HDP-CCG

Yonatan Bisk

Outline

- Grammar Induction
- Combinatory Categorial Grammar
- Dirichlet Processes
- HDP-CCG

Grammar Induction

Corpus

Grammar

I ate cookies
she drank juice she ate quickly

I ate chocolate cake

Adjectives before Nouns

Subject Verb Object

Adverbs after verbs

Grammar Induction

Corpus

Grammar

אכלתי עוגיותהיא שתתה מיץהיא אכלה במהירות

אכלתי עוגת שוקולד

Dependencies

Questions

- How much initial knowledge does the system need?
- How much information exists in the text
- What's the space of grammatical rules?

Outline

- Grammar Induction
- Combinatory Categorial Grammar
- Dirichlet Processes
- HDP-CCG

Words as Functions

$+$

chocolate
cookie

chocolate(cookie)
N/N
N
N

Words as functions

Obama

Ice cream

eats(Obama, Ice Cream)
N
(SIN)/N
N
S

CCG

A simple set of rules for combining grammatical structures

Intransitive SIN	am		ate	provides
Transitive (SIN)/N	am	threw	ate	provides
Ditransitive ((SIN)/N)/N		threw		provides

Word Probability

$p($ She \| N $) \quad p($ ate | SIN $)$

SIN

ate

Word Probability

p(ate \| (SIN)/N)

N

cake

Distributions

How many words per category?

How many categories produce the same word?

$$
p(\text { ate } \mid(\mathrm{SIN}) / \mathrm{N}) \quad \mathrm{p}(\text { ate | SIN })
$$

Infinite?

Two Problems

How do you deal with an infinite lexicon?

p(She \| N)
 p(cake | N) Dirichlet Process

Can you share knowledge between distributions?

$$
p(\text { ate } \mid(\mathrm{SIN}) / \mathrm{N}) \quad \mathrm{p}(\text { ate | SIN })
$$

Hierarchical
Dirichlet Process

Outline

- Grammar Induction
- Combinatory Categorial Grammar
- Dirichlet Processes
- HDP-CCG

Dirichlet Distribution

Boxes
$K=3$

Finite measure

$$
\alpha([x, y])=y-x
$$

$$
\left.\begin{array}{lllllllllll}
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{array} \right\rvert\, 12
$$

$$
\left.\left(p_{1}, p_{2}, p_{3}\right) \sim \begin{array}{r}
6 \\
4.5 \\
3 \\
1.5 \\
0
\end{array}\right] \begin{aligned}
& \mathrm{Al} \quad \mathrm{~A} 2 \quad \mathrm{~A} 3 \\
&
\end{aligned}
$$

Dirichlet Process

Boxes
$K=\infty$

Finite measure

$$
\alpha([x, y])=y-x
$$

1	2	3	4	5	6	7	8	9	10	$1 \mid$	12

$$
\alpha\left(A_{1}\right)=3 \quad \alpha\left(A_{2}\right)=6 \quad \alpha\left(A_{3}\right)=2
$$

$$
\left.\left.\left(p_{1}, p_{2}, p_{3}, \ldots\right) \sim r_{4}^{6} \begin{array}{r}
3 \\
{ }_{3} .5 \\
0
\end{array}\right] \begin{array}{l}
\square \\
0
\end{array}\right]
$$

Dirichlet Process

Boxes
$K=\infty$

Finite measure

$$
\alpha([x, y])=y-x
$$

$$
\left.\begin{array}{lllllllllll}
\hline & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11
\end{array} \right\rvert\, 12
$$

$$
\left.\left(p_{1}, p_{2}, p_{3}, \ldots\right) \sim \alpha(\mathrm{X}) * \begin{array}{c}
0.6 \\
0.45 \\
0.3 \\
0.15 \\
0
\end{array}\right] \begin{aligned}
& \square \\
& \hline
\end{aligned}
$$

Dirichlet Process

At any point, for any k, the data is Dirichlet distributed

For finite measure α on measure space X

$$
\left(p_{1}, p_{2}, \ldots p_{k}\right) \sim \operatorname{Dir}\left(\alpha G_{0}\left(A_{1}\right), \alpha G_{0}\left(A_{2}\right), \ldots \alpha G_{0}\left(A_{k}\right)\right)
$$

probability of region is based on a region's size

$$
p_{i}=\frac{\alpha\left(A_{i}\right)}{\alpha(X)}
$$

Constructing a Sample

Labels: A_{1}, A_{2}, \ldots are meaningless so let's order them

1	2	3	4	5	6	7	8	9	10	11	12

$$
\alpha\left(A_{2}\right)=3 \quad \alpha\left(A_{1}\right)=6 \quad \alpha\left(A_{3}\right)=2
$$

