is a fresh 
message or derived from other messages 
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Sender “multiplies” ci with xi:         
1*c:=ReRand(c), 0*c:=E(0)

Simulation for passive-corrupt 
receiver: set zb = E(xb) and 

z1-b = E(0)

Simulation for passive-corrupt
sender: Extract x0,x1 by 
setting both c0 and c1 to E(1)

An OT Protocol
(passive corruption)
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Private Information Retrieval
Setting: A server holds a large vector of values (“database”). 
Client wants to retrieve the value at a particular index i

Client wants privacy against an honest-but-curious server

Server has no security requirements

Trivial solution: Server sends the entire vector to the client

PIR: to do it with significantly less communication

Variant (we don’t look at): multiple-server PIR, with    
non-colluding servers

Tool: Additively homomorphic encryption
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ψ(m,r).ψ(m’,r’) = ψ(m+m’,r.r’)
IND-CPA secure under “Decisional Composite Residuosity” 
assumption: Given n=pq (but not p,q), ψ(0,rand) looks random 
(i.e. like ψ(rand,rand))
Unlinkability: ReRand(c) = c.Enc(0)

in Znin Zn2*

To ensure gcd(n,ϕ(n))=1
within 2x of each other
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Using additive homomorphic encryption (need not be unlinkable)

Client sends some encrypted representation of the index 
(need CPA security here)

Server operates on this representation (homomorphically) 
using the entire database, so that the message in the 
resulting encrypted data has the relevant answer (and 
maybe more). It sends this (short) encrypted data to client, 
who decrypts to get answer (depends on correctness here)

In the following: database values are integers in [0,m);   
homom. enc. over a group with an element 1 s.t. ord(1) ≥ m. 
For integer x and ciphertext c, define x*c using “repeated 
doubling”: 0*c = E(0); 1*c = c; (a+b)*c = Add( a*c, b*c ).
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to (s+1)log n bits.
IND-CPA secure under “Decisional Composite Residuosity” 
assumption: Given n=pq (but not p,q), ψ1(0,rand) looks random 
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Unlinkability: ReRand(c) = c.Enc(0) (using same s in Enc as for c)
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Threshold decryption: KeyGen protocol so that PK is public 
and SK shared; Decryption protocol that lets the parties 
decrypt a ciphertext keeping their SK shares private

(For active-security, also ZK proofs/proofs of knowledge)
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Say, an application needs to use addition modulo 10; can we use 
Paillier?

Suppose there is a bound on how many times the 
homomorphic operation will be carried out

Then, work with a suitably large modulus, so that no 
overflow occurs

But not unlinkable: 9+3 and 2 look different

Also suppose OK to reveal how many operations were done

Each time add a large random multiple of 10 (but not 
large enough to cause overflow): 9+3+10r and 2+10r 
are statistically close if r drawn from a large range
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Coming up: more applications - in voting
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