CS598JHM: Advanced NLP (Spring 2013) *http://courses.engr.illinois.edu/cs598jhm/*

Lecture 14: Inference in Dirichlet Processes

(Blei & Jordan, *Variational inference for Dirichlet Process Mixture models*, Bayesian Analysis 2006)

Julia Hockenmaier

juliahmr@illinois.edu 3324 Siebel Center Office hours: by appointment

Dirichlet Process mixture models

A mixture model with a DP as nonparametric prior:

'Mixing weights' (prior): $G | \{\alpha, G_0\} \sim DP(\alpha, G_0)$

The base distribution G_0 and G are distributions over the same probability space.

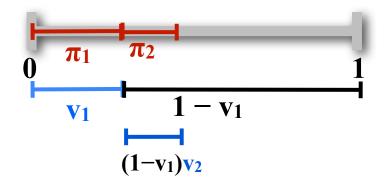
'Cluster' parameters: $\eta_n \mid G \sim G$

For each data point n = 1, ..., N, draw a distribution η_n with value η_c^* over observations from G (We can interpret this as clustering because G is discrete with probability 1; hence different η_n take on identical values η_c^* with nonzero probability. Data points are partitioned into $|\mathbf{C}|$ clusters: $\mathbf{c} = c_1...c_N$)

Observed data: $x_n |\eta_n \sim p(x_n | \eta_n)$

For each data point n=1,...,N, draw observation $x_n \ \mbox{from} \ \eta_n$ Bayesian Methods in NLP

Stick-breaking representation of DPMs



The component parameters η^* : $\eta_i^* \sim G_0$ The mixing proportions $\pi_i(\mathbf{v})$ are defined by a stick-breaking process:

 $V_i \sim Beta(1, \alpha) \qquad \pi_i(\mathbf{v}) = v_i \prod_{j=1...i-1} (1-v_j)$ also written as $\pi(\mathbf{v}) \sim \text{GEM}(\alpha)$ (Griffiths/Engen/McCloskey)

Hence, if
$$G \sim DP(\alpha, G_0)$$
:
 $G = \sum_{i=1...\infty} \pi_i(\mathbf{v}) \,\delta_{\eta i^*}$ with $\eta_i^* \sim G_0$

Bayesian Methods in NLP

DP mixture models with $DP(\alpha, G_0)$

1. Define stick-breaking weights by drawing $V_i \mid \alpha \sim Beta(1, \alpha)$

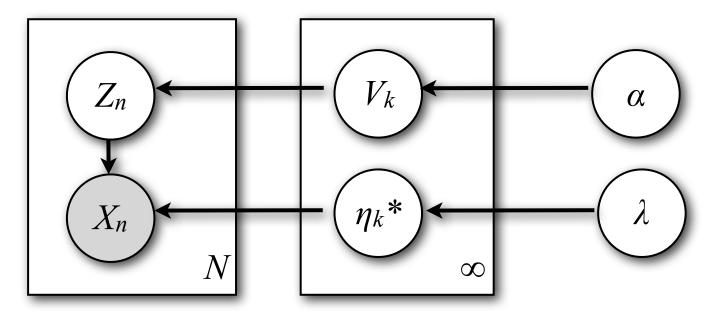
2. Draw cluster $\eta_i^* | G_0 \sim G_0 \ i = \{1, 2, ...\}$

3. For the nth data point:

Draw cluster id $Z_n | \{v_1, v_2...\} \sim Mult(\pi(\mathbf{v}))$ Draw observation $X_n | z_n \sim p(x | \eta_{z_n}^*)$

 $p(\mathbf{x} | \boldsymbol{\eta}^*)$ is from an exponential family of distributions G_0 is from the corresponding conjugate prior e.g. $p(\mathbf{x} | \boldsymbol{\eta}^*)$ multinomial, G_0 Dirichlet

Stick-breaking construction of DPMs



Stick lengths $V_i \sim Beta(1, \alpha)$, yielding mixing weights $\pi_i(\mathbf{v}) = v_i \prod_{j \le i} (1 - v_j)$ Component parameters: $\eta_i^* \sim G_0$ (assume G_0 is conjugate prior with hyperparameter λ) Assignment of data to components: $Z_n | \{v_1, ..., \} \sim Mult(\pi(\mathbf{v}))$ Generating the observations: $X_n | z_n \sim p(x_n | \eta_{z_n}^*)$

