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Recap Latent Dirichlet Allocation

• 𝐷 ≡ set of documents.

• 𝐾 = set of topics.

• 𝑉 = set of all words. |𝑁| words in each doc.

• 𝜃𝑑 ≡ Multi over topics for a document d ∈ 𝐷. 𝜃𝑑 ~ 𝐷𝑖𝑟(𝛼)

• 𝛽𝑘 ≡ Multi over words in a topic, 𝑘 ∈ 𝐾. 𝛽𝑘~𝐷𝑖𝑟(𝜂)

• 𝑍𝑑,𝑛 ≡ topic selected for word 𝑛 in document 𝑑. 𝑍𝑑,𝑛~Multi(𝜃𝑑)

• 𝑊𝑑,𝑛 ≡ 𝑛𝑡ℎ word in document 𝑑. 𝑊𝑑,𝑛~ Multi(𝐵𝑍𝑑,𝑛
)



Latent Dirichlet Allocation

• Need to calculate posterior: 𝑃(𝜃1:𝐷, 𝑍1:𝐷,1:𝑁 , 𝛽1:𝐾|𝑊1:𝐷,1:𝑁 , 𝛼, 𝜂)

• ∝ 𝑝(𝜃1:𝐷, 𝑍1:𝐷,1:𝑁, 𝛽1:𝐾 ,𝑊1:𝐷,1:𝑁, 𝛼, 𝜂)

• Normalization factor,  𝛽  𝜃  𝑍 𝑝(. . ), is intractable

• Need to use approximate inference. 
• Gibbs Sampling

• Drawback 

• No intuitive relationship between topics.

• Challenge 

• Develop method similar to LDA with relationships between topics.



Normal or Gaussian Distribution
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• Continuous distribution
• Symmetrical and defined for −∞ < 𝑥 < ∞

• Parameters: 𝒩 𝜇, 𝜎2

• 𝜇 ≡ mean

• 𝜎2 ≡ variance

• 𝜎 ≡ standard deviation

• Estimation from Data: 𝑋 = 𝑥1 …𝑥𝑛
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Multivariate Gaussian Distribution: 𝑘 dimensions
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• 𝑿 = 𝑋1 …𝑋𝑘
𝑇~𝒩(𝝁, Σ)

• 𝝁 ≡ 𝑘 x 1 vector of means for each dimension

• 𝚺 ≡ 𝑘 x 𝑘 covariance matrix.

Example: 2D Case

• 𝜇 = 𝐸 𝑿 = 𝐸[𝑥1]
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2D Multivariate Gaussian:
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• Topic Correlations on Off Diagonal

• 𝜌𝑋1,𝑋2
𝜎𝑋1

𝜎𝑋2
= 𝐸 𝑥1 − 𝜇1 𝑥2 − 𝜇2 =  𝑖=1
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• Covariance matrix is diagonal!



Matlab Demo



…Back to Topic Models

• How can we adapt LDA to have correlations between topics.

• In LDA, we assume two things:

• Assumption 1: Topics in a document are independent. 𝜃𝑑~𝐷𝑖𝑟(𝛼)

• Assumption 2: Distribution of words in a topic is stationary. 𝐵𝑘~(𝜂)

• To sample topic distributions for topics that are correlated, we need 
to correct assumption 1.



Exponential Family of Distributions

• Family of distributions that can be placed in the following form:

𝑓 𝑥 𝜃 = ℎ 𝑥 ⋅ 𝑒𝜂 𝜃 ⋅𝑇 𝑥 −𝐴 𝜃

• Ex: Binomial distribution: 𝜃 = 𝑝
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Natural Parameterization



Categorical Distribution

• Multinomial n=1: 

• 𝑓 𝑥1 = 𝜃1; 𝑓 𝑍1 = 𝜃𝑇 ⋅ 𝑍1

• where 𝑍1 = 1 0 0. . 0 𝑇 (Iverson Bracket or Indicator Vector)

• 𝑧𝑖 = 1

• Parameters: 𝜃

• 𝜃 = 𝑝1 𝑝2 𝑝3 , where  𝑖 𝑝𝑖 = 1
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𝑝1

