CS598JHM: Advanced NLP (Spring 2013) *http://courses.engr.illinois.edu/cs598jhm/*

Lecture 13: Dirichlet Processes

Julia Hockenmaier

juliahmr@illinois.edu 3324 Siebel Center Office hours: by appointment

Finite mixture model

Mixing proportions:

The prior probability of each component (assuming uniform α) $\pi | \alpha \sim Dirichlet(\alpha/K, ..., \alpha/K)$

Mixture components:

The distribution over observations for each component $\theta_k^* | H \sim H$ (*H* is typically a Dirichlet distribution)

Indicator variables:

Which component is observation i drawn from? $z_i | \pi \sim Multinomial(\pi)$

The observations:

The probability of observation i under component z_i $x_i|z_i, \{\theta_k^*\} \sim F(\theta_{zi}^*)$ (*F* is typically a categorical distribution)

Dirichlet Process $DP(\alpha, H)$

The **Dirichlet process** $DP(\alpha, H)$ defines a distribution over distributions over a probability space Θ . Draws $G \sim DP(\alpha, H)$ from this DP are **random distributions** over Θ

 $DP(\alpha, H)$ has two parameters:

Base distribution *H*:

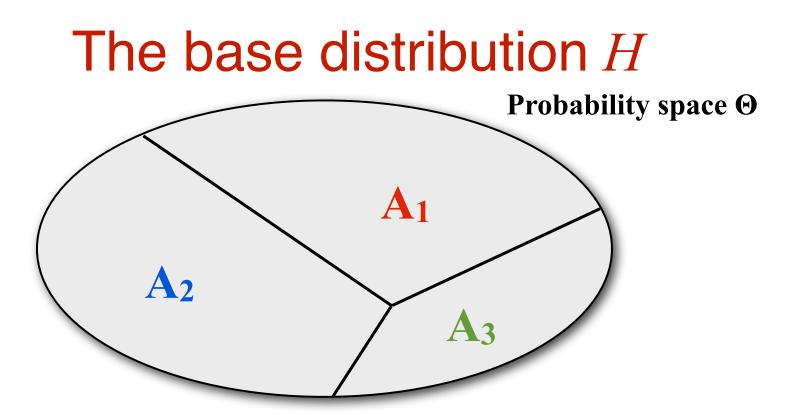
a distribution over the probability space Θ

Concentration parameter α :

a positive real number

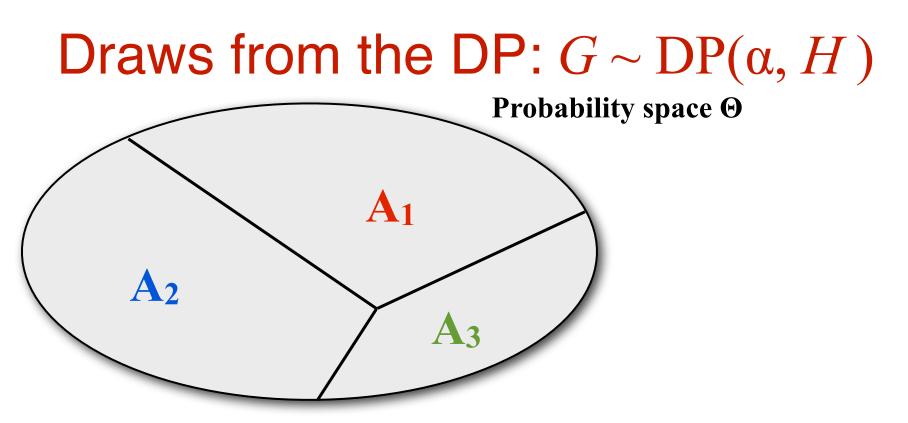
If $G \sim DP(\alpha, H)$, then for any finite measurable partition $A_1...A_r$ of Θ :

 $(G(A_1), ..., G(A_r)) \sim Dirichlet(\alpha H(A_1), ..., \alpha H(A_r))$



Since A_1, A_2, A_3 partition Θ , we can use the base distribution H to define a categorical distribution over A_1, A_2, A_3 : $H(A_1) + H(A_2) + H(A_3) = 1$

Note that we can use *H* to define a categorical distribution over *any* finite partition $A_1...A_r$ of Θ , even if *H* is smooth



