Multilingual Part-of-Speech Tagging: Two Unsupervised Approaches

Naseem, T.; Snyder, B.; Eisenstein, J. & Barzilay, R. (2009)

Presenter: Chris Cervantes

Outline

- Conceptual Background
- Formal Descriptions
- Experiments

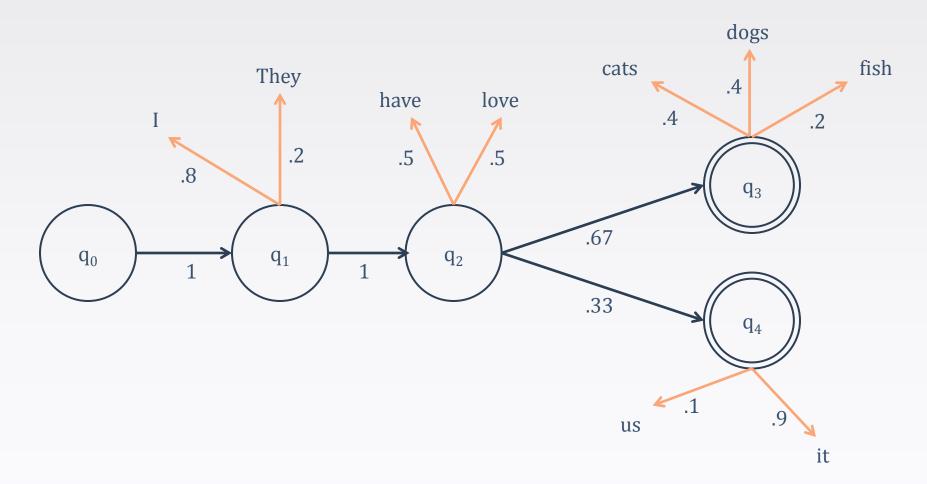
Outline

- Conceptual Background
 - Monolingual POS Tagging
 - The Role of Additional Languages
 - Overview of Approaches
 - Merged Node Model
 - Latent Variable Model
- Formal Descriptions
- Experiments

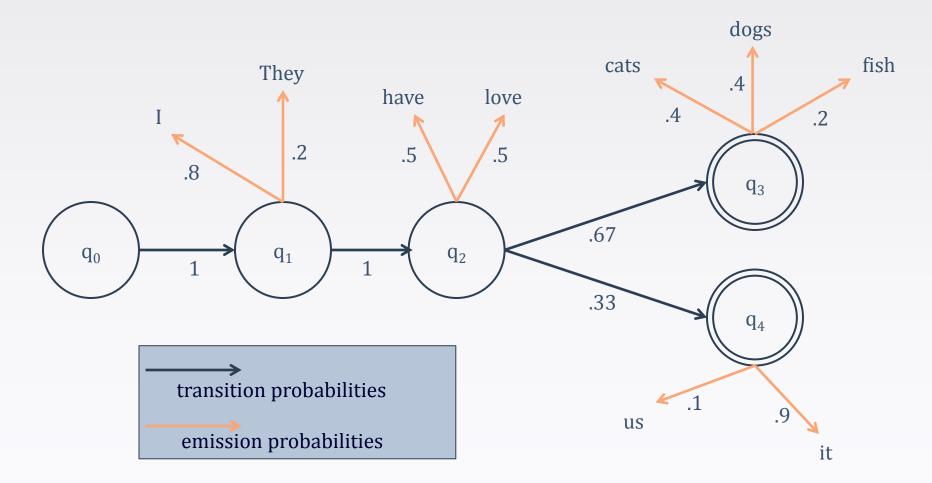
- Unsupervised monolingual part-of-speech (POS) tagging assigns tags to words, where tags are learned from unlabeled text
 - Tags are treated as a linear sequence of hidden variables and words as emitted observations
 - Often represented as a Hidden Markov Model (HMM)
- Necessary components for HMM POS tagger
 - Initial and final states
 - Transition probabilities
 - Emission probabilities
 - Initial state distributions
 - These probabilities can also be expressed as transition probabilities from a start-of-sentence tag to all the other tags