Inference for DP mixture models

Given observed data $x_1, ..., x_n$, compute the **predictive density**:

$$p(\mathbf{x} | \mathbf{x}_1, ..., \mathbf{x}_n, \alpha, \mathbf{G}_0)$$

$$= \int p(\mathbf{x} \mid \mathbf{w}) p(\mathbf{w} \mid \mathbf{x}_1, ..., \mathbf{x}_n, \alpha, \mathbf{G}_0) d\mathbf{w}$$

Problem: the posterior of the latent variables $p(\mathbf{w} | x_1, ..., x_n, \alpha, G_0)$ can't be computed in closed form

Approximate inference:

- Gibbs sampling:

Sample from a Markov chain with equilibrium distribution $p(\mathbf{W} \mid x_1, ..., x_n, \alpha, G_0)$

- Variational inference:

Construct a tractable variational approximation q of p with free variational parameters **v**

Gibbs sampling

Gibbs sampling for DPMs

Two variants that differ in their definition of the Markov Chain

Collapsed Gibbs sampler:

Integrates out G and the distinct parameter values $\{\eta_1^*, \dots, \eta_{|C|}^*\}$ associated with the clusters

Blocked Gibbs sampler:

Based on the stick-breaking construction. This requires a truncated variant of the DP.

Collapsed Gibbs sampler for DPMs

Integrate out the random measure G and the distinct parameter values $\{\eta_1^*...,\eta_{|C|}^*\}$ associated with each cluster

Given data $\mathbf{x} = x_1...x_N$, each **state** of the Markov chain is a **cluster assignment** $\mathbf{c} = c_1...c_N$ to each data point Each **sample** is also a cluster assignment $\mathbf{c} = c_1...c_N$

Given a cluster assignment $c_b = c_1...c_N$ with C distinct clusters, the **predictive density** is

$$p(\mathbf{x}_{N+1} \mid \mathbf{c}_{b}, \mathbf{x}, \alpha, \lambda) = \sum_{k \leq C+1} p(\mathbf{c}_{N+1} = k \mid \mathbf{c}_{b}, \alpha) p(\mathbf{x}_{N+1} \mid \mathbf{c}_{b}, \mathbf{c}_{N+1} = k, \lambda)$$

Collapsed Gibbs sampler for DPMs

'Macro-sample step':

Assign a new cluster to all data points.

'Micro-sample step':

Sample assignment variables C_n for each data point conditioned on the assignment of the remaining points, c_{-n}

C_n is either one of the values in \mathbf{c}_{-n} or a new value: $p(\mathbf{c}_n = \mathbf{k} \mid \mathbf{x}, \mathbf{c}_{-n}) \propto p(\mathbf{x}_n \mid \mathbf{x}_{-n}, \mathbf{c}_{-n}, \mathbf{c}_n = \mathbf{k}, \lambda) p(\mathbf{c}_n = \mathbf{k} \mid \mathbf{c}_{-n}, \alpha)$ with $p(\mathbf{x}_n \mid \mathbf{x}_{-n}, \mathbf{c}_{-n}, \mathbf{c}_n = \mathbf{k}, \lambda) = p(\mathbf{x}_n, \mathbf{c}_{-n}, \mathbf{c}_n = \mathbf{k}, \lambda) / p(\mathbf{x}_{-n}, \mathbf{c}_n = \mathbf{k}, \lambda)$ and $p(\mathbf{c}_n = \mathbf{k} \mid \mathbf{c}_{-n}, \alpha)$ given by the Polya (Blackwell/McQueen) urn

Inference:

After burn-in, collect B sample assignments \mathbf{c}_{b} and average across their predictive densities.

```
Bayesian Methods in NLP
```

Blocked Gibbs sampling

Based on the stick-breaking construction. States of the Markov chain consist of (V, η^* , Z)

Problem: in the *actual* DPM model V, η^* are infinite.

