MODELING ANNOTATED DATA

Reviewer: Saurabh Singh (ss1@uiuc.edu)

Problem

- Modeling of associated document items
 - Images & Annotations
 - Papers & Bibliographies
 - Genes & Functions
- Documents are considered as pairs of data streams.
- One type provides annotation for the other type.

Uses

- Retrieval, Clustering, Classification
- Automatic annotation
- Retrieval of un-annotated data.

This paper

Models Images (r) and Annotations (w)

Three primary tasks

- Joint distribution of an image and its caption (Clustering, Organization)
- Conditional distribution of words given an image. (Automatic annotation, text based retrieval)
- Conditional distribution of words given a region of an image. (Automatic labeling of regions)

Modeling

K factors or topics

- Each a distribution over words
- Each a distribution over image regions

Latent variables

- Topic assignments
- Distribution parameters (for components)

Features Document: **(r, w),** N regions, M words

```
Distributions p(\mathbf{r}, \mathbf{w}), p(\mathbf{w} | \mathbf{r}), p(\mathbf{w} | \mathbf{r}, r_n)
```

Text annotations

Vocabulary: 168 Terms (V) Captions: 2-4 Words per Image

Multinomials on V conditioned on topics

Images

Composed of 6-10 regions via N-cuts Each region summarized as a feature vector ~40

- Size: Percentage of image
- Position: Center of mass [0, 1]
- Color: μ, σ of R,G,B, L, a, b etc.
- Texture: μ , σ of filter responses
- Shape: area/perimeter², moment of inertia etc.

Multivariate Gaussian over features: μ , Σ

Models

Three hierarchical probabilistic models

- 1. Gaussian Multinomial mixture
- 2. Gaussian Multinomial LDA
- 3. Correspondence LDA

Gaussian Multinomial Mixture

Distributions

$$p(z, \mathbf{r}, \mathbf{w}) = p(z \mid \lambda) \prod_{n=1}^{N} p(r_n \mid z, \mu, \sigma)$$
$$\cdot \prod_{m=1}^{M} p(w_m \mid z, \beta).$$

- p(**r**, **w**)
- $p(w | \mathbf{r}) = \sum_{z} p(z | \mathbf{r}) p(w | z)$

But no

• p(w | **r**, r_n)

Gaussian Multinomial LDA

Distributions

$$p(\mathbf{r}, \mathbf{w}, \theta, \mathbf{z}, \mathbf{v}) = p(\theta \mid \alpha) \left(\prod_{n=1}^{N} p(z_n \mid \theta) p(r_n \mid z_n, \mu, \sigma) \right)$$
$$\cdot \left(\prod_{m=1}^{M} p(v_m \mid \theta) p(w_m \mid v_m, \beta) \right)$$

All

- p(**r**, **w**)
- p(w | **r**)
- $p(w | r, r_n)$

Correspondence LDA

Distributions

$$p(\mathbf{r}, \mathbf{w}, \theta, \mathbf{z}, \mathbf{y}) = p(\theta \mid \alpha) \left(\prod_{n=1}^{N} p(z_n \mid \theta) p(r_n \mid z_n, \mu, \sigma) \right)$$
$$\cdot \left(\prod_{m=1}^{M} p(y_m \mid N) p(w_m \mid y_m, \mathbf{z}, \beta) \right)$$

All

- p(**r**, **w**)
- p(w | **r**)
- $p(w | r, r_n)$

Inference & Estimation

- Variational Inference
 - Exact intractable
 - Approximate assuming factorizable distribution
 - Minimize KL-Divergence via iterative updates to parameters
- Parameter Estimation
 - EM algorithm
 - E: Compute variational posterior.
 - M: MLE estimate of the model parameters.

Evaluation

- 7000 Images and their captions
- 75% Training & 25% Testing
- Test set likelihood
- Automatic annotation
- Text based retrieval

Eval: Test set likelihood

Number of factors

Eval: Automatic Annotation perplexity = exp{ $-\sum_{d=1}^{D} \sum_{m=1}^{M_d} \log p(w_m | \mathbf{r}_d) / \sum_{d=1}^{D} M_d$ }

Eval: Automatic Annotation (Qual.)

True caption scotland water

Corr–LDA scotland water flowers hills tree

GM–LDA tree water people mountain sky

GM–Mixture water sky clouds sunset scotland

True caption clouds jet plane

Corr–LDA sky plane jet mountain clouds

GM–LDA sky water people tree clouds

GM–Mixture sky plane jet clouds pattern

True caption fish reefs water

Corr–LDA fish water ocean tree coral

GM–LDA water sky vegetables tree people

GM–Mixture fungus mushrooms tree flowers leaves

Eval: Automatic Annotation (Qual.)

GM-LDA: 1. HOTEL, WATER 2. PLANE, JET 3. TUNDRA, PENGUIN 4. PLANE, JET 5. WATER, SKY 6. BOATS, WATER

Text Based Retrieval

Precision

Text Based Retrieval (Qual.)

People

Conclusion

If conditionals are needed, then model them explicitly