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Unsupervised POS tagging

® Predict the tags for each word in a sentence

® 2 approaches used in this paper
o Maximum likelihood La(@) = P(d]|8)

o Bayesian O = argmaxLa(6)
P8 |d) x P(d|8)P(8)
= Notice the prior which can bias the model

Use a Dirichlet prior to incorporate knowledge that words
tend to only have few POS
Authors tend to not use MAP as they tend to prefer the full

posterior as it incorporates the uncertainty of the
parameters

No known closed form of posterior in most cases so MC
and Variational Bayes approaches are used.



What is this paper about?

® Authors found that recent papers produced

contradictory results about these Bayesian
methods

® They study 6 algorithms
o EM
o Variational EM
o 4 MCMC approaches

® Compare results on unsupervised POS
tagging



HMM inference

® The parameters of an HMM are a pair of multinomials for each
state t. The first specifies the distribution over states t' following
state t and the second, the distribution over words w given t.

® Since this is a Bayesian model, priors are put on these
multinomials. The authors use fixed and uniform Dirichlets for their
simplification of inference.

o These control the sparsity of the transition and emission
probability distributions.

= As they approach zero, the model strongly prefers sparsity
(i.e. few words per taq)

L | fic1 =1t ~ Multi(&;) 8, | a« ~ Dir(c
wy | ti=1 ~  Multi{g,) ¢, | o ~ Dir(e)



Expectation Maximization

® Goal is to maximize the marginal log-
likelihood

0(0) = log p(z|0) = lagz plzx, 2|0)
E-step : q“"‘” = arg max F(q. I’J'{ﬂ]l

x, z|6) q
=log ¥ qlz|x. ﬂi'}
Z q(z|x.0) M-step : #1F1) = arg max F(qlt+1), 9)
plx, z|6) ¢

> Zq (z]x, 8) log —— = Iz 0) = = F(q,0)
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ML EM in HMM

1. First compute forward and backward parameters which will be
needed in M step

L ai(1) = mbi(o1) L #(T)=1
2. ajt +1) = [Ef":l af(i}r:n-J-] bjlog 41) 2. Bilt) = X5, aizbj(ei1)B5(t + 1)
3. p(O) = XL, au(T) 3. p(O|A) = LI, Bi(1)mibi(o1)

2. Then differentiate the Q function and maximize it subject to
the constraint the probabilities sum to 1. Set to 0 and solve:

QA N) = ZlcnP (O, q|A)P(O,q|A)

QA };"]—Zlc:frrq ,q|}|."j| Z(Zlnﬂaq q)p ,q|}|." {Eln by, 01} ,q|}|."]

i+l

o (leﬂﬂ"?"j} O, qo = i|X) +( ZT’" —1]) =

5" = Efned/Eln

3. Then you are done!  +“ - g /Em

wt



Variational EM

® In variational EM, we cannot represent our
desired posterior in closed form. Thus we
need to approximate it by minimizing the KL
divergence between it and the posterior.

® This procedure works well for HMMs since
the modifications to the E and M step turn
out to be very minor. The updates in the M
Step are. ;e

ot F(E[ne ¢] + o)/ f(E[n:] + ma)
UTH_l:l} FlE[n, ] + ')/ f(E[ns] + m'a’)

flv) exp(P(v))



MCMC

® Samplers are either pointwise or blocked

o pointwise = sample a single state ti corresponding to
a particular word wi at each step (O(nhm)).

o blocked = resample all words in a sentence in a
single step (O(nm”"2)) using forward-backward
algorithm varient.

® They are also either explicit or collapsed

o explicit = sample HMM parameters (both theta and
phi) as well as the states

o collapsed = integrate out the HMM parameters and
only sample the states

® In this paper all 4 possible variations are implemented
and compared.



Pointwise and Explicit

® sample from the following distributions
where nt Is the state-to-state transition count
and nt' Is the state-to-word emission count.

® First sample the HMM parameters and then
sample each state ti given the current word
wi and the neighboring states ti and ti+1
& | n;.ox ~ Dir(n; + o) (5)
¢, | ni.a ~ Dir(n;+a')
P(t; | ws t_;, 8,¢b) Ot iltims Puse |t Vg1 12 (B)



Collapsed and Explicit

® Just sample from the following distribution:

n' . 4+ ) + ¢ 1 +I{ti=ti=1; + ¥
P(t;lw.t_;, a,0') ( W ) ( botit ) ( teprts + 1ticy =1 = tis1) )

ng, +m'a’ Ng,_, + Mo g, + I(t;_y = t;) + mo



Pointwise and Blocked

® Here we are resampling an entire sentence
® How?
o First resample HMM parameters (using equations

from pointwise and explicit sampler), then use
forward-backward algorithm to sample a structure.

pl@i=1,Qin =5, 0A) it Jaijbjlog1)34(t + 1)
2o (1) 0 p(Qrer = j|Q, = 1.0, A) Jaizbilori1)B5{t +1)

£ijit) =

o Once done, we can update the counts to be used for
the sampling step in the next iteration.



