
Homomorphic Encryption
Lecture 15

And some applications

1

Homomorphic Encryption

2

Homomorphic Encryption
Group Homomorphism: Two groups G and G’ are
homomorphic if there exists a function (homomorphism)
f:G→G’ such that for all x,y ∈ G, f(x +G y) = f(x) +G’ f(y)

2

Homomorphic Encryption
Group Homomorphism: Two groups G and G’ are
homomorphic if there exists a function (homomorphism)
f:G→G’ such that for all x,y ∈ G, f(x +G y) = f(x) +G’ f(y)

Homomorphic Encryption: A CPA secure encryption s.t.
Dec (C +C D) = Dec(C) +M Dec(D) for ciphertexts C, D

2

Homomorphic Encryption
Group Homomorphism: Two groups G and G’ are
homomorphic if there exists a function (homomorphism)
f:G→G’ such that for all x,y ∈ G, f(x +G y) = f(x) +G’ f(y)

Homomorphic Encryption: A CPA secure encryption s.t.
Dec (C +C D) = Dec(C) +M Dec(D) for ciphertexts C, D

i.e. Enc(x) +C Enc(y) is like Enc(x +M y)

2

Homomorphic Encryption
Group Homomorphism: Two groups G and G’ are
homomorphic if there exists a function (homomorphism)
f:G→G’ such that for all x,y ∈ G, f(x +G y) = f(x) +G’ f(y)

Homomorphic Encryption: A CPA secure encryption s.t.
Dec (C +C D) = Dec(C) +M Dec(D) for ciphertexts C, D

i.e. Enc(x) +C Enc(y) is like Enc(x +M y)

e.g. El Gamal: (gx1,m1Yx1) * (gx2,m2Yx2) = (gx3,m1m2Yx3)

2

Homomorphic Encryption
Group Homomorphism: Two groups G and G’ are
homomorphic if there exists a function (homomorphism)
f:G→G’ such that for all x,y ∈ G, f(x +G y) = f(x) +G’ f(y)

Homomorphic Encryption: A CPA secure encryption s.t.
Dec (C +C D) = Dec(C) +M Dec(D) for ciphertexts C, D

i.e. Enc(x) +C Enc(y) is like Enc(x +M y)

e.g. El Gamal: (gx1,m1Yx1) * (gx2,m2Yx2) = (gx3,m1m2Yx3)

Not covered: Fully Homomorphic Encryption, which supports
ring homomorphism (addition and multiplication of messages)

2

Rerandomization

3

Rerandomization
Often (but not always) another property is required of a
homomorphic encryption scheme

3

Rerandomization
Often (but not always) another property is required of a
homomorphic encryption scheme

Unlinkability

3

Rerandomization
Often (but not always) another property is required of a
homomorphic encryption scheme

Unlinkability

For any two ciphertexts cx=Enc(x) and cy=Enc(y), Add(cx,cy)
should be identically distributed as Enc(x +M y). Add is a
randomized operation

3

Rerandomization
Often (but not always) another property is required of a
homomorphic encryption scheme

Unlinkability

For any two ciphertexts cx=Enc(x) and cy=Enc(y), Add(cx,cy)
should be identically distributed as Enc(x +M y). Add is a
randomized operation

Alternately, a ReRand operation s.t. for all valid ciphertexts
cx, ReRand(cx) is identically distributed as Enc(x)

3

Rerandomization
Often (but not always) another property is required of a
homomorphic encryption scheme

Unlinkability

For any two ciphertexts cx=Enc(x) and cy=Enc(y), Add(cx,cy)
should be identically distributed as Enc(x +M y). Add is a
randomized operation

Alternately, a ReRand operation s.t. for all valid ciphertexts
cx, ReRand(cx) is identically distributed as Enc(x)

Then, we can let Add(cx,cy) = ReRand(cx +c cy) where
+c may be deterministic

3

Rerandomization
Often (but not always) another property is required of a
homomorphic encryption scheme

Unlinkability

For any two ciphertexts cx=Enc(x) and cy=Enc(y), Add(cx,cy)
should be identically distributed as Enc(x +M y). Add is a
randomized operation

Alternately, a ReRand operation s.t. for all valid ciphertexts
cx, ReRand(cx) is identically distributed as Enc(x)

Then, we can let Add(cx,cy) = ReRand(cx +c cy) where
+c may be deterministic

Rerandomization useful even without homomorphism
3

Unlinkable Homomorphic
Encryption

A
(PK)

(SK)

B

Recv

REALIDEAL

A

FH

B
(PK)

4

Unlinkable Homomorphic
Encryption

A
(PK)

(SK)

B

Recv

REALIDEAL

A

FH

B
(PK)

Considers only passive corruption

4

Unlinkable Homomorphic
Encryption

A
(PK)

(SK)

B

Recv

REALIDEAL

A

FH

B
(PK)

E(m1), E(m2), ...

Considers only passive corruption

4

Unlinkable Homomorphic
Encryption

A
(PK)

(SK)

B

Recv

REALIDEAL

A

FH

B
(PK)

m1, m2, ...

E(m1), E(m2), ...

Considers only passive corruption

4

Unlinkable Homomorphic
Encryption

A
(PK)

(SK)

B

Recv

REALIDEAL

A

FH

B
(PK)

m1, m2, ...

h1, h2, ...
E(m1), E(m2), ...

Considers only passive corruption

4

Unlinkable Homomorphic
Encryption

A
(PK)

(SK)

B

Recv

REALIDEAL

A

FH

B
(PK)

m1, m2, ...

h1, h2, ...
E(m1), E(m2), ...

Add(c1,c2)

Considers only passive corruption

4

Unlinkable Homomorphic
Encryption

A
(PK)

(SK)

B

Recv

REALIDEAL

A

FH

B
(PK)

m1, m2, ...

h1, h2, ...

add(h1,h2)

E(m1), E(m2), ...