- Unsupervised monolingual part-of-speech (POS) tagging assigns tags to words, where tags are learned from unlabeled text
 - Tags are treated as a linear sequence of hidden variables and words as emitted observations
 - Often represented as a Hidden Markov Model (HMM)
- Necessary components for HMM POS tagger
 - Initial and final states
 - Transition probabilities <
 - Emission probabilities ←
 - Initial state distributions

- In the Bayesian model, these distributions are drawn from priors
- These probabilities can also be expressed as transition probabilities from a start-of-sentence tag to all the other tags



Conceptual Background – Monolingual POS Tagging | Formal Descriptions | Experiments



Conceptual Background – Monolingual POS Tagging | Formal Descriptions | Experiments

Role of Additional Languages

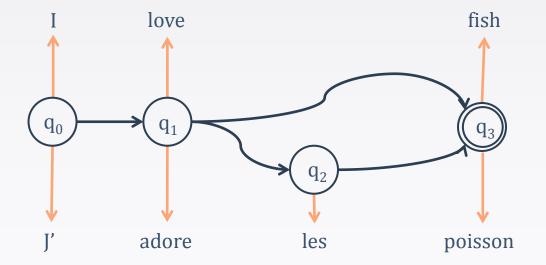
- Languages have different patterns of ambiguity
 - Words with POS ambiguity
 - "can" in English might be a standard verb, auxiliary verb, or noun
 - Structural ambiguity
 - articles in English reduce next-POS possibilities
- Different ambiguity patterns are very likely to occur in different places / for different reasons across languages
 - Unannotated multilingual data serves as a learning signal in an unsupervised system
 - Key Idea: combining information from multiple languages creates a clearer picture of each

Overview of Approaches

- Observed data
 - Corpus of parallel sentences in multiple languages
 - Word alignments between parallel sentence pairs are given via a black box mechanism and so are treated as observed
- Tags are drawn from tag dictionaries
 - Not completely unsupervised
- Two approaches
 - Merged Node Model
 - Latent Variable Model

- Model relies on language pairs
- HMM nodes are created by merging tag nodes from different languages
 - Nodes represent a pair of tags, one per language
- Each node emits two words, one per language

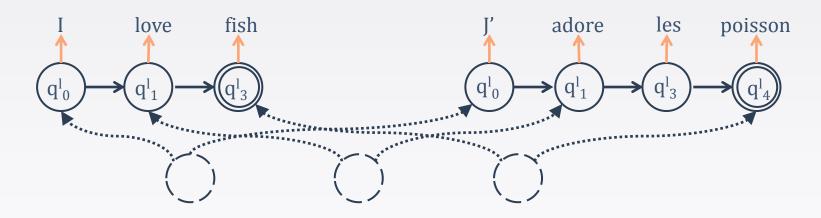
- Model relies on language pairs
- HMM nodes are created by merging tag nodes from different languages
 - Nodes represent a pair of tags, one per language
- Each node emits two words, one per language



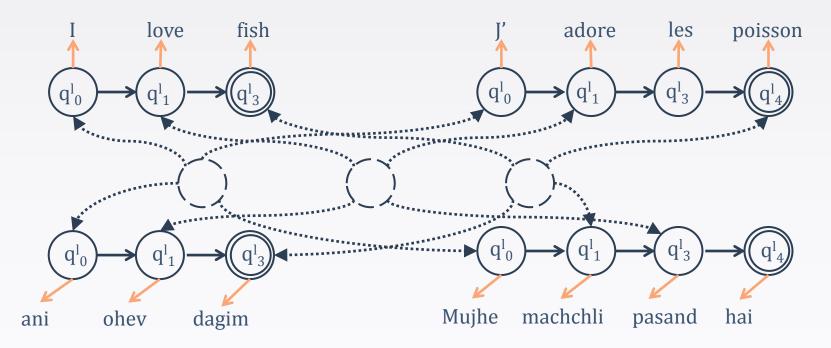
Conceptual Background – Overview of Approaches | Formal Descriptions | Experiments

- Operates over any number of languages with parallel text
- Like in the monolingual model, HMM nodes represent single tags and emit single words
- Assumes an additional layer of superlingual tags that inform which node to transition to