Every individual draw *G* from $DP(\alpha, H)$ is also a distribution over Θ *G* also defines a categorical distribution over any partition of Θ

For *any* finite partition $A_1...A_r$ of Θ , this categorical distribution is drawn from a Dirichlet prior defined by α and *H*: $(G(A_1), G(A_2), G(A_3)) \sim Dir(\alpha H(A_1), \alpha H(A_2), \alpha H(A_3))$

The role of H and α

The base distribution *H* defines the **mean** (expectation) of *G*: For any measurable set $A \subseteq \Theta$, E[G(A)] = H(A)

The concentration parameter α is **inversely** related to the **variance** of *G* :

 $V[G(A)] = H(A)(1 - H(A))/(\alpha + 1)$ α specifies how much mass is around the mean The larger α , the smaller the variance

 α is also called the **strength parameter:** If we use DP(α , *H*) as a prior, α tells us how much we can deviate from the prior:

As $\alpha \to \infty$, $G(A) \to H(A)$

The posterior of $G: G|\theta_1, \dots \theta_n$

Assume the distribution *G* is drawn from a DP: $G \sim DP(\alpha, H)$

The **prior** of *G*:

 $(G(A_1),..., G(A_K)) \sim Dirichlet(\alpha H(A_1), ..., \alpha H(A_K))$

Given a sequence of observations $\theta_1... \theta_n$ from Θ that are drawn from this $G: \quad \theta_i | G \sim G$ What is the **posterior of** *G* given the observed $\theta_1... \theta_n$?

For any finite partition $A_1...A_K$ of Θ , define the number of observations in $A_k : n_k = \#\{i: \theta_i \in A_k\}$

The **posterior** of *G* given observations $\theta_1... \theta_n$ $(G(A_1),..., G(A_K))|\theta_1, ... \theta_n \sim Dirichlet(\alpha H(A_1) + n_1, ..., \alpha H(A_K) + n_K)$

The posterior of $G: G|\theta_1, ..., \theta_n$

The observations $\theta_1 \dots \theta_n$ define an **empirical distribution** over Θ :

← This is just a fancy way of saying $P(A_k) = n_k/n$

The **posterior** of *G* given observations $\theta_1 \dots \theta_n$

 $(G(A_1),...,G(A_K))|\theta_1,...\theta_n \sim Dirichlet(\alpha H(A_1) + n_1,...,\alpha H(A_K) + n_K)$

The posterior is a DP with:

 $\sum_{i=1}^{n} \delta_{\theta_i}$

- concentration parameter $\alpha + n$
- a **base distribution** that is a weighted average of H and the empirical distribution.

$$G|\theta_1, \dots, \theta_n \sim DP(\alpha + n, \quad \frac{\alpha}{\alpha + n}H + \frac{n}{\alpha + n}\frac{\sum_{i=1}^n \delta_{\theta_i}}{n})$$

The weight of the empirical distribution is proportional to the amount of data. The weight of *H* is proportional to α

The Blackwell MacQueen urn

Assume each value in Θ has a unique color.

 $\theta_1...$ θ_n is a sequence of colored balls.

With probability $\alpha / (\alpha + n)$, the n+1th ball is drawn from *H*

With probability $n/(\alpha+n)$ the n+1th ball is drawn from an urn that contains all previously drawn balls.

Note that this implies that G is a discrete distribution, even if H is not.

The clustering property of DPs

 $\theta_1...$ θ_n induces a partition of the set 1...n into k unique values.

This means that the DP defines a distribution over such partitions.

The expected number of clusters k increases with α but grows only logarithmically in *n*:

 $E[k \mid n] \simeq \alpha \log(1 + n/\alpha)$

NLP 101: language modeling

Task: Given a stream of words $w_1...w_n$, predict the next word w_{n+1} with a unigram model P(w)

Answer:

If w_{n+1} is a word w we've seen before: $P(w_{n+1} = w) \propto Freq(w)$

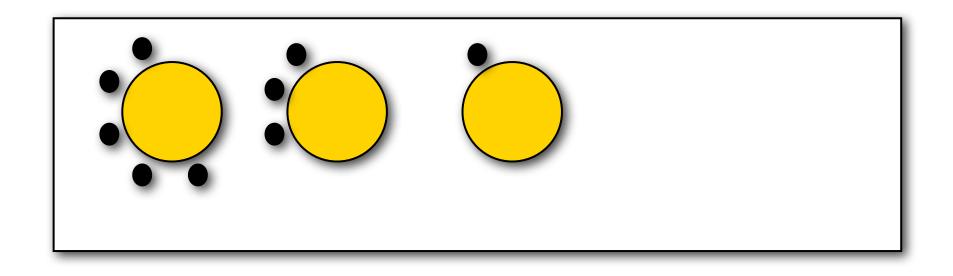
But what if w_{n+1} has never been seen before? We need to reserve some mass for new events $P(w_{n+1} \text{ is a new word}) \propto \alpha$

$$P(w_{n+1} = w) = Freq(w)/(n+\alpha) \text{ if } Freq(w) > 0$$

= $\alpha/(n+\alpha)$ if $Freq(w) = 0$

Bayesian Methods in NLP

The Chinese restaurant processs



The (i+1)th customer c_{i+1} sits:

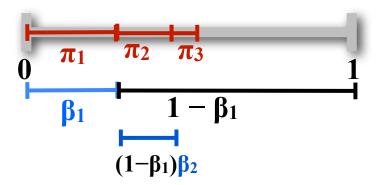
- at an *existing* table t_k that already has n_k customers with probability $n_k/(i+\alpha)$
- at *new* table with probability $\alpha/(i+\alpha)$

The predictive distribution $\theta_{n+1}|\theta_1, ..., \theta_n$

The predictive distribution of θ_{n+1} given a sequence of i.i.d. draws $\theta_1, ..., \theta_n \sim G$, with $G \sim DP(\alpha, H)$ and G marginalized out is given by the posterior base distribution given $\theta_1, ..., \theta_n$

$$P(\theta_{n+1} \in A) = E[G(A)|\theta_1, ..., \theta_n]$$
$$= \frac{\alpha}{\alpha + n} H(A) + \frac{\sum_{i=1}^n \delta_{\theta_i}(A)}{\alpha + n}$$

The stick-breaking representation



 $G \sim DP(\alpha, H)$ if:

- The component parameters are drawn from the base distribution: $\theta_k^* \sim H$

- The weights of each cluster are defined by a stick-breaking process:

 $\beta_k \sim Beta(1, \alpha) \qquad \pi_k \sim \beta_k \prod_{l=1...k-1} (1-\beta_l)$ also written as $\pi \sim GEM(\alpha)$ (Griffiths/Engen/McCloskey) $G = \sum_{k=1...\infty} \pi_k \delta$

 θ_k^*

Dirichlet Process Mixture Models

Each observation x_i is associated with a latent parameter θ_i Each θ_i is drawn i.i.d. from *G*; each x_i is drawn from $F(\theta_i)$

$$G|\alpha, \mathbf{H} \sim DP(\alpha, \mathbf{H})$$
 $\theta_i|G \sim G$ $\mathbf{x}_i|\theta_i \sim F(\theta_i)$

Since *G* is discrete, θ_i can be equal to θ_j All x_i , x_j with $\theta_i = \theta_j$ belong to the same mixture component There are a countably infinite number of mixture components.

Stick-breaking representation:

Mixing proportions: $\pi | \alpha \sim GEM(\alpha)$ Indicator variables: $z_i | \pi \sim Mult(\pi)$ Component parameters: $\theta_k^* | H \sim H$ Observations: $x_i | z_i, \{\theta_k^*\} \sim F(\theta_{z_i}^*)$

Hierarchical Dirichlet Processes

Since both H and G are distributions over the same space Θ , the base distribution of a DP can be a draw from another DP. This allows us to specify hierarchical Dirichlet Processes, where each group of data is generated by its own DP.

Assume a global measure G_0 drawn from a DP: $G_0 \sim DP(\gamma, H)$

For each group j, define another DP G_j with base measure G_0 : $G_j \sim DP(\alpha_0, G_0)$ (or $G_j \sim DP(\alpha_j, G_0)$, but it is common to assume all α_j are the same)

 α_0 specifies the amount of variability around the prior G_0

Since all groups share the same base G_0 , all G_j use the same atoms (balls of the same colors)