Add(c1,c2)

Considers only passive corruption

4

Unlinkable Homomorphic
Encryption

A
(PK)

(SK)

B

Recv

REALIDEAL

A

FH

B
(PK)

m1, m2, ...

h1, h2, ...

add(h1,h2)

m1+m2

E(m1), E(m2), ...

Add(c1,c2)

Considers only passive corruption

4

Unlinkable Homomorphic
Encryption

A
(PK)

(SK)

B

Recv

REALIDEAL

A

FH

B
(PK)

m1, m2, ...

h1, h2, ...

add(h1,h2)

m1+m2

E(m1), E(m2), ...

Add(c1,c2)

Considers only passive corruption

Functionality gives “handles” to messages posted; accepts
requests for posting fresh messages, or derived messages

4

Unlinkable Homomorphic
Encryption

A
(PK)

(SK)

B

Recv

REALIDEAL

A

FH

B
(PK)

m1, m2, ...

h1, h2, ...

add(h1,h2)

m1+m2

E(m1), E(m2), ...

Add(c1,c2)

Considers only passive corruption

Functionality gives “handles” to messages posted; accepts
requests for posting fresh messages, or derived messages

Unlinkability: Above, (honest-but-curious) receiver gets only
the message m1+m2 in IDEAL; is not told if it is a fresh
message or derived from other messages

4

An OT Protocol
(passive corruption)

5

Using an (unlinkable) rerandomizable
encryption scheme

An OT Protocol
(passive corruption)

5

Using an (unlinkable) rerandomizable
encryption scheme

An OT Protocol
(passive corruption)

5

Using an (unlinkable) rerandomizable
encryption scheme

An OT Protocol
(passive corruption)

x0,x1

5

Using an (unlinkable) rerandomizable
encryption scheme

An OT Protocol
(passive corruption)

x0,x1 b

5

Using an (unlinkable) rerandomizable
encryption scheme

An OT Protocol
(passive corruption)

cb=E(1),
c1-b=E(0)

x0,x1 b

5

Using an (unlinkable) rerandomizable
encryption scheme

An OT Protocol
(passive corruption)

cb=E(1),
c1-b=E(0)

PK, c0, c1

x0,x1 b

5

Using an (unlinkable) rerandomizable
encryption scheme

Receiver picks (PK,SK). Sends PK
and E(0), E(1) in suitable order

An OT Protocol
(passive corruption)

cb=E(1),
c1-b=E(0)

PK, c0, c1

x0,x1 b

5

Using an (unlinkable) rerandomizable
encryption scheme

Receiver picks (PK,SK). Sends PK
and E(0), E(1) in suitable order

An OT Protocol
(passive corruption)

cb=E(1),
c1-b=E(0)

PK, c0, c1

z0 = x0 * c0

z1 = x1 * c1

x0,x1 b

5

Using an (unlinkable) rerandomizable
encryption scheme

Receiver picks (PK,SK). Sends PK
and E(0), E(1) in suitable order

Sender “multiplies” ci with xi:
1*c:=ReRand(c), 0*c:=E(0)

An OT Protocol
(passive corruption)

cb=E(1),
c1-b=E(0)

PK, c0, c1

z0 = x0 * c0

z1 = x1 * c1

x0,x1 b

5

Using an (unlinkable) rerandomizable
encryption scheme

Receiver picks (PK,SK). Sends PK
and E(0), E(1) in suitable order

Sender “multiplies” ci with xi:
1*c:=ReRand(c), 0*c:=E(0)

An OT Protocol
(passive corruption)

cb=E(1),
c1-b=E(0)

PK, c0, c1

z0 = x0 * c0

z1 = x1 * c1

z0, z1
x0,x1 b

5

Using an (unlinkable) rerandomizable
encryption scheme

Receiver picks (PK,SK). Sends PK
and E(0), E(1) in suitable order

Sender “multiplies” ci with xi:
1*c:=ReRand(c), 0*c:=E(0)

An OT Protocol
(passive corruption)

cb=E(1),
c1-b=E(0)

xb=D(zb)PK, c0, c1

z0 = x0 * c0

z1 = x1 * c1

z0, z1
x0,x1 b

5

Using an (unlinkable) rerandomizable
encryption scheme

Receiver picks (PK,SK). Sends PK
and E(0), E(1) in suitable order

Sender “multiplies” ci with xi:
1*c:=ReRand(c), 0*c:=E(0)

An OT Protocol
(passive corruption)

cb=E(1),
c1-b=E(0)

xb=D(zb)PK, c0, c1

z0 = x0 * c0

z1 = x1 * c1

z0, z1
x0,x1 b

xb

5

Using an (unlinkable) rerandomizable
encryption scheme

Receiver picks (PK,SK). Sends PK
and E(0), E(1) in suitable order

Sender “multiplies” ci with xi:
1*c:=ReRand(c), 0*c:=E(0)

Simulation for passive-corrupt
receiver: set zb = E(xb) and

z1-b = E(0)

An OT Protocol
(passive corruption)

cb=E(1),
c1-b=E(0)

xb=D(zb)PK, c0, c1

z0 = x0 * c0

z1 = x1 * c1

z0, z1
x0,x1 b

xb

5

Using an (unlinkable) rerandomizable
encryption scheme

Receiver picks (PK,SK). Sends PK
and E(0), E(1) in suitable order

Sender “multiplies” ci with xi:
1*c:=ReRand(c), 0*c:=E(0)

Simulation for passive-corrupt
receiver: set zb = E(xb) and

z1-b = E(0)

Simulation for passive-corrupt
sender: Extract x0,x1 by
setting both c0 and c1 to E(1)