Instead, the blocked Gibbs sampler uses a *truncated* DP (TDP), which samples only a *finite* collection of T stick lengths (and hence clusters)

By setting
$$V_{T-1}=1$$
, $\pi_i = 0$ for $i \ge T$:
 $\pi_i(\mathbf{v}) = v_i \prod_{j \le i} (1 - v_j)$

Blocked Gibbs sampling

The states of the Markov chain consist of

- the beta variables $\mathbf{V} = \{V_1...V_{T-1}\},\$

- the mixture component parameters $\eta^* = \{\eta_1^*...\eta_T^*\}$
- the indicator variables $\mathbf{Z} = \{Z_1...Z_N\}$

Sampling:

- For n=1...N, sample Z_N from $p(z_n = k | \mathbf{v}, \boldsymbol{\eta}^*, \mathbf{x}) = \pi_k(\mathbf{v})p(x_n | \eta_k^*)$
- For k=1...K, sample V_k from $Beta(\gamma_{k2}, \gamma_{k1} \alpha + n_{k+1...K})$ $\gamma_{k1} = 1 + n_k$ with n_k : number of data points in cluster k $\gamma_{k2} = \alpha + n_{k+1...K}$: with $n_{k+1...K}$ the data points in clusters k+1...K
- For k=1...K, sample η_k^* from its posterior $p(\eta_k^* | \tau_k)$ $\tau_k = (\lambda_1 + n_{-ik}(x_i), \lambda_2 + n_{-ik})$

Predictive density for each sample:

 $p(\mathbf{x}_{n+1} \mid \mathbf{x}, \mathbf{z}, \alpha, \lambda) = \sum_{k} E[\pi_k(\mathbf{v}) \mid \gamma_1 \gamma_K] p(\mathbf{x}_{n+1} \mid \tau_k)$

Variational inference (recap)

Standard EM

 $\mathcal{L}(q, \theta) = \ln p(\mathbf{X} \mid \theta) - \mathrm{KL}(q \mid \mid p)$ is a lower bound on the incomplete log-likelihood $\ln p(\mathbf{X} \mid \theta)$

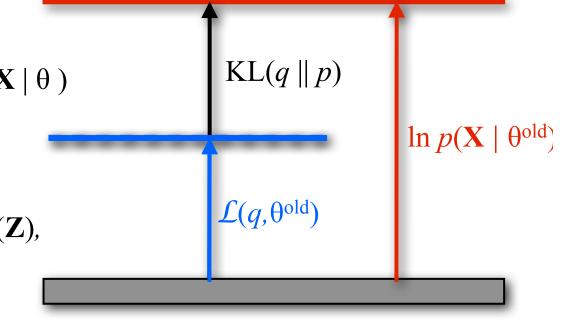
E-step:

With θ^{old} fixed, return q^{new} that maximizes $\mathcal{L}(q, \theta^{old})$ wrt. $q(\mathbf{Z})$, Now $KL(q^{new} || p^{old}) = 0$.

M-step:

With q^{new} fixed, return θ^{new} that maximizes $\mathcal{L}(q^{new}, \theta)$ wrt. θ . If $\mathcal{L}(q^{new}, \theta^{new}) > \mathcal{L}(q^{new}, \theta^{old})$: $\ln p(\mathbf{X} | \theta^{new}) > \ln p(\mathbf{X} | \theta^{old})$, and hence KL $(q^{new} || p^{new}) > 0$

Bayesian Methods in NLP



Variational inference

Variational inference is applicable when you have to compute an *intractable* posterior over latent variables $p(\mathbf{W} | \mathbf{X})$

Basic idea: Replace the exact, but intractable posterior $p(\mathbf{W} | \mathbf{X})$ with a *tractable* approximate posterior $q(\mathbf{W} | \mathbf{X}, \mathbf{V})$

 $q(\mathbf{W} | \mathbf{X}, \mathbf{V})$ is from a family of simpler distributions over the latent variables \mathbf{W} that is defined by a set of **free variational parameters V**

Unlike in EM, KL(q || p) > 0 for any q, since q only approximates p

Variational EM

Initialization:

Define initial model θ^{old} and variational distribution $q(\mathbf{W} | \mathbf{X}, \mathbf{V})$

E-step:

Find V that maximize the variational distribution $q(\mathbf{W} | \mathbf{X}, \mathbf{V})$ Compute the expectation of true posterior $p(\mathbf{W} | \mathbf{X}, \theta^{\text{old}})$ under the new variational distribution $q(\mathbf{W} | \mathbf{X}, \mathbf{V})$

M-step:

Find model parameters θ^{new} that maximize the expectation of the $p(\mathbf{W}, \mathbf{X} | \theta)$ under the variational posterior $q(\mathbf{W} | \mathbf{X}, \mathbf{V})$