- Operates over any number of languages with parallel text
- Like in the monolingual model, HMM nodes represent single tags and emit single words
- Assumes an additional layer of superlingual tags that inform which node to transition to



- Operates over any number of languages with parallel text
- Like in the monolingual model, HMM nodes represent single tags and emit single words
- Assumes an additional layer of superlingual tags that inform which node to transition to



Conceptual Background – Overview of Approaches | Formal Descriptions | Experiments

Outline

- Conceptual Background
- Formal Descriptions
 - Merged Node Model
 - Latent Variable Model
- Experiments

- Terms
 - **T / T'** : Tag set for respective languages
 - t / t' : Individual tag for respective languages
 - < t, t' > : A tag pair (one tag from each language). Tag pairs are the nodes in this HMM
 - $< t, t' > \in T \ge T'$
 - ω : Coupling distribution, which informs how the tags are merged into pairs
 - < y_i, y_j' > : Aligned tag pair. Where <t,t'> is a tag pair from the set of any two tags (one per language), <y_i, y_j'> is aligned between the two languages
 - $\langle y_i, y_j \rangle$ is conditioned on y_{i-1}, y'_{j-1} , and the coupling parameter $\omega(y_i, y_j')$
 - W / W' : Vocabulary for respective languages

Conceptual Background | Formal Descriptions – Merged Node Model | Experiments

- Generative story
 - Transition / Emission Parameters
 - Coupling Parameter
 - Data

- Generative story
 - Transition / Emission Parameters
 - For each t \in T
 - Draw a transition distribution ϕ_t over tags T
 - Draw an emission distribution θ_t over words W
 - For each $t' \in T'$
 - Draw a transition distribution ϕ_t over tags T'
 - Draw an emission distribution Θ_t over words W
 - Coupling Parameter
 - Data

Merged Node Approach

Generative story

multinomials,

Dirichlet prior

each drawn

symmetric

from a

- Transition / Emission Parameters
 - For each $t \in T$
 - → Draw a transition distribution ϕ_t over tags T
 - ightarrow Draw an emission distribution θ^t over words W
 - For each $t' \in T'$
 - → Draw a transition distribution ϕ_t over tags T'
 - → Draw an emission distribution θ_t' over words W'
- Coupling Parameter
- Data

- Generative story
 - Transition / Emission Parameters
 - Coupling Parameter
 - Draw a bilingual coupling distribution, ω, over tag pairs TxT'
 - Data

- Generative story
 - Transition / Emission Parameters
 - Coupling Parameter
 - Draw a bilingual coupling distribution, ω , over tag pairs TxT'
 - Data

also multinomial, drawn from symmetric Dirichlet prior ω_0

- Generative story
 - Transition / Emission Parameters
 - Coupling Parameter
 - Data
 - For each parallel sentence
 - Draw alignment a, a set of integer pairs (i,j) indicating aligned indices in parallel sentences.
 - Draw a bilingual POS tag sequence, (y₁, ..., y_m), (y₁', ..., y_n')
 - For each POS tag y_i , emit a word $x_i \sim \theta_{y_i}$
 - For each POS tag y_j ', emit a word $x_j' \sim \tilde{\Theta}_{y'_i}^{T}$

- Generative story
 - Transition / Emission Parameters
 - Coupling Parameter
 - Data

 $a \sim A_0$, a prior distribution over alignments provided by their black box mechanism

- For each parallel sentence
 - → Draw alignment a, a set of integer pairs (i,j) indicating aligned indices in parallel sentences.
 - Draw a bilingual POS tag sequence,
 (y₁, ..., y_m), (y₁', ..., y_n')
 - For each POS tag y_i , emit a word $x_i \sim \theta_{y_i}$
 - For each POS tag y_j' , emit a word $x_j' \sim \hat{\theta}_{y'_i}$