𝑝𝑘

𝑝2

𝑝𝑘
1

• log 𝜃′ = log
𝑝1

𝑝𝑘
log

𝑝2

𝑝𝑘
1



Exponential Family Multinomial With N=1

• 𝑹𝒆𝒄𝒂𝒍𝒍: 𝑓 𝑍𝑖 𝜃 = 𝜃𝑇 ⋅ 𝑍𝑖

• We want: 𝑓 𝑥 𝜃 = ℎ 𝑥 ⋅ 𝑒𝜂 𝜃 ⋅𝑇 𝑥 −𝐴 𝜃

• 𝑓 𝑍𝑖 𝜂 = 𝑒𝜂𝑇𝑍𝑖−log  𝑖=1 𝑒𝜂𝑖 =
𝑒𝜂𝑇⋅𝑍𝑖

 𝑖=1 𝑒𝜂𝑖

• Note: k-1 independent dimensions in Multinomial
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Verify: Classroom participation

• Given: 𝜂 = [log
𝑝1

𝑝𝑘
log

𝑝2

𝑝𝑘
…0]

• Show:  𝑓 𝑍𝑖 𝜃 = 𝜃𝑇 ⋅ 𝑍𝑖 = 𝑒𝜂𝑇𝑍𝑖−log  𝑖=1 𝑒𝜂𝑖



Intuition and Demo

• Can sample 𝜂 from any number of places.

• Choose normal (allows for correlation between topic dimensions)

• Get a topic distribution for each document by sampling: 
𝜂 ~ 𝒩𝑘−1 𝜇, 𝜎

• What is the 𝜇

• Expected deviation from last topic: log
𝑝𝑖

𝑝𝑘

• Negative means push density towards last topic (𝜂𝑖 < 0, 𝑝𝑘 > 𝑝𝑖)

• What about the covariance 
• Shows variability in deviation from last topic between topics.

 

 

0.0 0.25 0.5 0.75 1.0𝜇 = 0 0 𝑇 , 𝜎 = [1 0; 0 1]



Favoring Topic 3

𝜇 = −0.9, −0.9 , Σ = [1 0; 0 1] 𝜇 = −0.9, −0.9 , Σ = [1 − 0.9; −0.9 1]



Favoring Topic 3: 

𝜇 = −0.9, −0.9 , Σ = [1 0.4; 0.4 1]



Exercises



Correlated Topic Model

• Algorithm: 

• ∀𝑑 ∈ 𝐷
• Draw 𝜂𝑑| 𝜇, Σ ~ 𝒩(𝜇, Σ)

• ∀ 𝑛 ∈ 1…𝑁 :
• Draw topic assignment

• 𝑍𝑛,𝑑|𝜂𝑑 ~ Categorical 𝑓 𝜂𝑑

• Draw word

• 𝑊𝑑,𝑛| 𝑍𝑑,𝑛, 𝛽1:𝐾 ~ Categorical 𝛽𝑍𝑛

• Parameter Estimation:

• Intractable

• User variational inference (later)



Evaluation I: CTM on Test Data



Evaluation II: 10-Fold Cross Validation LDA vs CTM

• ~1500 documents in corpus.

• ~5600 unique words

• After pruning

• Methodology:

• Partition data into 10 sets

• 10 fold cross validation

• Calculate the log likelihood of a 
set, given you trained on the 
previous 9 sets, for both LDA 
and CTM.

• Right(L(CTM) - L(LDA))

• Left(L(CTM) – L(LDA))

CTM shows a much higher log likelihood as the number of 
topics increases.



Evaluation II: Predictive Perplexity

• Perplexity measure ≡ expected 
number of equally likely words
• Lower perplexity means higher 

word resolution.

• Suppose you see a percentage of 
words in a document, how likely 
is the rest of the words in the 
document according to your 
model?

• CTM does better with lower #’s of 
observed words.
• Able to infer certain words given 

topic probabilities.



Conclusions

• CTM changes the distribution from which hyper parameters are 
drawn, from a Dirichlet to a logistic normal function.

• Very similar to LDA

• Able to model correlations between topics.

• For larger topic sizes, CTM performs better than LDA.

• With known topics, CTM is able to infer words associations better 
than LDA.