Set $\theta^{\text{old}} := \theta^{\text{new}}$

Blei and Jordan's mean-field variational inference for DP

Variational inference

Define a family of variational distributions $q_v(\mathbf{w})$ with variational parameters $v = v_1 \dots v_M$ that are specific to each observation x_i

Set *v* to minimze the KL-divergence between $q_v(\mathbf{w})$ and $p(\mathbf{w} | \mathbf{x}, \theta)$: $D(q_v(\mathbf{w}) || p(\mathbf{w} | \mathbf{x}, \theta))$ $= E_q [\log q_v(\mathbf{W})] - E_q [\log p(\mathbf{W}, \mathbf{x} | \theta)] + \log p(\mathbf{x} | \theta)$ (Here, $\log p(\mathbf{x} | \theta)$ can be ignored when finding *q*)

This is equivalent to maximizing a lower bound on $\log p(\mathbf{x} \mid \theta)$:

 $\log p(\mathbf{x} \mid \theta) = E_q [\log p(\mathbf{W}, \mathbf{x} \mid \theta)] - E_q [\log q_v(\mathbf{W})] + D(q_v(\mathbf{w}) || p(\mathbf{w} \mid \mathbf{x}, \theta))$ $\log p(\mathbf{x} \mid \theta) \ge E_q [\log p(\mathbf{W}, \mathbf{x} \mid \theta)] - E_q [\log q_v(\mathbf{W})]$

$q_{v}(\mathbf{W})$ for DPMs

Blei and Jordan use again the stick-breaking construction.

Hence, the latent variables are $W = (V, \eta^*, Z)$

- V: T-1 truncated stick lengths
- η^* : *T* component parameters
- Z: cluster assignments of the N data points

Variational inference for DPMs

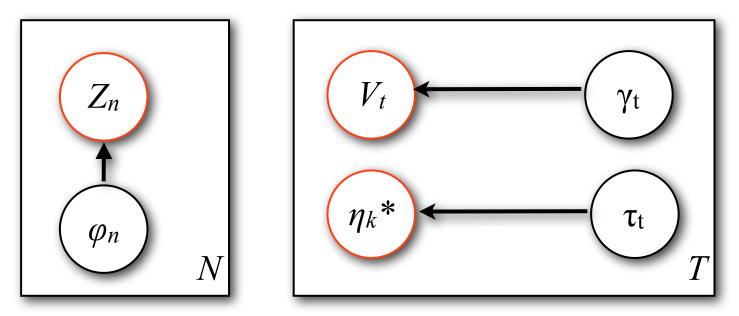
In general:

 $\log p(\mathbf{x} \mid \theta) \geq \mathbf{E}_q \left[\log p(\mathbf{W}, \mathbf{x} \mid \theta)\right] - \mathbf{E}_q \left[\log q_v(\mathbf{W})\right]$

For DPMs:
$$\theta = (\alpha, \lambda)$$
; $\mathbf{W} = (\mathbf{V}, \boldsymbol{\eta}^*, \mathbf{Z})$
 $\log p(\mathbf{x} \mid \alpha, \lambda) \geq E_q [\log p(\mathbf{V} \mid \alpha)] + E_q [\log p(\boldsymbol{\eta}^* \mid \lambda)]$
 $+ \sum_n [E_q [\log p(Z_n \mid \mathbf{V})] + E_q [\log p(x_n \mid Z_n)]]$
 $- E_q [\log q_v(\mathbf{V}, \boldsymbol{\eta}^*, \mathbf{Z})]$

Problem: $\mathbf{V} = \{V_1, V_2, ...\}, \mathbf{\eta}^* = \{\eta_1^*, \eta_2^*, ...\}$ are infinite. Solution: use a truncated representation

Variational approximations $q_v(v,\eta^*, z)$



The variational parameters $\mathbf{v} = (\gamma_{1..T-1}, \tau_{1..T}, \phi_{1...N})$

 $q_{\mathbf{v}}(\mathbf{v}, \mathbf{\eta}^*, \mathbf{z}) = \prod_{t \leq T} q_{\gamma t}(v_t) \prod_{t \leq T} q_{\tau t}(\eta_t^*) \prod_{n \leq N} q_{\varphi_n}(z_n)$ $q_{\gamma t}(v_t)$: Beta distributions with variational parameter γ_t $q_{\tau t}(\eta_t^*)$: conjugate priors for η , with parameter τ_t $q_{\varphi_n}(z_n)$: multinomials with variational parameters φ_n

Bayesian Methods in NLP