An OT Protocol
(passive corruption)

cb=E(1),
c1-b=E(0)

xb=D(zb)PK, c0, c1

z0 = x0 * c0

z1 = x1 * c1

z0, z1
x0,x1 b

xb

5

Private Information Retrieval

6

Private Information Retrieval
Setting: A server holds a large vector of values (“database”).
Client wants to retrieve the value at a particular index i

6

Private Information Retrieval
Setting: A server holds a large vector of values (“database”).
Client wants to retrieve the value at a particular index i

Client wants privacy against an honest-but-curious server

6

Private Information Retrieval
Setting: A server holds a large vector of values (“database”).
Client wants to retrieve the value at a particular index i

Client wants privacy against an honest-but-curious server

Server has no security requirements

6

Private Information Retrieval
Setting: A server holds a large vector of values (“database”).
Client wants to retrieve the value at a particular index i

Client wants privacy against an honest-but-curious server

Server has no security requirements

Trivial solution: Server sends the entire vector to the client

6

Private Information Retrieval
Setting: A server holds a large vector of values (“database”).
Client wants to retrieve the value at a particular index i

Client wants privacy against an honest-but-curious server

Server has no security requirements

Trivial solution: Server sends the entire vector to the client

PIR: to do it with significantly less communication

6

Private Information Retrieval
Setting: A server holds a large vector of values (“database”).
Client wants to retrieve the value at a particular index i

Client wants privacy against an honest-but-curious server

Server has no security requirements

Trivial solution: Server sends the entire vector to the client

PIR: to do it with significantly less communication

Variant (we don’t look at): multiple-server PIR, with
non-colluding servers

6

Private Information Retrieval
Setting: A server holds a large vector of values (“database”).
Client wants to retrieve the value at a particular index i

Client wants privacy against an honest-but-curious server

Server has no security requirements

Trivial solution: Server sends the entire vector to the client

PIR: to do it with significantly less communication

Variant (we don’t look at): multiple-server PIR, with
non-colluding servers

Tool: Additively homomorphic encryption
6

Paillier’s Scheme

7

Paillier’s Scheme
Over Zn2* ≃ Zn x Zn*, n=pq, p,q primes

7

Paillier’s Scheme
Over Zn2* ≃ Zn x Zn*, n=pq, p,q primes

To ensure gcd(n,ϕ(n))=1
within 2x of each other

7

Paillier’s Scheme
Over Zn2* ≃ Zn x Zn*, n=pq, p,q primes

Isomorphism: ψ(a,b) = gabn where g=(1+n)
To ensure gcd(n,ϕ(n))=1

within 2x of each other

7

Paillier’s Scheme
Over Zn2* ≃ Zn x Zn*, n=pq, p,q primes

Isomorphism: ψ(a,b) = gabn where g=(1+n)
Enc(m) = ψ(m,r) for m in Zn and a random r in Zn*

To ensure gcd(n,ϕ(n))=1
within 2x of each other

7

Paillier’s Scheme
Over Zn2* ≃ Zn x Zn*, n=pq, p,q primes

Isomorphism: ψ(a,b) = gabn where g=(1+n)
Enc(m) = ψ(m,r) for m in Zn and a random r in Zn*

ψ can be inverted if p,q known

To ensure gcd(n,ϕ(n))=1
within 2x of each other

7

Paillier’s Scheme
Over Zn2* ≃ Zn x Zn*, n=pq, p,q primes

Isomorphism: ψ(a,b) = gabn where g=(1+n)
Enc(m) = ψ(m,r) for m in Zn and a random r in Zn*

ψ can be inverted if p,q known
(Additive) Homomorphism: Enc(m).Enc(m’) is Enc(m+m’)

To ensure gcd(n,ϕ(n))=1
within 2x of each other

7

Paillier’s Scheme
Over Zn2* ≃ Zn x Zn*, n=pq, p,q primes

Isomorphism: ψ(a,b) = gabn where g=(1+n)
Enc(m) = ψ(m,r) for m in Zn and a random r in Zn*

ψ can be inverted if p,q known
(Additive) Homomorphism: Enc(m).Enc(m’) is Enc(m+m’)

ψ(m,r).ψ(m’,r’) = ψ(m+m’,r.r’)

To ensure gcd(n,ϕ(n))=1
within 2x of each other

7

Paillier’s Scheme
Over Zn2* ≃ Zn x Zn*, n=pq, p,q primes

Isomorphism: ψ(a,b) = gabn where g=(1+n)
Enc(m) = ψ(m,r) for m in Zn and a random r in Zn*

ψ can be inverted if p,q known
(Additive) Homomorphism: Enc(m).Enc(m’) is Enc(m+m’)

ψ(m,r).ψ(m’,r’) = ψ(m+m’,r.r’)
in Zn

To ensure gcd(n,ϕ(n))=1
within 2x of each other

7

Paillier’s Scheme
Over Zn2* ≃ Zn x Zn*, n=pq, p,q primes

Isomorphism: ψ(a,b) = gabn where g=(1+n)
Enc(m) = ψ(m,r) for m in Zn and a random r in Zn*

ψ can be inverted if p,q known
(Additive) Homomorphism: Enc(m).Enc(m’) is Enc(m+m’)

ψ(m,r).ψ(m’,r’) = ψ(m+m’,r.r’)
in Znin Zn2*

To ensure gcd(n,ϕ(n))=1
within 2x of each other

7

Paillier’s Scheme
Over Zn2* ≃ Zn x Zn*, n=pq, p,q primes

Isomorphism: ψ(a,b) = gabn where g=(1+n)
Enc(m) = ψ(m,r) for m in Zn and a random r in Zn*

ψ can be inverted if p,q known
(Additive) Homomorphism: Enc(m).Enc(m’) is Enc(m+m’)

