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Bayesian Methods in NLP

Dirichlet Process mixture models
A mixture model with a DP as nonparametric prior:

‘Mixing weights’ (prior):  G |{α, G0} ~ DP(α, G0)
The base distribution G0 and G are distributions over the same 
probability space.    
  
‘Cluster’ parameters: ηn | G ~ G
For each data point n = 1,..., N, draw a distribution ηn 

with value ηc* over observations from G
(We can interpret this as clustering because G is discrete with probability 1; 
hence different ηn take on identical values ηc* with nonzero probability.
Data points are partitioned into |C| clusters: c = c1...cN) 

Observed data:  xn|ηn ~ p(xn | ηn)
For each data point n = 1,...,N, draw observation xn  from ηn                
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Bayesian Methods in NLP

Stick-breaking representation of DPMs

The component parameters η*:   η*i ~ G0

The mixing proportions πi (v) are defined by 
a stick-breaking process: 
          Vi ~ Beta(1, α)         πi (v) = vi ∏ j =1...i −1 (1−vj )

  also written as π(v) ~ GEM(α) (Griffiths/Engen/McCloskey)

Hence, if G ~ DP(α , G0): 

   G = ∑i =1...∞ πi (v) δηi*  with η*i ~ G0
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Bayesian Methods in NLP

DP mixture models with DP(α, G0)
1. Define stick-breaking weights by 
    drawing  Vi | α  ~ Beta(1, α)

2. Draw cluster ηi* | G0 ~ G0  i = {1, 2, ...}

3. For the nth data point:
Draw cluster id Zn | {v1,v2...} ~ Mult(π(v))
Draw observation Xn | zn  ~ p(x | ηzn*) 

p(x | η*) is from an exponential family of distributions
G0 is from the corresponding conjugate prior
e.g. p(x | η*) multinomial, G0 Dirichlet
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Bayesian Methods in NLP

Stick-breaking construction of DPMs

Stick lengths  Vi ~ Beta(1, α), 
yielding mixing weights  πi(v) = vi ∏j<i ( 1 − vj )
Component parameters: ηi* ~ G0  

(assume G0 is conjugate prior with hyperparameter λ)
Assignment of data to components: Zn |{v1, .... } ~ Mult(π(v))
Generating the observations: Xn | zn ~ p( xn | ηzn*)
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Bayesian Methods in NLP

Inference for DP mixture models
Given observed data x1, ...., xn , compute the predictive density:

p(x | x1, ...., xn, α, G0)  
 =  ∫ p(x | w) p(w| x1, ...., xn, α, G0) dw

Problem: the posterior of the latent variables p(w | x1, ....,xn,α, G0) 
can’t be computed in closed form

Approximate inference:
-Gibbs sampling: 
Sample from a Markov chain with equilibrium distribution 
p(W | x1, ...., xn, α, G0) 

- Variational inference:
Construct a tractable variational approximation q of p 
with free variational parameters ν
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Bayesian Methods in NLP

Gibbs sampling
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Bayesian Methods in NLP

Gibbs sampling for DPMs
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Two variants that differ in their definition 
of the Markov Chain

Collapsed Gibbs sampler: 
Integrates out G and the distinct parameter values 
{η1*.... η|C|*} associated with the clusters 

Blocked Gibbs sampler:
Based on the stick-breaking construction.
This requires a truncated variant of the DP.



Bayesian Methods in NLP

Collapsed Gibbs sampler for DPMs
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Integrate out the random measure G and 
the distinct parameter values {η1*.... η|C|*} 
associated with each cluster 

Given data x = x1...xN, each state of the Markov chain 
is a cluster assignment c = c1...cN  to each data point
Each sample is also a cluster assignment c = c1...cN

Given a cluster assignment cb = c1...cN with C distinct 
clusters, the predictive density is 

p(xN+1 | cb, x, α, λ) 
= ∑k ≤ C+1  p(cN+1 = k | cb, α) p(xN+1 | cb, cN+1 = k, λ)



Bayesian Methods in NLP

Collapsed Gibbs sampler for DPMs
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‘Macro-sample step’:
Assign a new cluster to all data points. 

‘Micro-sample step’:
Sample assignment variables Cn for each data point conditioned 
on the assignment of the remaining points,  c-n

Cn is either one of the values in c-n or a new value:
p(cn = k | x, c-n)  ∝ p( xn | x-n, c-n, cn=k, λ) p( cn = k | c-n,  α)
with p( xn | x-n, c-n, cn=k, λ) = p( xn, c-n, cn=k, λ) / p( x-n, c-n, cn=k, λ)
and p( cn = k | c-n,  α) given by the Polya (Blackwell/McQueen) urn

Inference: 
After burn-in, collect B sample assignments cb 
and average across their predictive densities.



Bayesian Methods in NLP

Blocked Gibbs sampling
Based on the stick-breaking construction.
States of the Markov chain consist of (V, η*, Z)

Problem: in the actual DPM model V, η* are infinite.