Constructing a Sample

Labels: A_{1}, A_{2}, \ldots are meaningless so let's order them

$$
\begin{aligned}
& \begin{array}{llllllllllll}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & |\mid & 12 \\
\hline
\end{array} \\
& \alpha\left(\mathrm{~A}_{2}\right)=3 \quad \alpha\left(\mathrm{~A}_{1}\right)=6 \\
& \alpha\left(A_{3}\right)=2
\end{aligned}
$$

$$
\begin{aligned}
& <A_{3}
\end{aligned}
$$

Stick Breaking Construction

I. Create a diminishing sequence

$$
\lim _{i \rightarrow \infty} \mathrm{E}\left[\mathrm{p}_{i}\right]=0 \quad \sum_{i}^{\infty} \mathrm{p}_{i}=1
$$

2. Attach weights to regions $\left(A_{1}, A_{2}, \ldots\right)$

Constructing a

sequence

$$
\mathrm{E}[x]=\frac{1}{1+\alpha}
$$

$$
\begin{aligned}
V_{i} & \sim \operatorname{Beta}(1, \alpha) \\
p_{i} & =V_{i} \prod_{j<i}\left(1-V_{j}\right)
\end{aligned}
$$

Stick Breaking Construction

I) we know how to make this sequence now

$$
\mathrm{P}(\cdot)=\sum_{k=1}^{\infty} \stackrel{\mathrm{P}}{k}^{\downarrow} \delta_{A_{k}}(\cdot)
$$

2) Indicator variable/label assignment

$$
A_{k} \sim \frac{\alpha(\cdot)}{\alpha(X)}
$$

DP Summary

- We can construct a sequence of weights
- We can attach them to points in our space
- The distribution of weights is intimately related to the size of our space (α)

Infinite Words

Probability of a word given N:

She
Cake Pie He

Sharing Knowledge

Current situation:

What's the word distribution for ditransitives?

p(word | SIN)

p(word | (SIN)/N)

ate
flew threw love

Outline

- Grammar Induction
- Combinatory Categorial Grammar
- Dirichlet Processes
- HDP-CCG

Hierarchical Dirichlet Processes

p(word | SIN)

p(word | (SIN)/N)

p(word | ((SIN)/N)/N)

Base DP

p(word | verb)
 $W_{0} \sim \operatorname{DP}\left(\alpha_{0},\{\right.$ words $\left.\}\right)$

p(word | SIN) p(word | (SIN)/N) p(word | ((SIN)/N)/N)

Assume distributions are variants of the Base Dirichlet Process

Base DP

p(word | verb)

$W_{0} \sim \operatorname{DP}\left(\alpha_{0},\{w o r d s\}\right)$

p(word | SIN)
$V_{i} \sim \operatorname{Beta}\left(1, \alpha_{1}\right)$
$p_{i}=V_{i} \prod_{j<i}\left(1-V_{j}\right)$
$W_{\text {sin }} \sim \operatorname{DP}\left(\alpha_{\mathrm{I}}, W_{0}\right)$
0

Base DP

Variance from base DP
p(word | SIN)
$W_{\text {SIN }} \sim \operatorname{DP}\left(\alpha_{1}, W_{0}\right)$
p(word | (SIN)/N)
$W_{(S I N) / N} \sim \operatorname{DP}\left(\alpha_{2}, W_{0}\right)$
$p($ word $\mid((S I N) / N) / N) \quad W_{((S I N) / N) / N} \sim \operatorname{DP}\left(\alpha_{3}, W_{0}\right)$

What's the effect?

p(word | verb)

$W_{0} \sim \operatorname{DP}\left(\alpha_{0},\{w o r d s\}\right)$

Shared Parameters

Effect on performance

	Arabic	Swedish	Basque	English
No Sharing	41.6	70.1	29.6	59.5
HDP- CCG	66.4	74.5	50.6	70.7

Length 10 sentences