ψ(m,r).ψ(m’,r’) = ψ(m+m’,r.r’)
IND-CPA secure under “Decisional Composite Residuosity”
assumption: Given n=pq (but not p,q), ψ(0,rand) looks random
(i.e. like ψ(rand,rand))

in Znin Zn2*

To ensure gcd(n,ϕ(n))=1
within 2x of each other

7

Paillier’s Scheme
Over Zn2* ≃ Zn x Zn*, n=pq, p,q primes

Isomorphism: ψ(a,b) = gabn where g=(1+n)
Enc(m) = ψ(m,r) for m in Zn and a random r in Zn*

ψ can be inverted if p,q known
(Additive) Homomorphism: Enc(m).Enc(m’) is Enc(m+m’)

ψ(m,r).ψ(m’,r’) = ψ(m+m’,r.r’)
IND-CPA secure under “Decisional Composite Residuosity”
assumption: Given n=pq (but not p,q), ψ(0,rand) looks random
(i.e. like ψ(rand,rand))
Unlinkability: ReRand(c) = c.Enc(0)

in Znin Zn2*

To ensure gcd(n,ϕ(n))=1
within 2x of each other

7

Private Information Retrieval

8

Private Information Retrieval
Using additive homomorphic encryption (need not be unlinkable)

8

Private Information Retrieval
Using additive homomorphic encryption (need not be unlinkable)

Client sends some encrypted representation of the index
(need CPA security here)

8

Private Information Retrieval
Using additive homomorphic encryption (need not be unlinkable)

Client sends some encrypted representation of the index
(need CPA security here)

Server operates on this representation (homomorphically)
using the entire database, so that the message in the
resulting encrypted data has the relevant answer (and
maybe more). It sends this (short) encrypted data to client,
who decrypts to get answer (depends on correctness here)

8

Private Information Retrieval
Using additive homomorphic encryption (need not be unlinkable)

Client sends some encrypted representation of the index
(need CPA security here)

Server operates on this representation (homomorphically)
using the entire database, so that the message in the
resulting encrypted data has the relevant answer (and
maybe more). It sends this (short) encrypted data to client,
who decrypts to get answer (depends on correctness here)

In the following: database values are integers in [0,m);
homom. enc. over a group with an element 1 s.t. ord(1) ≥ m.
For integer x and ciphertext c, define x*c using “repeated
doubling”: 0*c = E(0); 1*c = c; (a+b)*c = Add(a*c, b*c).

8

Private Information Retrieval
x1

x2

:

xi

:

xN

i

9

0

0

:

1

:

0

0

0

:

1

:

0

Private Information Retrieval
x1

x2

:

xi

:

xN

i

9

0

0

:

1

:

0

0

0

:

1

:

0

Private Information Retrieval
x1

x2

:

xi

:

xN

i

9

0

0

:

1

:

0

Private Information Retrieval
x1

x2

:

xi

:

xN

0

0

:

xi

:

0

*
i

9

0

0

:

1

:

0

Private Information Retrieval
x1

x2

:

xi

:

xN

0

0

:

xi

:

0

xi

*

[+]

i

9

0

0

:

1

:

0

Private Information Retrieval
x1

x2

:

xi

:

xN

0

0

:

xi

:

0

xi xi

*

[+]

i

9

0

0

:

1

:

0

Private Information Retrieval
x1

x2

:

xi

:

xN

0

0

:

xi

:

0

xi xixi

*

[+]
Dec

i

9

0

0

:

1

:

0

Private Information Retrieval
x1

x2

:

xi

:

xN

0

0

:

xi

:

0

xi xixi

*

[+]
Dec

i

Server communication
is very short. But

client communication
is larger than the db!

9

Private Information Retrieval

x11 x1N

x21 x2N

: :

xi1 xij xiN

: :

xN xNN

10

Private Information Retrieval

0

0

:

1

:

0

x11 x1N

x21 x2N

: :

xi1 xij xiN

: :

xN xNN

10

Private Information Retrieval

0

0

:

1

:

0

x11 x1N

x21 x2N

: :

xi1 xij xiN

: :

xN xNN

10

0 .. 0

0 0
: :

xi1 .. xij .. xiN

: :

0 .. 0

Private Information Retrieval

0

0

:

1

:

0

x11 x1N

x21 x2N

: :

xi1 xij xiN

: :

xN xNN

10

0 .. 0

0 0
: :

xi1 .. xij .. xiN

: :

0 .. 0

Private Information Retrieval

0

0

:

1

:

0

x11 x1N

x21 x2N

: :

xi1 xij xiN

: :

xN xNN

xi1 .. xij .. xiN

10

0 .. 0

0 0
: :

xi1 .. xij .. xiN

: :

0 .. 0

Private Information Retrieval

0

0

:

1

:

0

x11 x1N

x21 x2N

: :

xi1 xij xiN

: :

xN xNN

xi1 .. xij .. xiN

Use PIR
again!

10

0 .. 0

0 0
: :

xi1 .. xij .. xiN

: :

0 .. 0

Private Information Retrieval

0

0

:

1

:

0

x11 x1N

x21 x2N

: :

xi1 xij xiN

: :

xN xNN

xi1 .. xij .. xiN0 .. 1 .. 0

Use PIR
again!

10

0 .. 0

0 0
: :

xi1 .. xij .. xiN

: :

0 .. 0

Private Information Retrieval

0

0

:

1

:

0

x11 x1N

x21 x2N

: :

xi1 xij xiN

: :

xN xNN

xi1 .. xij .. xiN0 .. 1 .. 0

Use PIR
again!

10

0 .. 0

0 0
: :

xi1 .. xij .. xiN

: :

0 .. 0

Private Information Retrieval

0

0

:

1

:

0

x11 x1N

x21 x2N

: :

xi1 xij xiN

: :

xN xNN

xi1 .. xij .. xiN0 .. 1 .. 0

Considering
ciphertext
as plaintext

for the
sub-PIR

Use PIR
again!

