Reading Tea Leaves: How
Humans Interpret Topic Models
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1. Word intrusion
2. Topic intrusion

Crowdsourced approach using Amazon Mechanical Turk

Evaluating three different approaches: LDA, pLSI, CTM.



“Spot the intruder word”

Process:

1.

2
3
4.
5

Select a topic at random
Choose the 5 most probable words from the topic
Choose an improbable word from this topic (which is probable in another topic)

Shuffle

Present to subject



If the topic set is coherent, then the users will agree on the outlier.

If the topic set is incoherent, then the users will choose the outlier at random.

1/10
floppy  alphabet computer processor memory disk

2 /10
molecule education study  university school student

3/ 10
linguistics  actor film comedy director movie

4 /10
islands island bird coast  portuguese mainland




“Spot the intruder topic”

Process:

1.

2
3
4,
5

Choose a document
Choose the three highest-prob. topics for this document
Choose one low-prob. topic for this document

Shuffle

Present to subject



DOUGLAS_HOFSTADTER

Douglas Richard Hofstadter (born February 15, 1945 in
New York, New York) is an American academic whose
research focuses on consciousness, thinking and

creativity. He is best known for ", first published in
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Model parameters:
MBJ = ) 1GH = wit)/S
S

Which is just a fancy way of saying:

number of people correct

total number of people



Word Intrusion

Model Precision
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NYT corpus, 50 topic LDA model



Topic Log Odds (TLO):
TLOT = (2 log égj‘jgl —log égj‘jgl )/S

Translation: normalized difference between probability mass of actual “intruder” and
selected “intruder”.

Upper bound is O, higher is better.



Topic Intrusion
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New York Times Wikipedia
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Measures homogeneity (synonymy), not topic strength (coherence)
Example document: curling

Possible topic: broom, ice, Canada, rock, sheet, stone

Consider syntactic differences:
organization, physicality, proportions, red