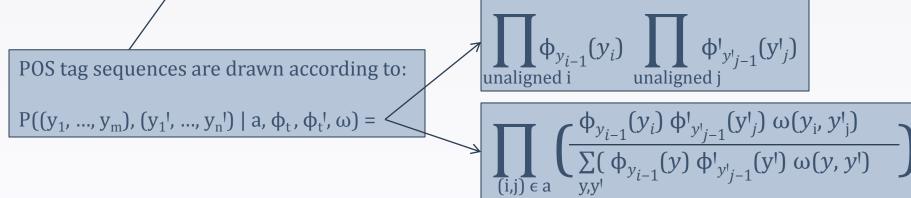
- Generative story ٠
 - Transition / Emission Parameters
 - **Coupling Parameter**
 - Data

 $a \sim A_0$, a prior distribution over alignments provided by their black box mechanism

Draw a bilingual POS tag sequence,

$$(y_1, ..., y_m), (y_1', ..., y_n')$$

- $\begin{array}{l} \mbox{For each POS tag } y_i \mbox{, emit a word } x_i \sim \theta_{y_i} \\ \mbox{For each POS tag } y_j \mbox{, emit a word } x_j \mbox{'} \sim \theta_{y_i'} \end{array}$



Conceptual Background | Formal Descriptions – Merged Node Model | Experiments

- Generative story ٠
 - Transition / Emission Parameters
 - **Coupling Parameter**
 - Data

 $a \sim A_0$, a prior

distribution

alignments

provided by

mechanism

their black box

over

→ Draw alignment a, a set of integer pairs (i,j) indicating aligned indices in parallel sentences.

Draw a bilingual POS tag sequence,

- For each POS tag y_i , emit a word $x_i \sim \theta_{y_i}$ For each POS tag y_j ', emit a word $x_j' \sim \theta_{y'_i}$

 x_i and x_i' are words from W and W', respectively

 $\Phi_{y_{i-1}}(y_i) \qquad \Phi'_{y'_{i-1}}(y'_j)$ POS tag sequences are drawn according to: unaligned i unaligned $P((y_1, ..., y_m), (y_1', ..., y_n') | a, \phi_t, \phi_t', \omega) = \langle (y_1, ..., y_n) | a, \phi_t, \phi_t', \omega \rangle$ $\left(\frac{\Phi_{y_{i-1}}(y_i) \Phi'_{y'_{j-1}}(y'_j) \omega(y_i, y'_j)}{\sum (\Phi_{y_{i-1}}(y) \Phi'_{y'_{i-1}}(y') \omega(y, y')}\right)$

(i,j) e a

Conceptual Background | Formal Descriptions – Merged Node Model | Experiments

- Inference
 - Process occurs in a monolingual setting (and thus must be performed for each language in the pair)
 - Ideal transition and emission parameters

 $\hat{\Theta}, \hat{\Phi} = \underset{\Theta, \Phi}{\operatorname{argmax}} \int P(\Theta, \Phi, y, \omega \mid x, a, \Theta_0, \Phi_0, \omega_0) \, dy \, d\omega$

- Actual parameters are found with Gibbs sampling
 - Θ , ϕ , and ω are all marginalized out
 - Only POS tags and priors are sampled
- After sampling, parameters θ and φ are the maximum a posteriori estimates

- Assumes an additional layer of superlingual tags
- Operates over any number of languages with parallel text
- Offers both a conceptual and a computational benefit over using the merged node model with more languages
 - Multilingual information can reduce linguistic ambiguity *during training*; combining bilingually trained models (like the merged node model) doesn't take advantage of this
 - State space in the merged node model grows exponentially with the number of languages, L
 - Since nodes are tag pairs, the size of the state space is $|T|^L$
 - ω has the same dimension.