10

0 .. 0

0 0
: :

xi1 .. xij .. xiN

: :

0 .. 0

Private Information Retrieval

0

0

:

1

:

0

x11 x1N

x21 x2N

: :

xi1 xij xiN

: :

xN xNN

xi1 .. xij .. xiN0 .. 1 .. 0

Considering
ciphertext
as plaintext

for the
sub-PIR
Can chop

ciphertexts
into smaller

blocks

Use PIR
again!

10

0 .. 0

0 0
: :

xi1 .. xij .. xiN

: :

0 .. 0

Private Information Retrieval

0

0

:

1

:

0

x11 x1N

x21 x2N

: :

xi1 xij xiN

: :

xN xNN

xi1 .. xij .. xiN0 .. 1 .. 0

Considering
ciphertext
as plaintext

for the
sub-PIR
Can chop

ciphertexts
into smaller

blocks

Use PIR
again!

10

0 .. 0

0 0
: :

xi1 .. xij .. xiN

: :

0 .. 0

Private Information Retrieval

0

0

:

1

:

0

x11 x1N

x21 x2N

: :

xi1 xij xiN

: :

xN xNN

xi1 .. xij .. xiN0 .. 1 .. 0

0 .. xij .. 0

Considering
ciphertext
as plaintext

for the
sub-PIR
Can chop

ciphertexts
into smaller

blocks

Use PIR
again!

10

0 .. 0

0 0
: :

xi1 .. xij .. xiN

: :

0 .. 0

Private Information Retrieval

0

0

:

1

:

0

x11 x1N

x21 x2N

: :

xi1 xij xiN

: :

xN xNN

xi1 .. xij .. xiN0 .. 1 .. 0

0 .. xij .. 0 xij

Considering
ciphertext
as plaintext

for the
sub-PIR
Can chop

ciphertexts
into smaller

blocks

Use PIR
again!

10

0 .. 0

0 0
: :

xi1 .. xij .. xiN

: :

0 .. 0

Private Information Retrieval

0

0

:

1

:

0

x11 x1N

x21 x2N

: :

xi1 xij xiN

: :

xN xNN

xi1 .. xij .. xiN0 .. 1 .. 0

0 .. xij .. 0 xij

Considering
ciphertext
as plaintext

for the
sub-PIR
Can chop

ciphertexts
into smaller

blocks

Use PIR
again!

10

0 .. 0

0 0
: :

xi1 .. xij .. xiN

: :

0 .. 0

Private Information Retrieval

0

0

:

1

:

0

x11 x1N

x21 x2N

: :

xi1 xij xiN

: :

xN xNN

xi1 .. xij .. xiN

xij

0 .. 1 .. 0

0 .. xij .. 0 xij

Considering
ciphertext
as plaintext

for the
sub-PIR
Can chop

ciphertexts
into smaller

blocks

Use PIR
again!

10

0 .. 0

0 0
: :

xi1 .. xij .. xiN

: :

0 .. 0

Private Information Retrieval

0

0

:

1

:

0

x11 x1N

x21 x2N

: :

xi1 xij xiN

: :

xN xNN

xi1 .. xij .. xiN

xij

0 .. 1 .. 0

0 .. xij .. 0 xij

Considering
ciphertext
as plaintext

for the
sub-PIR
Can chop

ciphertexts
into smaller

blocks

Recurse?
Exponential
in recursion

depth
Use PIR
again!

10

Private Information Retrieval

11

Private Information Retrieval
Can dramatically improve efficiency if we have an efficient
“recursive” homomorphic encryption scheme

11

Private Information Retrieval
Can dramatically improve efficiency if we have an efficient
“recursive” homomorphic encryption scheme

Ciphertext in one level is plaintext in the next level

11

Private Information Retrieval
Can dramatically improve efficiency if we have an efficient
“recursive” homomorphic encryption scheme

Ciphertext in one level is plaintext in the next level

In Paillier, public-Key (i.e., n) fixes the group for
homomorphic operation (i.e., Zn)

11

Private Information Retrieval
Can dramatically improve efficiency if we have an efficient
“recursive” homomorphic encryption scheme

Ciphertext in one level is plaintext in the next level

In Paillier, public-Key (i.e., n) fixes the group for
homomorphic operation (i.e., Zn)

Ciphertext size increases only “additively” from level to level

11

Private Information Retrieval
Can dramatically improve efficiency if we have an efficient
“recursive” homomorphic encryption scheme

Ciphertext in one level is plaintext in the next level

In Paillier, public-Key (i.e., n) fixes the group for
homomorphic operation (i.e., Zn)

Ciphertext size increases only “additively” from level to level

In Paillier, size of ciphertext about double that of the
plaintext. (Note: can’t use “hybrid encryption” if
homomorphic property is to be preserved.)

11

Private Information Retrieval
Can dramatically improve efficiency if we have an efficient
“recursive” homomorphic encryption scheme

Ciphertext in one level is plaintext in the next level

In Paillier, public-Key (i.e., n) fixes the group for
homomorphic operation (i.e., Zn)

Ciphertext size increases only “additively” from level to level

In Paillier, size of ciphertext about double that of the
plaintext. (Note: can’t use “hybrid encryption” if
homomorphic property is to be preserved.)

Does such a family of encryption schemes exist?