Collapsed and Blocked

® Inthis model, we again iterate through the sentences
resampling the states for each sentence conditioned on n

(state-to-state) and n' (state-to-word).
o Need to first compute parameters of a proposal HMM

TLet § T ¥

O =

g =+ My

' r
Tly ¢ T+

-
& =
wli
| 1 + m'or

¢ Then a structure is sautipicu usani(j the dynamiC algorithm
mentioned on the slide.
® The motivation for the proposal distribution is that we want to

sample from
P (w;|ti )P(ti|t—i, o)
P(w;|t—;, o)

P(ti|wi, t—i.a) =



Collapsed and Blocked

® However that denominator is tough to
compute. So a Hasting's Sampler is used to
sample from the desired distribution. The
sample distribution chosen was to use the
distribution whose parameters are Elf|t-i. o]

Pt |w;, t_;, o) P(t;|w;, 6)
' ) F. — 1 i 1 i Ll i /
E[-‘i!}{g(-“l-"‘ :l } .—1[1’;.1"] 111111 {1. PI:J','|H'4'.t-i-“]P['r:'“':'t'-'ra"I}
—i < e -
T jfﬂ"' |h:| = min4 1 P“élt—f-"':'P“J'|”'J'-UI}
B "P(ti[t g, )Pt |w;, 07)

As, &) = miu{l.




Evaluation

® How to evaluate?
o We need to somehow map a system's states to the
gold standard states
o Variation of Information

= [nformation theoretic measure that measures the
difference in information between two clusters

= unfortunately this approach allows a tagger that
assigns each word the same tag to perform well.

o Mapping approaches
= map each hmm state to the most common POS
tag occurring in it.

Issue with this approach is that it rewards HMMs with large
amounts of states



Evaluation

® More mapping approaches

o Split gold data set and do the state mapping on one
half and use the other half for evaluation (cross
validation approach)

o Insist that at most one HMM state can be mapped to
a particular POS tag

= Used greedy algorithm to match states to tags
until it runs out of states/tags. Unassigned
states/tags are left unassigned.



Results

In their experiments, the authors vary the number of tags and
the size of the corpus.

For each model they optimize the two hyperparameters over
a range of values ranging from 0.0001 to 1 and report the
results for the best set for that model.

As expected, on small data sets, the prior seems to play a
more important role and so the MCMC approaches do better
than EM and VB (which has a worse approximation with
smaller amounts of data).

On larger data sets the results evened out though.

In terms of convergence time, blocked samplers were faster
than pointwise and explicit were faster than collapsed.



Results

All—50  Al-17 | 120K — 50 120K — 17 | 24K — 50 24K — 17
EM 040527 043101 | 0.29303 0.35202 0.18618  (0.28165
VB 046123 0.51379 [ 0.34679 (0.36010 0.23823  0.36599
GSep | 047826 0.43424 | 0.36984 0.44125 0.20953  0.36811
GSgp | 049371 046568 | (.38888 0.44341 | 0.34404  0.37032
GSep | 0.49910%  0.45028 | 0.42785 0.43652 | 0.39182 0.39164
GS.p | 0.49486* 0.46193 | 0.41162 0.42278 0.38497  0.36793

Figure 2: Average greedy 1-to-1 accuracy of state sequences produced by HMMs estimated by the various estimators.
The column heading indicates the size of the corpus and the number of HMM states. In the Gibbs sampler (GS) results
the subscript “e” indicates that the parameters 8 and ¢ were explicitly sampled while the subscript “c” indicates that
they were integrated out, and the subscript “p" indicates pointwise sampling, while “b" indicates sentence-blocked
sampling. Entries tagged with a star indicate that the estimator had not converged after weeks of run-time, but was

still slowly improving.

All— 50 Al —17 120K — 50 120K — 17 | 24K — 50 24K — 17
EM 0.62115  (.G4651 (.44135 0.56215 028576 0.46669
VB 060454 0.63652 0.48427 0.36458 035046 0.36926
GS.p | 0.64190  0.63057 | 0.53571 0.46986 0.41620  0.37165
GSep | 0.65953  0.65606 | 0.57918 0.48975 047228 037311
GSep | 0.61391°7 0.67414 | 0.65285  0.65012 | 0.58153 0.62254
GSep | 0.605517  0.65516 | 0.62167 0.58271 055006  (0.58728

Figure 3: Average cross-validation accuracy of state sequences produced by HMMSs estimated by the various estima-
tors. The table headings follow those used in Figure 2.



Results

All—50  Al—17 | 120K — 50 120K — 17 | 24K — 50 24K — 17
EM 447555 3.B6326 (.16499 4.55681 T.72465  5.42815
VB 427911 344029 200509 319670 480778 3.14557
GSep | 424919 3.53024 4.30457 323082 | 4.24368 317076
GS.p | 404123 3.46179 | 4.22590 3.20276 420474 3.10609
G5, | 4.03886%  3.52185 | 4.21259  3.17586 | 4.30928  3.18273
GSgp | 411272 3.61516 4.36595 3.23630 432006 3.17TTR0

Figure 4: Average Variation of Information between the state sequences produced by HMMs estimated by the various

estimators and the gold tags (smaller is better). The table headings follow those used in Figure 2.
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Figure 5: Average number of iterations until the negative logarithm of the posterior probability (or likelihood) changes
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by less than 0.5% (smaller is better) per at least 2,000 iterations. No annealing was used.



Results
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Results
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Summary

® This paper compared the performance of 5 different
Bayesian approaches and 1 ML approach to
unsupervised POS tagging using HMMs.

® The comparison spanned different numbers of hidden
states and different amounts of training data

® Gibbs sampling approaches seemed to perform the
best however their advantage decreased as the data
sets increased In size

® VB was the fastest Bayesian model