- Parameter generation
 - Draw an infinite sequence of distribution sets
 - $\Psi_1, \Psi_2, ... \sim G_0$
 - Ψ_i : a set of distributions over tags, one distribution per language l $(\phi_i^{\ l}, \phi_i^{\ l'}, ...)$
 - Draw an infinite sequence of mixture weights
 - $\pi_1, \pi_2, ... \sim \text{GEM}(\alpha)$
 - These mixture weights weight the sets of distributions, above

- Parameter generation
 - Draw an infinite sequence of distribution sets
 - $\Psi_1, \Psi_2, \dots \sim G_0 \quad \leftarrow$
 - Ψ_i : a set of distributions over tags, one distribution per language l $(\phi_i^{\ l}, \phi_i^{\ l'}, ...)$

G₀ is some base distribution

- Draw an infinite sequence of mixture weights
 - $\pi_1, \pi_2, ... \sim \text{GEM}(\alpha)$
 - These mixture weights weight the sets of distributions, above

- Parameter generation
 - Draw an infinite sequence of distribution sets
 - $\Psi_1, \Psi_2, \dots \sim G_0$ \leftarrow
 - Ψ_i : a set of distributions over tags, one distribution per language l $(\phi_i^{\ l}, \phi_i^{\ l'}, ...)$
 - Draw an infinite sequence of mixture weights
 - $\pi_1, \pi_2, \dots \sim \text{GEM}(\alpha) \quad \leftarrow$

GEM(α) is a stickbreaking process

 G_0 is some base

distribution

• These mixture weights weight the sets of distributions, above

- Given these parameters... ٠
 - Superlingual tag z is drawn such that
 - z is drawn with probability π_z
 - z is an index of the infinite sequence of sets of multinomials $(\phi_{z}^{l}, \phi_{z}^{l'}, ...)$
 - POS tag y_i is drawn according to

•
$$y_i \sim \frac{\Phi_{y_{i-1}}(y_i) \prod_{m=1}^{M} \varphi_{z_m}^l(y_i)}{Z}$$

- i : Tag positionl : Language
- $\phi_{y_{i-1}}(y_i)$: Transition distribution from the previous tag to this tag
- Z_m : Value of the mth connected superlingual tag
- $\phi_{z_m}^l(y_i)$: Tag distribution for language l given by Ψ_{z_m}
- : Sum of the product in the numerator over all Z values for y_i
- : All superlingual tag indices with which position l • M is associated

- Given these parameters...
 - Superlingual tag z is drawn such that
 - z is drawn with probability π_{π}
 - z is an index of the infinite sequence of sets of multinomials $(\phi_z^{\ l}, \phi_z^{\ l'}, ...)$
 - POS tag y_i is drawn according to

•
$$y_i \sim \frac{\Phi_{y_{i-1}}(y_i) \prod_{m=1}^{M} \varphi_{z_m}^l(y_i)}{Z}$$

- i : Tag positionl : Language

A beneficial consequence of drawing tags in this way is that a high probability tag at a given position must be allowed for by each incoming distribution

- $\phi_{y_{i-1}}(y_i)$: Transition distribution from the previous tag to this tag
- : Value of the mth connected superlingual tag • Z_m
- $\phi_{z_m}^l(y_i)$: Tag distribution for language l given by Ψ_{z_m}
- : Sum of the product in the numerator over all Z values for y_i
- : All superlingual tag indices with which position l • M is associated

- Generative story
 - Transition / Emission Parameters
 - Superlingual Parameters
 - Data

- Generative story
 - Transition / Emission Parameters
 - For each language l = 1, ..., n and for each tag t $\varepsilon \ T^l$
 - Draw a transition distribution, ϕ_t^l , over tags T^l
 - Draw an emission distribution Θ_t^l , over words W^l
 - Superlingual Parameters
 - Data

• Generative story

multinomials,

each drawn

symmetric

Dirichlet prior

from a

- Transition / Emission Parameters
 - For each language l = 1, ..., n and for each tag t $\varepsilon \ T^l$
 - $\rightarrow \bullet$ Draw a transition distribution, ϕ_t^l , over tags T^l
 - → Draw an emission distribution $θ_t^l$, over words W^l
- Superlingual Parameters
- Data

- Generative story
 - Transition / Emission Parameters
 - Superlingual Parameters
 - Draw an infinite sequence of distribution sets
 - $\Psi_1, \Psi_2, ... \sim G_0$
 - Ψ_i : a set of distributions over tags, one distribution per language l (φ_i^{l})
 - Draw an infinite sequence of mixture weights
 - $\pi_1, \pi_2, ... \sim \text{GEM}(\alpha)$
 - These mixture weights weight the sets of distributions, above