11

Damgård-Jurik Scheme

12

Damgård-Jurik Scheme
Over Zn(s+1)* ≃ Zns x Zn*, n=pq, p,q primes within 2x of each other

12

Damgård-Jurik Scheme
Over Zn(s+1)* ≃ Zns x Zn*, n=pq, p,q primes within 2x of each other

Isomorphism: ψs(a,b) = gabn^s where g=(1+n)

12

Damgård-Jurik Scheme
Over Zn(s+1)* ≃ Zns x Zn*, n=pq, p,q primes within 2x of each other

Isomorphism: ψs(a,b) = gabn^s where g=(1+n)
Enc(m) = ψs(m,r) for m in Zns and a random r in Zn*

12

Damgård-Jurik Scheme
Over Zn(s+1)* ≃ Zns x Zn*, n=pq, p,q primes within 2x of each other

Isomorphism: ψs(a,b) = gabn^s where g=(1+n)
Enc(m) = ψs(m,r) for m in Zns and a random r in Zn*
ψs can still be inverted if p,q known (but more involved)

12

Damgård-Jurik Scheme
Over Zn(s+1)* ≃ Zns x Zn*, n=pq, p,q primes within 2x of each other

Isomorphism: ψs(a,b) = gabn^s where g=(1+n)
Enc(m) = ψs(m,r) for m in Zns and a random r in Zn*
ψs can still be inverted if p,q known (but more involved)
Homomorphism: Enc(m).Enc(m’) is Enc(m+m’)

12

Damgård-Jurik Scheme
Over Zn(s+1)* ≃ Zns x Zn*, n=pq, p,q primes within 2x of each other

Isomorphism: ψs(a,b) = gabn^s where g=(1+n)
Enc(m) = ψs(m,r) for m in Zns and a random r in Zn*
ψs can still be inverted if p,q known (but more involved)
Homomorphism: Enc(m).Enc(m’) is Enc(m+m’)

ψs(m,r).ψs(m’,r’) = ψs(m+m’,r.r’)

12

Damgård-Jurik Scheme
Over Zn(s+1)* ≃ Zns x Zn*, n=pq, p,q primes within 2x of each other

Isomorphism: ψs(a,b) = gabn^s where g=(1+n)
Enc(m) = ψs(m,r) for m in Zns and a random r in Zn*
ψs can still be inverted if p,q known (but more involved)
Homomorphism: Enc(m).Enc(m’) is Enc(m+m’)

ψs(m,r).ψs(m’,r’) = ψs(m+m’,r.r’)in
Zn(s+1)*

12

Damgård-Jurik Scheme
Over Zn(s+1)* ≃ Zns x Zn*, n=pq, p,q primes within 2x of each other

Isomorphism: ψs(a,b) = gabn^s where g=(1+n)
Enc(m) = ψs(m,r) for m in Zns and a random r in Zn*
ψs can still be inverted if p,q known (but more involved)
Homomorphism: Enc(m).Enc(m’) is Enc(m+m’)

ψs(m,r).ψs(m’,r’) = ψs(m+m’,r.r’)in
Zn(s+1)*

in Zns

12

Damgård-Jurik Scheme
Over Zn(s+1)* ≃ Zns x Zn*, n=pq, p,q primes within 2x of each other

Isomorphism: ψs(a,b) = gabn^s where g=(1+n)
Enc(m) = ψs(m,r) for m in Zns and a random r in Zn*
ψs can still be inverted if p,q known (but more involved)
Homomorphism: Enc(m).Enc(m’) is Enc(m+m’)

ψs(m,r).ψs(m’,r’) = ψs(m+m’,r.r’)
Recursive encryption: Ciphertext for ψs (Zn(s+1)*) is a plaintext for
ψs+1 (Zn(s+1)) for the same public-key n. Note: s log n bits encrypted
to (s+1)log n bits.

in
Zn(s+1)*

in Zns

12

Damgård-Jurik Scheme
Over Zn(s+1)* ≃ Zns x Zn*, n=pq, p,q primes within 2x of each other

Isomorphism: ψs(a,b) = gabn^s where g=(1+n)
Enc(m) = ψs(m,r) for m in Zns and a random r in Zn*
ψs can still be inverted if p,q known (but more involved)
Homomorphism: Enc(m).Enc(m’) is Enc(m+m’)

ψs(m,r).ψs(m’,r’) = ψs(m+m’,r.r’)
Recursive encryption: Ciphertext for ψs (Zn(s+1)*) is a plaintext for
ψs+1 (Zn(s+1)) for the same public-key n. Note: s log n bits encrypted
to (s+1)log n bits.
IND-CPA secure under “Decisional Composite Residuosity”
assumption: Given n=pq (but not p,q), ψ1(0,rand) looks random
(same as Paillier)

in
Zn(s+1)*

in Zns

12

Damgård-Jurik Scheme
Over Zn(s+1)* ≃ Zns x Zn*, n=pq, p,q primes within 2x of each other

Isomorphism: ψs(a,b) = gabn^s where g=(1+n)
Enc(m) = ψs(m,r) for m in Zns and a random r in Zn*
ψs can still be inverted if p,q known (but more involved)
Homomorphism: Enc(m).Enc(m’) is Enc(m+m’)

ψs(m,r).ψs(m’,r’) = ψs(m+m’,r.r’)
Recursive encryption: Ciphertext for ψs (Zn(s+1)*) is a plaintext for
ψs+1 (Zn(s+1)) for the same public-key n. Note: s log n bits encrypted
to (s+1)log n bits.
IND-CPA secure under “Decisional Composite Residuosity”
assumption: Given n=pq (but not p,q), ψ1(0,rand) looks random
(same as Paillier)
Unlinkability: ReRand(c) = c.Enc(0) (using same s in Enc as for c)

in
Zn(s+1)*

in Zns

12

Final PIR protocol

:

13

Final PIR protocol

0 1

:

13

Final PIR protocol

0 1

:

0

*

13

Final PIR protocol

0 1

:

0

*

+

13

Final PIR protocol

0 1

0 1

:

0

*

+

13

Final PIR protocol

0 1

0 1

0:

0

*

+

13

Final PIR protocol

0 1

0 1

0:

0

*

+

13

Final PIR protocol

0 1

0 1

0

1 0

:

0

*

+

13

Final PIR protocol

0 1

0 1

0

1 0

:

0

0

*

+

13

Final PIR protocol

0 1

0 1

0

1 0

:

0

0

*

+

13

Final PIR protocol

0 1

0 1

0

1 0

:

0

0

*

+

13

Final PIR protocol

0 1

xi

0 1

0

1 0

:

0

0

*

+

13

Final PIR protocol

0 1

xi

0 1

0

1 0

:

0

Size of ciphertext at depth
d is O(d log m) where m is
the range of values in db

0

*

+

13

Final PIR protocol

0 1

xi

0 1

0

1 0

:

0

Size of ciphertext at depth
d is O(d log m) where m is
the range of values in db

Total communication from
client = O(log2N log m),
where N is the number of
entries in the db

0

*

+

13

Final PIR protocol

0 1

xi

0 1

0

1 0

:

0

Size of ciphertext at depth
d is O(d log m) where m is
the range of values in db

Total communication from
client = O(log2N log m),
where N is the number of
entries in the db

Total communication from
server = O(log N log m)

0

*

+

13

Final PIR protocol

0 1

xi

0 1

0

1 0

:

0

Size of ciphertext at depth
d is O(d log m) where m is
the range of values in db

Total communication from
client = O(log2N log m),
where N is the number of
entries in the db

Total communication from
server = O(log N log m)

“Constant” in O(.)
contains security
parameter

0

*

+

13

Homomorphic Encryption
for MPC

14

Homomorphic Encryption
for MPC

Recall GMW (passive-secure): each wire value was kept shared
among the parties

14

Homomorphic Encryption
for MPC

Recall GMW (passive-secure): each wire value was kept shared
among the parties

Alternate approach: each wire value is kept encrypted, publicly

14

Homomorphic Encryption
for MPC

Recall GMW (passive-secure): each wire value was kept shared
among the parties

Alternate approach: each wire value is kept encrypted, publicly

Evaluate each wire: additive homomorphism (unlinkable)

14

Homomorphic Encryption
for MPC

Recall GMW (passive-secure): each wire value was kept shared
among the parties

Alternate approach: each wire value is kept encrypted, publicly

Evaluate each wire: additive homomorphism (unlinkable)

Notation: [x] [+] [y] = [x+y], and a*[x] = [ax]

14

Homomorphic Encryption
for MPC

Recall GMW (passive-secure): each wire value was kept shared
among the parties

Alternate approach: each wire value is kept encrypted, publicly

Evaluate each wire: additive homomorphism (unlinkable)

Notation: [x] [+] [y] = [x+y], and a*[x] = [ax]

And decrypt the output wire value: threshold decryption

14

Homomorphic Encryption
for MPC

Recall GMW (passive-secure): each wire value was kept shared
among the parties

Alternate approach: each wire value is kept encrypted, publicly

Evaluate each wire: additive homomorphism (unlinkable)

Notation: [x] [+] [y] = [x+y], and a*[x] = [ax]

And decrypt the output wire value: threshold decryption

Threshold decryption: KeyGen protocol so that PK is public
and SK shared; Decryption protocol that lets the parties
decrypt a ciphertext keeping their SK shares private

14

Homomorphic Encryption
for MPC

Recall GMW (passive-secure): each wire value was kept shared
among the parties

Alternate approach: each wire value is kept encrypted, publicly

Evaluate each wire: additive homomorphism (unlinkable)

Notation: [x] [+] [y] = [x+y], and a*[x] = [ax]

And decrypt the output wire value: threshold decryption

Threshold decryption: KeyGen protocol so that PK is public
and SK shared; Decryption protocol that lets the parties
decrypt a ciphertext keeping their SK shares private

(For active-security, also ZK proofs/proofs of knowledge)

14

Homomorphic Encryption
for MPC

15

Homomorphic Encryption
for MPC

Run KeyGen and obtain PK and private shares for SK

15

Homomorphic Encryption
for MPC

Run KeyGen and obtain PK and private shares for SK

Each party encrypts its input and publishes

15

Homomorphic Encryption
for MPC

Run KeyGen and obtain PK and private shares for SK

Each party encrypts its input and publishes

For active-
security,

include ZK
proofs of

correctness/
knowledge of

plaintext, when
publishing

15

Homomorphic Encryption
for MPC

Run KeyGen and obtain PK and private shares for SK

Each party encrypts its input and publishes

At an addition gate, carry out homomorphic addition: [z]=[x][+][y]

For active-
security,

include ZK
proofs of

correctness/
knowledge of

plaintext, when
publishing

15

Homomorphic Encryption
for MPC

Run KeyGen and obtain PK and private shares for SK

Each party encrypts its input and publishes

At an addition gate, carry out homomorphic addition: [z]=[x][+][y]

At a multiplication gate, given [x] and [y], to compute [xy]:

For active-
security,

include ZK
proofs of

correctness/
knowledge of

plaintext, when
publishing

15

Homomorphic Encryption
for MPC

Run KeyGen and obtain PK and private shares for SK

Each party encrypts its input and publishes

At an addition gate, carry out homomorphic addition: [z]=[x][+][y]

At a multiplication gate, given [x] and [y], to compute [xy]:

Share x: All parties except P1, choose their shares si; to
help P1 compute s1, they publish [-si], P1 publishes [r]; they
threshold decrypt t=[r + x + Σi=2:m (-si)]. P1 sets s1 = t-r

For active-
security,

include ZK
proofs of

correctness/
knowledge of

plaintext, when
publishing

15

Homomorphic Encryption
for MPC

Run KeyGen and obtain PK and private shares for SK

Each party encrypts its input and publishes

At an addition gate, carry out homomorphic addition: [z]=[x][+][y]

At a multiplication gate, given [x] and [y], to compute [xy]:

Share x: All parties except P1, choose their shares si; to
help P1 compute s1, they publish [-si], P1 publishes [r]; they
threshold decrypt t=[r + x + Σi=2:m (-si)]. P1 sets s1 = t-r