Instead, the blocked Gibbs sampler uses a truncated 
DP (TDP), which samples only a finite collection of T 
stick lengths (and hence clusters)
 
By setting VT-1= 1, πi = 0 for i ≥ T: 
           πi(v) = vi ∏j<i ( 1 − vj )
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Bayesian Methods in NLP

Blocked Gibbs sampling
The states of the Markov chain consist of 
- the beta variables V = {V1...VT-1}, 
- the mixture component parameters η* =  {η1*...ηT*} 
- the indicator variables Z = {Z1...ZN}

Sampling:
-For n=1...N, sample ZN from p(zn = k | v, η*,x) = πk(v)p(xn | ηk*)
-For k=1...K, sample Vk from  Beta(γk2, γk1 α + nk+1...K) 
γk1  = 1+ nk  with nk : number of data points in cluster k
γk2  = α + nk+1...K:  with nk+1...K  the data points in clusters k+1...K
-For k=1...K, sample ηk* from its posterior p(ηk* | τk)
τk = (λ1 + n-ik(xi)  , λ2 + n-ik)

Predictive density for each sample:
p(xn+1  | x, z, α, λ) = ∑k E[πk(v) | γ1....γK] p(xn+1 | τk)
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Bayesian Methods in NLP

Variational inference 
(recap)
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Bayesian Methods in NLP

L(q, θ) = ln p(X | θ) − KL(q || p) 
is a lower bound on the 
incomplete log-likelihood ln p(X | θ )

E-step: 
With θold  fixed, return qnew  

that maximizes L(q, θold) wrt. q(Z), 
Now KL(qnew || pold ) = 0.

M-step: 
With qnew fixed, return θnew 

that maximizes L(qnew, θ) wrt. θ.
If L( qnew, θnew ) > L( qnew, θold ):
ln p( X | θnew) > ln p( X | θold ), 
and hence KL( qnew || pnew ) > 0 

Standard EM
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Bayesian Methods in NLP

Variational inference is applicable when you have to compute 
an intractable posterior over latent variables p( W |X) 

Basic idea:
Replace the exact, but intractable posterior p( W |X)
with a tractable approximate posterior q( W |X, V)

q( W |X, V) is from a family of simpler distributions over the latent 
variables W  that is defined by a set of free variational 
parameters V

Unlike in EM, KL(q || p) > 0  for any q, since q only approximates p

Variational inference
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Bayesian Methods in NLP

Variational EM 
Initialization: 
Define initial model θold  and variational distribution q( W | X ,V )

E-step: 
Find V that maximize the variational distribution q( W | X ,V )
Compute the expectation of true posterior p(W | X, θold) 
under the new variational distribution q( W | X ,V )

M-step: 
Find model parameters θnew that maximize the expectation of 
the p(W, X|  θ) under the variational posterior q( W | X ,V )

Set θold := θnew
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Bayesian Methods in NLP

Blei and Jordan’s 
mean-field variational 
inference for DP
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Bayesian Methods in NLP

Variational inference
Define a family of variational distributions qν(w) with variational 
parameters ν =ν1....νM  that are specific to each observation xi

Set ν to minimze the KL-divergence between qν(w) and p( w | x, θ):
D( qν(w) || p(w |x,θ) ) 
          = Eq [log qν(W)] − Eq [log p(W, x |θ)]  + log p(x| θ)
(Here, log p(x| θ) can be ignored when finding q)

This is equivalent to maximizing a lower bound on log p(x | θ):

log p(x | θ)  =  Eq [log p(W, x |θ)] − Eq [log qν(W)] + D(qν(w)||p(w |x,θ))
log p(x | θ)  ≥  Eq [log p(W, x |θ)] − Eq [log qν(W)]  
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Bayesian Methods in NLP

qν(W) for DPMs
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Blei and Jordan use again the stick-breaking construction.

Hence, the latent variables are W = (V, η*, Z)
V: T −1  truncated stick lengths
η*: T component parameters
Z: cluster assignments of the N data points



Bayesian Methods in NLP

Variational inference for DPMs
In general: 

log p(x | θ)  ≥  Eq [log p(W, x |θ)] − Eq [log qν(W)]  

For DPMs: θ  = (α, λ);  W = (V, η*, Z)
log p(x | α, λ)  ≥  Eq [log p(V | α)] +  Eq [log p(η* | λ)] 
                            + ∑n[ Eq[log p(Zn | V)]  +  Eq[log p(xn | Zn)] ]
                             − Eq [log qν(V, η*, Z)]

Problem: V = {V1, V2,...}, η* = {η1*, η2*, ...} are infinite.
Solution: use a truncated representation 
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Bayesian Methods in NLP

Variational approximations qν(v,η*, z)
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The variational parameters ν = (γ1..T-1, τ1..T,  φ1...N)

qν(v, η*, z) = ∏t<T  qγt (vt)  ∏t<T  qτt(ηt*) ∏n≤N  qφn(zn)
qγt(vt): Beta distributions with variational parameter γt

qτt(ηt*): conjugate priors for η, with parameter τt
qφn(zn): multinomials with variational parameters φn