• Data

- Generative story
 - Transition / Emission Parameters
 - Superlingual Parameters
 - Data
 - For each multilingual parallel sentence
 - Draw alignment *a* from A_m
 - *a* is a set of aligned indices across languages (i₁, i₂, ..., i_n)
 - For each set of indices in *a*
 - Draw superlingual tag z
 - For each language, l, and for each position i
 - Draw y_i such that

•
$$y_i \sim \frac{\Phi_{y_{i-1}}(y_i) \prod_{m=1}^{M} \varphi_{z_m}^l(y_i)}{Z}$$

• Draw word $w_i \in W^l$ according to Θ_{y_i}

- Inference
 - Like in the merged node model, a sampling technique is used for inference
 - θ , ϕ , ϕ_{i}^{l} , and π are all marginalized out
 - Only POS tags and superlingual tags need to be sampled
 - In order to integrate over π during superlingual tag sampling, the Chinese Restaurant Process is used

Outline

- Conceptual Background
- Formal Descriptions
- Experiments
 - Full Lexicon Experiment
 - Reduced Lexicon Experiment
 - Analysis

Experiments

- George Orwell's 1984 is used as the experiment data
 - Parallel text in English, Bulgarian, Czech, Estonian, Hungarian, Slovene, Serbian, and Romanian
 - Provided as part of the Multext-East corpus, which is annoted with POS tags and provides a lexicon for each language
- Word alignments are provided with a black box mechanism (GIZA++)
- For the sake of comparison, two other systems are implemented
 - A monolingual Bayesian HMM
 - A supervised HMM (trained with annotated data)
- Merged node model results (which are constrained by pairings) are combined in three ways
 - Average across pairings
 - Best-pair using an oracle
 - Voting scheme

Full Lexicon Experiment

- Assume the full tag lexicon set of possible POS tags is known in advance
- Possible tags per word is 1.39
- Tagging Accuracy

	Avg	BG	CS	EN	ΕT	HU	RO	SL	SR
1. Random	83.3	82.5	86.9	80.7	84.0	85.7	78.2	84.5	83.5
2. Monolingual	91.2	88.7	93.9	95.8	92.7	95.3	91.1	87.4	84.5
3. MERGEDNODE: average	93.2	91.3	96.9	95.9	93.3	96.7	91.9	89.3	90.2
4. LATENTVARIABLE	95.0	92.6	98.2	95.0	94.6	96.7	95.1	95.8	92.3
5. Supervised	97.3	96.8	98.6	97.2	97.0	97.8	97.7	97.0	96.6
6. MERGEDNODE: voting	93.0	91.6	97.4	96.1	94.3	96.8	91.6	87.9	88.2
7. MERGEDNODE: <i>best pair</i>	95.4	94.7	97.8	96.1	94.2	96.9	94.1	94.8	94.5

Reduced Lexicon Experiment

- Three types of reduced lexicons are used.
 - All words with less than 5 instances are removed
 - All words with less than 10 instances are removed
 - Only the top 100 words are retained in the lexicon
- Possible tags per word is 7.54 in the "Top 100" model
- Tagging Accuracy