Each party publishes si*[y] = [si y]; they compute [Σsiy]=[xy]

For active-
security,

include ZK
proofs of

correctness/
knowledge of

plaintext, when
publishing

15

Homomorphic Encryption
for MPC

Run KeyGen and obtain PK and private shares for SK

Each party encrypts its input and publishes

At an addition gate, carry out homomorphic addition: [z]=[x][+][y]

At a multiplication gate, given [x] and [y], to compute [xy]:

Share x: All parties except P1, choose their shares si; to
help P1 compute s1, they publish [-si], P1 publishes [r]; they
threshold decrypt t=[r + x + Σi=2:m (-si)]. P1 sets s1 = t-r

Each party publishes si*[y] = [si y]; they compute [Σsiy]=[xy]

Threshold decrypt the output

For active-
security,

include ZK
proofs of

correctness/
knowledge of

plaintext, when
publishing

15

The plaintext domain

16

The plaintext domain
In some encryption schemes the plaintext domain is fixed as a
system parameter

16

The plaintext domain
In some encryption schemes the plaintext domain is fixed as a
system parameter

e.g. El Gamal, when the DDH group is fixed

16

The plaintext domain
In some encryption schemes the plaintext domain is fixed as a
system parameter

e.g. El Gamal, when the DDH group is fixed

But sometimes the plaintext domain is chosen as part of the
public-key

16

The plaintext domain
In some encryption schemes the plaintext domain is fixed as a
system parameter

e.g. El Gamal, when the DDH group is fixed

But sometimes the plaintext domain is chosen as part of the
public-key

e.g. Paillier, when the modulus n = pq is chosen

16

The plaintext domain
In some encryption schemes the plaintext domain is fixed as a
system parameter

e.g. El Gamal, when the DDH group is fixed

But sometimes the plaintext domain is chosen as part of the
public-key

e.g. Paillier, when the modulus n = pq is chosen

For non-homomorphic encryption, not critical: can use a scheme
with a larger domain into which the required domain can be
embedded

16

The plaintext domain
In some encryption schemes the plaintext domain is fixed as a
system parameter

e.g. El Gamal, when the DDH group is fixed

But sometimes the plaintext domain is chosen as part of the
public-key

e.g. Paillier, when the modulus n = pq is chosen

For non-homomorphic encryption, not critical: can use a scheme
with a larger domain into which the required domain can be
embedded

But not good for homomorphic encryption: say, an application
needs to use addition modulo 10; can we use Paillier?

16

The plaintext domain

17

The plaintext domain
Say, an application needs to use addition modulo 10; can we use
Paillier?

17

The plaintext domain
Say, an application needs to use addition modulo 10; can we use
Paillier?

Suppose there is a bound on how many times the
homomorphic operation will be carried out

17

The plaintext domain
Say, an application needs to use addition modulo 10; can we use
Paillier?

Suppose there is a bound on how many times the
homomorphic operation will be carried out

Then, work with a suitably large modulus, so that no
overflow occurs

17

The plaintext domain
Say, an application needs to use addition modulo 10; can we use
Paillier?

Suppose there is a bound on how many times the
homomorphic operation will be carried out

Then, work with a suitably large modulus, so that no
overflow occurs

But not unlinkable: 9+3 and 2 look different

17

The plaintext domain
Say, an application needs to use addition modulo 10; can we use
Paillier?

Suppose there is a bound on how many times the
homomorphic operation will be carried out

Then, work with a suitably large modulus, so that no
overflow occurs

But not unlinkable: 9+3 and 2 look different

Also suppose OK to reveal how many operations were done

17

The plaintext domain
Say, an application needs to use addition modulo 10; can we use
Paillier?

Suppose there is a bound on how many times the
homomorphic operation will be carried out

Then, work with a suitably large modulus, so that no
overflow occurs

But not unlinkable: 9+3 and 2 look different

Also suppose OK to reveal how many operations were done

Each time add a large random multiple of 10 (but not
large enough to cause overflow): 9+3+10r and 2+10r
are statistically close if r drawn from a large range

17

Today

18

Today
Homomorphic Encryption: El Gamal, Paillier, Damgård-Jurik

18

Today
Homomorphic Encryption: El Gamal, Paillier, Damgård-Jurik

Applications of Homomorphic Encryption

18

Today
Homomorphic Encryption: El Gamal, Paillier, Damgård-Jurik

Applications of Homomorphic Encryption

A simple (passive-secure) OT protocol using
rerandomizable encryption

18

Today
Homomorphic Encryption: El Gamal, Paillier, Damgård-Jurik

Applications of Homomorphic Encryption

A simple (passive-secure) OT protocol using
rerandomizable encryption

PIR (using Damgård-Jurik encryption scheme)

18

Today
Homomorphic Encryption: El Gamal, Paillier, Damgård-Jurik

Applications of Homomorphic Encryption

A simple (passive-secure) OT protocol using
rerandomizable encryption

PIR (using Damgård-Jurik encryption scheme)

MPC

18

Today
Homomorphic Encryption: El Gamal, Paillier, Damgård-Jurik

Applications of Homomorphic Encryption

A simple (passive-secure) OT protocol using
rerandomizable encryption

PIR (using Damgård-Jurik encryption scheme)

MPC

Not covered: “Fully Homomorphic Encryption”, security
against active corruption (ZK proofs, non-malleable
homomorphic encryption)

18

Today
Homomorphic Encryption: El Gamal, Paillier, Damgård-Jurik

Applications of Homomorphic Encryption

A simple (passive-secure) OT protocol using
rerandomizable encryption

PIR (using Damgård-Jurik encryption scheme)

MPC

Not covered: “Fully Homomorphic Encryption”, security
against active corruption (ZK proofs, non-malleable
homomorphic encryption)

Coming up: more applications - in voting
18