		Avg	BG	CS	EN	ΕT	HU	RO	SL	SR
> 5	Random	63.6	62.9	62	71.8	61.6	61.3	62.8	64.8	61.8
	Monolingual	74.8	73.5	72.2	87.3	72.5	73.5	77.1	75.7	66.3
	MERGEDNODE: average	80.1	80.2	79	90.4	76.5	77.3	82.7	78.7	75.9
Counts	LATENTVARIABLE	82.8	81.3	83.0	88.1	80.6	80.8	86.1	83.6	78.8
Ŭ	MERGEDNODE: voting	80.4	80.4	78.5	90.7	76.4	76.8	84.0	79.7	76.4
	MERGEDNODE: best pair	81.7	82.7	79.7	90.7	77.5	78	84.4	80.9	79.4
	Random	57.9	57.5	54.7	68.3	56	55.1	57.2	59.2	55.5
10	Monolingual	70.9	71.9	66.7	84.4	68.3	69.0	73.0	70.4	63.7
$ $ \wedge	MERGEDNODE: average	77.2	77.8	75.3	88.8	72.9	73.8	80.5	76.1	72.4
Counts	LATENTVARIABLE	79.7	78.8 [†]	79.4	86.1	77.9	76.4	83.1	80.0	75.9
Co	MERGEDNODE: voting	77.5	78.4†	75.3	89.2	73.1	73.3	81.7	76.1	73.1
	MERGEDNODE: best pair	79.0	80.2	76.7	89.4	74.9	75.2	82.1	77.6	76.1
	Random	37.3	36.7	32.1	48.9	36.6	36.4	33.7	39.8	33.8
100	Monolingual	53.8	60.9 [‡]	44.1	69.0	54.8*	56.8	51.4	49.4	44.0
	MERGEDNODE: average	59.6	60.1	52.5	73.5	59.5	59.4	61.4	56.6	53.4
Top	LATENTVARIABLE	57.9	65.5	49.3	71.6	54.3*	51.0	57.5	53.9	60.4
	MERGEDNODE: voting	62.4	61.5 [‡]	55.4	74.8	62.2	60.9	64.3	62.3	57.5
	MERGEDNODE: best pair	63.6	64.7	55.3	77.4	61.5	60.2	69.3	63.1	56.9

Analysis

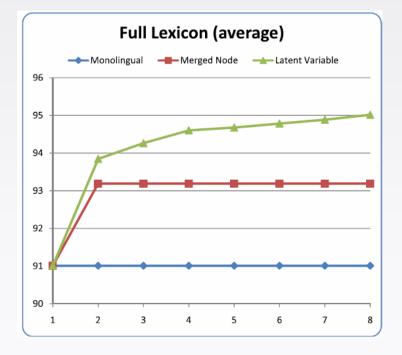
- Performance would be helped if the optimal language partners could be predicted
 - Language relatedness isn't necessarily helpful
 - Slovene and Serbian are related and optimal partners
 - Bulgarian and English are optimal, but not closely related
 - Tag / word ambiguity is correlated negatively with a language's helpfulness as a partner

MergedNode Model													
				coupled with									
		Avg	BG	CS	EN	ΕT	HU	RO	SL	SR			
	BG	91.3		90.2	94.7	92.3	90.6	91.2	91.1	88.7†			
	CS	96.9	95.3		97.5	97.8	96.3	96.4	97.4	97.4			
0r	EN	95.9	96.1	95.9 [†]		95.8 [†]	95.8 [†]	95.8 [†]	96.1	96.0			
accuracy for.	ET	93.3	93.0	94.0	92.9 [†]		92.2 [†]	93.0	94.2	93.9			
ura	HU	96.7	96.8	96.6	96.8	96.9		96.8	96.5	96.7			
cc	RO	91.9	94.1	90.6 [†]	92.0	91.3	90.3 [†]		91.3	93.9			
0	SL	89.3	88.5	88.1	89.2	89.8	87.5†	87.5†		94.8			
	SR	90.2	88.5	88.2	94.5	94.2	89.5	85.0	91.4				

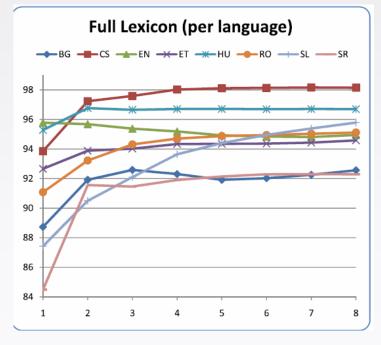
Conceptual Background | Formal Descriptions | Experiments – Analysis

Analysis

Average performance as the number of languages increases



Average performance of the latent variable model of languages as the number of language increases



Conceptual Background | Formal Descriptions | Experiments – Analysis

Analysis

- If the full lexicon is available, the two models proposed significantly improve on previous unsupervised methods
 - For most languages, performance is gained as more languages are added
- If only a reduced lexicon is available, the merged model is likely the better choice
- Performance varies greatly depending on which languages are chosen, but it's difficult to determine what language is going to be helpful
 - This question is irrelevant in the latent variable model, since all languages are used

